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A DOUBLE INDEX TRANSFORM
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Abstract. We prove an inversion theorem for a double index transform, which is associated

with the product of Macdonald’s functions K, (\/mQ +y2 — y) K- (\/ar;2 +y2 + y)7 where

(z,y) € Ry x R4 and i7,7 € Ry is a pure imaginary index. The results obtained in the
sequel are applied to find particular solutions of integral equations involving the square and
the cube of the Macdonald function K;-(t) as a kernel.
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1. INTRODUCTION AND PRELIMINARY RESULTS
In [8,9] it was proved that the double integral transform
N N dd
F(r) = lim / / K;, (\/1‘2 +y? - y) K;, (\/:132 +y2+ y) G(:c,y)% (1.1)

N—o0
1/N1/N

represents a left-inverse operator for the index transform

N—o0

N
4
G(z,y) = (i) lim /Tsinh 2r7 Ky (\/:cQ +y2 - y) K, (x/xQ +y? + y) F(r)dr,
0

(1.2)
which, in turn, is a bounded operator

G : Ly (Ry;7sinh2n7dr) — Lo (R+ x Ry; J:_ld:cdy) ,
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where the convergence in (1.1), (1.2) is by norms in Hilbert spaces
Lo (Ry;7sinh 2n7dT), Lo (R+ x Ry; zfldmdy), respectively. Its range does not coin-
cide with Lo (R+ x Ry; xildxdy), however the isometric Parseval equality holds

oo oo 4 oo
//|G(gc,y)|2M = (i) /Tsmhsz(T)FdT. (1.3)
0 0 0

T

In this paper we will find sufficient conditions for absolute and uniform convergence
with respect to 7 > 0 of the double integral in (1.1), representing a right-inverse
operator for (1.2), meaning
25 T
G(z,y) = — lim [ 7sinh a7 coshmrx

mam (1.4)

x Kir (\/ﬂm - y) Kir (\/W+ y) F(r)dr,

where the convergence is pointwise. These results will be applied to find solutions in
the closed form of Lebedev’s type integral equations of the first kind [6, 7]

/S(T, OK; (t)f(t)dt = F(1), 7>0, (1.5)
0

where K, (z) in (1.1), (1.2), (1.4), (1.5) is the modified Bessel function or Macdonald’s
function [2, vol. II] and S(7,t) is generally a special function of hypergeometric type
[2, vol. I]. In particular, we will consider an integral equation involving the cube of
the Macdonald function

/KET(t)f(t)dt =F(r), 7>0. (1.6)
0

We note that the equation
/Kir(t)f(t)dt =F(r), 7>0 (1.7)
0

is called the Kontorovich-Lebedev integral equation or transformation [6,7]. The case
of the square of Macdonald’s function as the kernel

s

[ KOs =F), >0 18)
0

was considered for the first time by Lebedev [3].
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The modified function K, (z) satisfies the differential equation

yd*u du

z@+zdz (22 +v*)u =0, (1.9)

for which it is a solution that remains bounded as z tends to infinity on the real line.
It has the asymptotic behaviour [2, vol. II]

1/2
K,(z) = (2%) e ?*[14+0(1/2)], z — 00, (1.10)
and near the origin
K, (2)=0 (z_lp‘el’l) , z—0, (1.11)
1
Ko(z) =0 <log z) , z—0. (1.12)

When |7| — oo and >0, y€R are fixed, the kernel K ;- (z) behaves as (cf. [7, ch. 1])

V2mel™ Y 2|7 1\ 7 a°
, e e R TR el K Z adi
Kyyir(z) = TP (2) e sin (T <log . ) + (7 + 2) + 4T|)

(1.13)
1
X (1 +0 ()) .
7]
The modified Bessel function can be given by the following integral [2, vol. II]
K, (z) = /e_ZCOSh“ cosh vudu, Rez > 0. (1.14)
0

The product of these functions of different arguments can be represented by the
Macdonald formula (cf. [2, vol. II], [7])

/ “H(esE ) - (1.15)

0

l\')\»—l

Ky(2)Ky(y) =

Letting v = 47 in (1.15) we obtain the following representation for the kernel of
transformation (1.1)

Ker (VT — 4) Kir (VT +7) =

o \

T (08 412 d
/e (25+1) 2“K1—T(u);u. (1.16)
0
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In the sequel we are going to employ the following useful relations (see [5], formulas
(2.16.51.8), (2.16.53.1), (2.16.6.5))

(o}

/TSinhO‘TKz‘T(x)Ki (y)dr =

0 (1.17)
0 . Ky (224192 + 2zycosa)'/?)

= -_— o) O O <
233yblna ($2+y2+2xycosa)1/2 7$7y> y <a<m,

/Tsinh 2T (v +in) T (v — i1) Kir (2) K- (y)dT =

0 (1.18)

2V rb/2 .

= Tz o))l R (e = < 1

F(l/g_y)(:vy) |z —y| (lo = yl), 0<Rev< g,

where I'(z) is Euler’s gamma-function [2, vol. I],

cosh mr

/t“_letKiT(t)dt: F(a+ir)T(a—im)(1/2 — @), (1.19)
0

2o /7

where 0 < Rea < %

We will also appeal to the theory of the one- and two-dimensional Mellin trans-
forms [1], [2, vol. 1], [4,6]. In fact, the Mellin transform of one variable is defined by
the integral

fM(s) = f*(s) = /f(x)xs_ldx,s =+ it, (1.20)
0

for f € Li(Ry;27 tdz), i.e.

o0
11 = [ 1)l do < 4
0
which maps this space into the space of bounded continuous functions vanishing at
infinity. However, if f € La(Ry ;227" 1dz) with the norm

1/2

1fll2= /|f($)|2$27_1dm < 400,
0

then it forms an isometric isomorphism

M Ly(Ry ;2 dx) — Lo((7y — ioo, v + ioo); dt),
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and integral (1.10) converges in the mean square sense. The inverse operator is given
by the integral

Yy+ioco
1
flx) = 3 / fM(s)z™%ds, s=~+it, x>0, (1.21)
™
y—100

which is convergent in the mean square sense too. Moreover, the following Parseval
equality holds

/|f(x)\2x27—1dx = % / |fM(y 4 it)|?dt. (1.22)
0 —00
If feLa(Ry;227 tda), g € La(Ry ;2= dx), then
00 y+ico
[t@st@ds =5 [ - s (1.23)
0 y—ioco

In particular, we have the following reciprocal Mellin transforms [2,5,7]

y+ioco
22K, 0(22) = - I'(w)l (w ;_ V) 2~ %dw, v > max(0,—Re v), (1.24)
y—100
r 1
/Ky/2(2t)tw+”/2—1dt = DT (w ;r ”) , Re w > 0. (1.25)
0

Further, by relation (2.16.33.10) in [5] we get the Mellin transform (1.10) of the kernel
(1.1)
/zs’lKiT (\/:EQ +y* - y) Kir (\/x2 +y*+ y) de =
0 (1.26)
VE g o D(sin)T (i)
==y Ks 2 5
TRANULIC e v ey

which is true for all y, 7 > 0 and v = Res > 0. Hence multiplying both sides of (1.26)
by y*~1, Rew > 0, we integrate with respect to y > 0. Then by using (1.25) we arrive
at the value of the double Mellin transform [1,4] for the kernel (1.1) as

77% Lyw=lpe (\/m—zo K- (\/m—f—y) dxdy =

i (1.27)
m s+w\ [ (§+ir)T (5 —ir

£F() ( > > (F+((1)+s)(/2) )'

8
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So according to [1,4] the double Mellin transform
= //f(x,y) ¥y dady, (s,w) € Cx C (1.28)
00

is well defined for any f(z,y) € Ly (Ry x Ry; a1y ldady), m = Res,y2 =
Rew. When f*(s,w) € L1((71 — i00,71 + 900) X (72 — i00,y2 + i00)), i.e.
1 +i00 YaHico
|f*(s,w) dsdw| < o0,
Y1 —ic0 3 —ico
then the inversion formula

Y1 +1i00 y2+ico

1
fr(s,w) 27y~ dsdw (1.29)

(27i)2

Y1 —100 Y2 —100

f(a?,y) =

is true for all (z,y) € Ry x Ry. Analogously to the one-dimensional case, the double
Mellin transform (1.28) with the convergence in the mean square sense

f* 1 Ly (Ry x Ry 2?1y Y dady) < Lo((y1 —ioo, v1 +i00) X (72 —i00, Y2 +1i00))

is an isometric isomorphism between these spaces (see [1]) and

oo o0 1 o o
/ |f(z, )2~ Ly? 2 tdady = @) / / |f* (1 + du, o + iv)|*dudv. (1.30)
0 0 —00 —00

More generally, for
f €Ly (Ry x Rysa® 1?2 dady), g€ Ly (R x Ryja' =21y "7 dzdy)

it has
Y1+100 y2+100

77f 9(w,y)dzdy = (2;2)2 / / [ (s,w)g" (1 —s,1 —w)dsdw. (1.31)
00

Y1 —1400 Y2 —t00

2. AN INVERSION THEOREM

We define functions G(z,y) in (1.1) belonging to a class of double Mellin integrals

y+ioco 3 +IOO

G(z,y) =

y—ioo l—zoo
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where x > 0, y > 0, 0 < v < 1, ¢(s), s = v + it is analytic in the strip |Res| < 1.
Moreover, it belongs to the Hardy weighted space Hf_l’l) (R; (|t 4+ 1)3/2dt) satisfying

the condition

SUD|Res(<1 / o (Res + i) | (] + 1)%/2dt < oo, (2.2)

First we observe that the integral (2.1) converges absolutely and uniformly for all
x > xg, Y > yo. In fact, with condition (2.2) and elementary inequality for Euler’s
beta-function |B(a,b)| < B(Re a, Re b) [2, vol. I] we find from (2.1)

Y+ioo L +ioco

1 ‘w)r((s +w)/2)

|G (2, y)| < ©o(s) :U_Sy_“’dsdw‘ <

e J ) T
SET éHm|r<w>| e (o) sl =
err J T((1+9)/2)
_mu " / | / 5| 1B (o2, (1)) (o) s <
— 1/: o B
<%B((2y+1)/4,1/4)1/ ’F((f_(“g)/Q)dw x
y+ico
<[ lels)+ 0% Jds| < oc.

Hence appealing to (1.24) we calculate the integral with respect to w in (2.1) and
write it as follows

y+ioco
2 y 2K, 2(2y)
Gloy) =5 _/ T((1+3)/2)

o(s) x~%ds. (2.3)

This integral is also absolutely convergent for each x > 0, y > 0. Indeed, with
condition (2.2), asymptotic behavior (1.13) and asymptotic Stirling’s formula for
gamma-functions [2, vol. I] we obtain

vy+ico 8/2K (2 ) oo
M —v,7/2 / 1 —y—1/2
/ T((1+5)/2) <Cry lo(s)I(Is| + 1) |ds| <

y—100 y—100

o(s) z7%s

y+ioo
<Camy [ Il + 1 %as] < .

y—100
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where C' > 0 is an absolute constant. However, since |¢ (Res + it)|(|t| + 1)%/? is
bounded (see (2.2)), we return to (2.1) and easily verify, that its integrand belongs
to Lo((—7y —ioo, —y 4+ 100) X (1/2 —ioo, 1/24i00)), |v| < 1. This means via (1.30),
that G(z,y) € Lo (R+ x Ry; x_27_1d:vdy). Taking into account that the right-hand
side of equality (1.27) belongs to La((y — i00,v + i00) X (1/2 — oo, 1/2 4 ic0)) we
apply (1.31) to write the double transformation (1.1) in the form

'y+zoo 1/24i0c0

s \LDI((s+w)/2)
F(r)= / / —I—ZT F(i_”) T 1572 X
Y—100 1/2—j00 (24)
Frl—w)'((1—w-—129)/2)
T{(1—5)/2) p(—s)dsdw.

Meanwhile, the inner integral with respect to w in (2.4) equals (see (1.23), (1.24),
relation (2.16.33.2) in [5])

1/24ic0
ﬁ / ()T (54 ) /2) T (1 — )T (1 — w — 8)/2) dw —
1/2—ico

yi 1+s 1—s
:16/K§/2(2v)dv=27rr( 5 )F( 5 )
0

Therefore, similarly to (2.3), after calculation with respect to w we write (2.4) in the

form
y+ioo

F(r) =5 [ T(5+ir) (5 —ir) pl(-s)ds. 2.

(1) Y 5 + T 5 T o(—s)ds (2.5)
y—100

In order to continue our consideration we will first investigate the following index

integral (see (1.4))

I(a,s) = /TSiIlh at cosh m7 K, (\/ﬁm— y) Kir (\/m‘f' y) X
J (2.6)

xF(%—&—iT)F(%—iT)dT, 0<a<m 0<Res<1

for any fixed (z,y) € Ry x R;. Taking into account (1.18) and Abel’s test we observe
that (2.6) converges uniformly with respect to a € [0, 7]. When 0 < a < 7 we employ
representation (1.19), asymptotic behavior by index (1.13) of the Macdonald function
and Fubini’s theorem to obtain

2§/2 0o 0o
I{a,s) = =572 //TsinhaT t3/2 7 et K (1) x
00

x K, (\/ﬂzﬁy2 — y) K- (\/W—I- y) dr dt.
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Hence (1.14) and Fubini’s theorem yield

I, s) = fF (s/2) // TsmhaTCOSUTX
o

’ L((1—1s)/2) sinh®(u/2)
00

(2.8)
X Kir (\/ 2 +y? — y) Ki- (\/x2 + 42 +y) dr du.
Denoting by a = /22 +4y%2 —y, b = \/z2 +y2 + y, which are fixed numbers and

integrating by parts in the inner integral with respect to u, we rewrite (2.8) in the
form

I(a,s) = W / sinh a7 Kir () Kir (D)h(7, 5)dr, (2.9)
0
where

h(u/2
/SlHUTCOS (u/ )du, 0<~=Res<l. (2.10)

) sinh® ™ (u/2)

Moreover, the integral (2.10) converges absolutely and uniformly with respect to s in
the strip {s = v +it; 0 <y < 1, t € R} and with respect to 7 on any compact in
R, . Furthermore, we have the estimate

=77 i 7U/T - cosh(u/(27 sinu u
Ih(r. s} = /(Sinh(u/(QT))> B/ @) ) <
(2.11)

< Cy1 /|smu| O(r), T — o0, 0 <y <1,

where C > 0 is a constant, which is not depending on 7, since the function

h TR R,
ES(’U) _ COS (U/Q) (W) , IITv 7é O,
9s+1 if v =0,

is bounded for all v > 0, 0 < Res < 1. Further, expanding £;(v) in a Taylor series
near zero we find £(v) = 2°T! + O(v?), 0 < v < 1. Therefore, (2.10) becomes

O

sin ut cosh(u/2)
sinh® ™ (u/2)

h(r,s) =717

—

(2.12)

+ du=0(r")+0(T7?)+0(1), 7— 400

»—-\8 o
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uniformly by s in the strip {s = v+ it; 0 < v < 1, t € R}. Hence choosing a
sufficiently big and fixed number A > 0 we split the integral (2.9) into fOA, e
Denoting by

A
(a,s) = W / sinh a7 Ky, (a) Kyr (b)h(7, 5)d7
0

we observe, appealing again to the Stirling asymptotic formula for gamma-functions,
that the following estimate is true

1+s/2

A
|1 (a, 8)| < f’ ‘/Tsinhoz'rKiT(a)KiT(bﬂde
0

[ SR < Cog 72 = 0 (1) o] =
sinh” (u/2) 7

where Cy .~ > 0 is a constant, which does not depend on « € [0, 7]. Meanwhile, the
integral

I'((1-s)/2)

can be treated by (2.12) and the asymptotic formula (1.13). So, we have

ST(1+s/2) [ ___sinh 5 2
La,s) = W/e_ﬂsm aTh(T, s) sin <’7’ (logT - 1) + T + a) X
a
A

Iy(a,s) = vr L1 +5/2) /SinhOﬂ'KiT(a)KiT(b)h(T, s)dr
A

I'((1-15)/2) T 4 " 4r
Xsin< (log2b—1>+1+i) (1+O(i>)2d7:
m%f%jwmmﬂwx

2 12 1 2
X oS (Tlogb + (a4b)) (1 +0 ()) dr+
a T T

oo

-|- m Il +5/2) /e 7 sinh ar I, s
I'((1-s)/2) T

~

X

A

xm@@g;g+@yn@wcwm:

= Ji(a, 8) + Ja(a, 8).
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Hence by using the second mean value theorem, the estimate (2.12), the Schwarz
inequality, the Parseval equality for the sine Fourier transform and the Dirichlet
convergence test for integrals we derive the uniform estimate by a € [0,7] and
s=v+1it, 0 <y<1, teR, namely

|1 (e, 8)| <ela—mA

Ay
2 12
71—‘(1 + 8/2)) ‘ 0] /(T’Y_l—‘rT’y_g) cos <T log g+7(a b )>d7 +
A

r((1—s)/2 At
A1 00
o [ dr| [sinurcosh(u/2) .
+ conbt.A/ - / S (w)2) d
0o 1/2
<|e gy | [ow + oms / 2O (0 2)

=0 (|sI*172).

We similarly treat Jo(c, s) to establish the uniform relation Jo(a, s) = O (|s[7+1/2)
by [0,7]. Thus returning to (2.6), (2.8), (2.9) and taking into account the above
discussions we prove that I(a, s) = O (|s|"*1/2) uniformly by a € [0, 7] and s = y+it,
0<vy<1,teR.

Multiplying both sides of (2.5) by

5

2
ﬁrsinh aTcosh T K, (\/W — y) Kir (\/m+ y)

and integrating through with respect to 7 over Ry we change the order of integration
by Fubini’s theorem for each o € [0, 7). Then we pass to the limit & — 71— due
to the obtained estimates, condition (2.2) and the Lebesgue dominated convergence
theorem. Hence the uniform convergence of the integral (2.6) and relation (1.18) lead
us to the formula

5

2 o0
— lim /Tsinh at coshnmrK;, (\/xQ +y2 — y) K, (\/ac2 +y2+ y) F(r)dr =

T4 a—n—
0
vy+ioco —s/2 (213)
o 2 Y Ks/2(2y) s
Tw ) Ty P
y—100

Our goal is to prove that the right-hand side of (2.13) is equal to G(z,y), =,y > 0 and
we will arrive at the inversion formula (1.4). In fact, by virtue of (2.3), the analyticity
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of the integrand in the strip |Res| < 1 and Cauchy’s theorem we have

+i00 —y+ico
2 7/ y 2K 5 (2y) (s)z*d 2 / Y2 K, )(2y) (5)a—ds
— L p(—s)r’ds = — " =
i T(1—s)/2) 7 i T((1+5)/2)7
~y—i00 —y—100
y+too
2 Y2 K, 2(2y) _
= — —_ Sd :G
= | T = e
y—i00
since for all z,y > 0
Fy+iB
lim / wws)x—sds:o
B—oo T'((1+4s)/2)
+~v+iB

via condition (2.2). Thus we summarize our results by the following

Theorem 2.1. Under condition (2.2) the (1.1) is well-defined in the class of double
Mellin integrals (2.1) and the inversion formula (1.4) holds for all z,y > 0, where the
convergence in « 1S pointwise.

Corollary 2.2. Under the conditions of Theorem 2.1 the transformation (1.1) is
a bounded continuous function on [0,00) and behaves as O (T’Y_le_’”) , T — —+00,
0<y<l1.

Proof. In fact (1.1) can be written as an absolutely and uniformly convergent integral

0 0

since the Macdonald function satisfies the inequality |K,(z)| < KRre:(z), > 0 and
therefore for all 7 > 0

/Oc/oo Va2 — )Ko(\/x2+y +y>|Gzy|—<oo
00

Hence returning to the representation (2.5) and employing (1.14), (1.19), (2.10) we
derive

y+ico oo

=y s/2
P cosh(er) F(r) = / / /2 1‘KW()F<&()2)/2)dtds:

~y—ioco 0
y+ioco

T m (14 s/2)
== / @(—3)711((1 — S)/2)h(7'75)ds.

y—1i00
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Consequently (see (2.2), (2.11)),

y+ioco
1—v T 0w I'(1+s/2)
7 Y cosh(mT)|F(7)| < 3 / ‘C'O(S)F((l—s)ﬂ)h(q—’ s)ds| <

<Cy supppacr [l (Res +it)|(1 + )% 2dt = (1)

—0o0

and we prove Corollary 2.2. O

3. INTEGRAL EQUATIONS OF THE LEBEDEV TYPE

In this section we will apply the inversion theorem for the transformation (1.1) to find
particular solutions of integral equation (1.5) and its particular cases in the class of
double integrals (2.1). Precisely, we consider equation (1.5), where the kernel S(r,t)
is represented by the Kontorovich-Lebedev integral (1.7)

S(r,t) = / K () (u, t)du, (3.1)
0

where ¥ (u,t) # 0, (u,t) € Ry x Ry is a continuous function. Substituting (3.1) into
(1.5) and making change of variables u = /22 + 3% — y, t = \/22 + y? + y we write
this equation in terms of the double integral (1.1)

//KiT (\/x2+y2—y)KiT (\/x2+y2+y>><
00

2z
X?/J( 2 +y? —y, vx2+y2+y)f<\/x2+y2+y> ——=dady = F(),
Va2
(3.2)

letting

2
G(z,y) =¢(\/x2+y2—y, \/x2+y2+y)f(vx2+y2+y) 2x+y2 (3.3)

22
which is, in turn, being represented by (2.1), (2.3). So, writing t = /a2 +y? +y =
r(1+sin)), u = /z2+y2—y = (1l —sin)), » > 0, A € [0,7/2), and letting

p= L‘_:E’A\, z =r(l+sin\) we seek a desired solution of equation (1.5) in the form

(ct. (2.3))

y+ioc0
_ (1 + p) KS/Q(Z(]_ — p)) 20z —s/2
f(Z) B 2zp 1/}(/)2, Z)ﬂ'i / F((l ¥ S)/Q) 90(3) <1 — p) ds

y—1i00
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under the conditions of Theorem 2.1. Then from (1.4) it has a family of solutions

4(1+p) r

f(t) = 7/7’5111}127('7[(7;7— t)Kir(pt)F(T)dT, t >0, 3.4

0= i (K (o) F(7) (3.4

for any p € (0, 1], where the convergence of the integral (3.4) is understood by (1.4).
As an example let t(u,t) =1 in (3.1). Then via relation (2.16.2.1) in [5] we get

S(7,t) = Z[cosh(n7/2)]7*. Hence the corresponding integral equation (1.5) takes the

form of the modified Kontorovich-Lebedev integral equation (see (1.7))

KZT =F )
2 cosh( 7r7/2 / (7)
0
which has a solution
(o]
4(1 + p .
f@) 7sinh 277 K7 (8) Ko (pt) F (7)dT, t > 0, (3.5)
0

for any p € (0,1] in the class (2.1), where

= (Ve T2 +y)

2
W=t

Combining with the direct Mellin transform (1.28) we derive the equality

(V@) T (@) T ((s +w)/2)
/ / VR A s vy I A

Hence (see (1.20)) with the change of variables the left-hand side of (3.6) is equivalent
to relations

w/2
277 \/x2+y +y) 51 g _of s+ +1)/coss+1 Asin¥ ! /\d)\—
e

L) (5+1)

=l )2
frlstw+ )F(w+§+1)

Therefore from (3.6) and the duplication formula for gamma-functions [2, vol. I] we
obtain that the Mellin transform of f satisfies the following condition

w+;+1)r(5;“’) F(f(i)s). (3.7)

2w+sfl

f*(s+w+1):71“(
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Denoting by SR )
mf*(z+

9(z) = > T (2)

we apply the reduction formula for gamma-functions [2, vol. I] to write finally from
(3.7) a functional equation for g(z)

gls+w) = (w+ ) gls+w—1).
The Lebedev equation (1.8) can be treated employing relation (2.16.52.10) in [5] and

an inversion formula of the Kontorovich-Lebedev transform [6,7]. As a result we get
the following equation for the modified Bessel function

K. f/K” d,

cosh T

which transforms the left-hand side of (1.8) after the change of variables (see above)
into the double integral

2+y
2 + y

[ [ (Vo) s (VT )
0 0

2 + 2 +
%i”“ F (\/xQ T2+ y) ¢ dedy = F(7).

Hence it has a solution
4(1+ p)?t

S0 ="

et+e) /Tsinh 27 K (8) Kir (pt) F(7)dT, t > 0,

for any p € (0,1] in the class (2.1), where

72 ZI/’Q
G(a,y) = v \/m+yf(\/m+y>x2

2 +y? 22+ 42—y

Furthermore, making substitutions in polar coordinates, condition (3.6) for this case
takes the form

w/2

3 ) B SHL Y aw—1
/ / p—2r(1siny) ! cos®T Asin A £ ) =t drd) =
0 0

V1 —sin A\(1 + sin \)stw—1/2

_ W ((s+w)/2)
= TTieez) (38)
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Integration by X in (3.8) leads to the equality (cf. (3.7))

e ”(I)l 2,1,1+§+w,—1,7“)f(r) reteTlgr =

_ 2T twt (s +w))
=~ T(1+ s) o

where @4 (a,b, ¢, x,y) is a hypergeometric function of two variables from the Horn list
[2, vol. T].
Finally we consider equation (1.6). We treat it With the use of the representation

(1.15). It takes the form (1.5), where 9 (u,t) = 5"~ % for the kernel (3.1) S(r,t) =
K2 (t). Thus from (3.4) we find a family of its solutions

F(t) =8(1+ p)e’

- /7'Sinh27TTKiT(t)KiT(pt)F(T)dT, p € (0,1],
7r
0

and the corresponding equality (3.6) will be in the form

[ ot ZT T (st )2
// 3 01 = ) vy S = T B o),
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