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1. INTRODUCTION

The present paper deals with the existence of optimal solutions to some optimal
control problem for partial differential inclusions. Partial differential inclusions con-
sidered in the paper are investigated by stochastic methods connected with diffusion
properties of weak solutions to stochastic differential inclusions considered in the
author’s paper [9].

In the recent years, some properties of partial differential inclusions have been
investigated by G. Bartuzel and A. Fryszkowski (see [1-3]) as applications of some
general methods of abstract differential inclusions. Partial differential inclusions con-
sidered by G. Bartuzel and A. Fryszkowski have the form Du € F(u), where D is
a partial differential operator and F' is a given lower semicontinuous (l.s.c.) multi-
function. In the present paper we consider partial differential inclusions of the form
uy(t,x) € (Lrpgu)(t,z)+c(t, z)u(t,z) and P(t, z) € (Lpgu)(t, x)+c(t, x)u(t, ), where
c and 1 are given continuous functions, v denotes an unknown function and Lp¢g is
the set-valued partial differential operator generated by the given Ls.c. set-valued
mappings F' and G. Partial differential inclusions considered in the paper are investi-
gated together with some initial and boundary conditions and solutions to such initial
and boundary valued problems are characterised by weak solutions to stochastic dif-
ferential inclusions. Such approach leads to natural methods of solving some optimal
control problems for systems described by partial differential equations depending

507



508 Michal Kisielewicz

on control parameters. These methods use the weak compactness with respect to
distributions of the sets of all weak solutions to stochastic differential inclusions (see
[7] and [8]).

In what follows we shall denote by 03’2(R"+1) and CZ(R™) the spaces of all func-
tions h € C1:2 (R R) and h € C?*(R",R), respectively with compact supports. By
0D and AU we denote the boundaries of given domains D C R™ and U C R"**!,
respectively. By Pr we shall denote a complete filtered probability space (Q2, F,F, P)
with a filtration F = (F})o<i<7 satisfying the usual conditions, i.e., such that F; con-
tains all A € F such that P(A) =0 and F; = [, Fiye for t € [0,T]. We shall deal
with set-valued mappings F' : [0, 00) xR"™ — CI(R") and G : [0,00) xR™ — CI(R™*™),
where CI(R™) and CI(R™ ™) denote spaces of all nonempty closed subsets of R"
and R™"*™_ respectively. Given the set-valued mappings F' and G, we shall de-
note by C(F) and C(G) sets of all continuous selectors f : [0,00) x R" — R™ and
g :[0,00) xR™ — R™*™ of F and G, respectively. For a given n-dimensional stochastic
process X, » = (Xs,2(t))o<t<oo On Pr satistying X »(s) = « for (s,z) € [0,00) x R,
we shall denote by Y; ,, an (n + 1)-dimensional stochastic process defined on Pr by
Yo = (Ysu(t))o<t<oo, where Yy () = (s + ¢, X5 4(s+¢)) for 0 < t < oco. For the
stochastic processes given above, T > 0 and a domain D C R" we can define the
first exit times 75, and 73 of X, , and Y; , from D and U = (0,T") x D, respectively,
namely, 73, = inf{r > s : X, 4(r) € D} and 7; = inf{t > s : Y, ,(¢t) € U}. It can be
verified (see [12], p. 226) that 75, = 75 — s.

In what follows we shall need some continuous selection theorem. We recall it
(see [9], Th.3) in the general form. Let (X, p), (Y,|-|) and (Z, || - ||) be a Polish and
Banach space, respectively. Similarly as above by CI(Y) we denote the space of all
nonempty closed subsets of Y.

Theorem 1 ([9], Th. 3). Let A : X XY — Z and u : X — Z be continuous
and H : X — CUY) be l.s.c. such that u(x) € Az, H(z)) for x € X. Assume
Mz, -) is affine and H(x) is a convex subset of Y for every x € X. Then for every
e > 0 there is a continuous function f. : X — Y such that fo(x) € H(x) and
Az, f=(2)) —u(@)|| < e forz e X.

2. STOCHASTIC DIFFERENTIAL INCLUSIONS AND SET-VALUED PARTIAL
DIFFERENTIAL OPERATOR

Given set-valued measurable and bounded mappings F : [0,00) x R" — CI(R") and
G :]0,00) x R" — CI(R™™), by a stochastic differential inclusion SDI(F,G), we
mean a relation

t t
Tt — Ts € clpe2 (/ F(r,x.;)dr —|—/ G(r, a:T)dBT) (1)

which has to be satisfied for every 0 < s < ¢t < oo by a system (Pg, X, B) consist-
ing of a complete filtered probability space Pg, an L2-continuous F-nonanticipative
n-dimensional stochastic process X = (X (¢))o<t<co and m-dimensional F-Brownian
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motion B = (By)o<t<co- In a particular case, when F' and G take convex values,
SDI(F,G) takes the form

t t
Ty — Ts 6/ F(T,xT)dT—l—/ G(7,2,)dB; (2)

and for its every solution (P, X, B) the process X is continuous. It can be treated
as a random variable X : (Q,F) — (C,5(C)), where C = C([0,00),R"™) and 8(C)
denotes the Borel o-algebra on C. We call the above system (Pg, X, B) a weak
solution to SDI(F,G). We call a weak solution (P, X, B) to (2) unique in law if for
any other weak solution (P}, X', B") to SDI(F,G) there is PX ! = P(X')™!, where
PX~! and P(X’)~! denote the distributions of X and X', respectively, defined by
(PX71)(A) = P(X71(A)) and (P(X')"H(A) = P'((X")71(A)) for A € B(C). In
what follows, we shall consider stochastic differential inclusion (2) together with an
initial condition X, = x a.s., for fixed (s,z) € [0,00) x R". Every weak solution
(Pr, X, B) to (2) will be identified with a pair (X, B) or simply with a stochastic
process X defined on Pr. In what follows we shall denote by X ,(F,G) the set of all
weak solutions to stochastic differential inclusions (2) satisfying an initial condition
xs = x a.s. We shall consider SDI(F,G) of the form (2) with F and G satisfying the
following conditions (A).

Conditions (A):

(i) F:]0,00) x R" — CI(R™) and G : [0,00 x R® — CI(R"*™) are measurable,
bounded and take convex values,

(ii) F(t,-) and G(t,-) are continuous for every fixed t € [0, o),

(ili) G is diagonally convex-valued, i.e., for every (t,z) € [0,00) x R™, the set
D(G)(t,x) = {g-g" : g € G(t,x)} is convex, where g7 denotes the transposition
of g,

(iv) G is such that for every continuous selector o of a multifunction D(G) defined
above, there is a continuous selector g of G such that g- g7 is uniformly positive
defined and o = (g - g7),

(v) F and G are continuous.

Similarly as in [8] and [9] we can prove the following theorems.

Theorem 2. Assume conditions (i)-(iii) of (A) are satisfied. Then for every (s,x) €
[0,00) x R™ the set X5 ,(F, Q) is nonempty and weakly compact with respect to the
convergence in distributions.

Theorem 3. Assume conditions (i)—(iv) of (A) are satisfied. Then for every (f,g) €
C(F) x C(G) and (s,z) € [0,00) x R™ there is X[9 € X, .(F,G) such that a process
VI9 = (YI9(t)o<tcoo with YI9(t) = (s +t,X[9(s + 1)) for 0 <t < oo is an It
diffusion such that Y/9(0) = (s, ), a.s.

Proof. Let (f,g) € C(F) x C(G) and (s,z) € [0,00) x R™ be fixed. By virtue of
([5], Th.IV.6.1) and Strook and Varadhan uniqueness theorem (see [13]) there is a
unique in law weak solution (Pg, X/9, B) to a stochastic differential equation z; =

s,z
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T+ f f(r o )dr + f g(1r,2;)dB;. Let ay = (1,fT)T and b, = (0,¢%,...,g™)7
with 0,¢" € RY™™ where 0 = (0,...,0) and g° denotes the i -th row of g for i =
1,...,n. Similarly as in (][9], p.1044) we can verify that the process stg defined
above is a unique in law weak solution to stochastic differential equation y; = (s, )+

fot af(y-)dr+ fst bg(yr)dB;. Therefore (see [9]), Y,/¢ is an Ito diffusion on Pr satisfying
Y{2(0) = (s, 2). 0

Corollary 1. If conditions (i)-(iv) of (A) are satisfied, then for every (f,g) € C(F)x
C(QG) there is a nonempty set Dyy(R™Y) of functions h : [0,00) x R™ — R such that

_ ESTh(Y{9(t) — h(s,x)
lim :
t—0 t

(3)

exists for every (s,z) € [0,00) x R™, where E%* denotes the mean value operator
with respect to a probability law Q> of Y4 so that Q**[YJI(t1) € Ey,..., Y I(tx) €

Ey] = PYJ4(t1) € Ey,.... Y I(ty) € By for 0 < t; < oo and E; € B(R™) with
1<i<k.

In what follows the above limit will be denoted by (L(;g%)(s,x) and called the
infinitesimal generator of stf 9. Similarly as in ([12], Th.7.3.3), we can verify that for
every h € Cp?(R™1) there is

- - n . 1 n
(LGgh)(s,2) = hi(s, ) + D fils,a)hl, (s, @) + 5 Y (g9 i(s, o), (s,2) (4)
i=1 ij=1
for every (s,z) € [0,00) x R™. Hence in particular, for h € CZ(R") we obtain

n

3,7=1

for every (s,z) € [0,00) x R™. Similarly as in ([12], Th.7.4.1), we obtain Dynkin’s
formula

= b)) = Rsso)+ | [ @S Bvzca v

for h € Cy*(R™1), (s,2) € [0,00) x R™ and a stopping time 7 such that E**[r] < co.
In particular, for h € C3(R™), one obtains

B [R(X{5,(r)| = h(z) + EO* [ /0 T(Lfcgh)(t,X&i(t))dt} (7)

for x € R™.
Given the above set-valued mappings F' and G we can define a set-valued partial
differential operator on Cy*(R"*1) by setting

(Lpch)(s,z) = {(Luwh)(s,z) : u € F(s,z),v € G(s,2)}, (8)
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where
n

(Luoh)(s Z u;h ; Z (v- vT)ijE;’ﬂj (s,2)
4,j=1
for (s,z) € [0,00) x R™.

From Theorem 1, the next result follows immediately.

Theorem 4. Assume F and G satisfy conditions (i)—(iv) of (A), let Ry = [0,00)
and u,v : Ry x Ry x R — R be continuous and such that u(t,-) € Cy*(R"*1) and
v(t,s,x) € (Lrgu(t,-))(s,x) for (s,z) € [0,00) x R™ and t € [0,00). Then for every
e > 0 there is (f,g.) € C(F) x C(G) such that g. - gX is uniformly positive defined
and |v(t,s,z) — (L g u(t,-)(s,z)| <e for (s,z) € [0,00) x R" and t € [0, 00).

Proof. Let X = Ry xRy xR, Y = R" x R A((¢,s,2),(2,0)) =
Szl (ts,x) 4 530 oigull (L8, @), F(t,s,z) = F(n(t,s,z)) and
G(t,s,x) = G(n(t,s,x)) for (t,s,2) € X, where 7 denotes the orthogonal projec-
tion of R x R x R™ onto R x R™. From the properties of v there follows v(t, s, z) €
(¢, s,x),ﬁ(t,s,x)) for (t,s,z) € X, where I;T(t,s,x) = ﬁ(t,s,x) X D(é)(t,s,x). By
virtue of Theorem 1, for every € > 0 there is a continuous selector ?L of H such
that |v(t,s,x) — )\((t 5,2), he(t,s,2))| < e for (¢,s,2) € X. By the definition of
H, there are continuous selectors fg and &, of F and D(G)7 respectively, such that
he = (f-,5.). From this and (iv) it follows that for every (s, z) € [0, 00) x R™ there are
fo(s,z) € F(s,x) and g.(s,z) € G(s,z) such that f(t,s,2) = fo(n(t,s,2)) = f-(s,2)
and g:(t,s,2) = g-(n(t,s,2)) = go(s,z) and |v(t,s,x) — (Ly g u(t,-)(s,z)] < € for
(s,z) € [0,00) x R™ and ¢ € [0,00). In this way we have defined, on [0,00) x R",
continuous functions f. and g., selectors of F' and G, such that fg(t, s,x) = fe(s,x)
and ge(t, s,2) = g-(s,x). O

3. INITIAL AND BOUNDARY VALUED PROBLEMS
FOR PARTIAL DIFFERENTIAL INCLUSIONS

Let F' and G satisfy conditions (i)—(iv) of (A) and Lpg be the set-valued partial
differential operator on Cy(R"!) defined above. By LS Gh we shall denote a family
Lie = {L§, : (f,9) € C(F) x C(G)}. For every (f,9) € C(F) x C(G)} and h €
Drc = ({Dyq : (f.9) € C(F) x C(G)} there is (LG )h)(t,x) € (LGgh)(t,x) for
(t,z) € [0,T] x R™. In [10] , the following results were proved.

Theorem 5. Assume conditions (i)-(iv) of (A) are satisfied, T >0, h € Cy % (R
and let ¢ € C([0,T] x R™,R) be bounded. For every (s,z) € [0,T) x R™ and every
weak solution X, , to SDI(F,G) with an initial condition x5 = = a.s., defined on a
probability space (2, F, P), a function

ot 5,2) = B {exp < / e Xs,z(T))dT> Ti(s 1, Xy (s + 1)
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satisfies

vy(t,s,z) € (L%Gv(t, )) (s,x) —c(s,z)v(t,s,x) for (s,x)€]0,T)xR"™,
B and t€[0,T — s, (9)
v(0, s,z) = h(s,x) for (s,xz) €10,T) x R™

Theorem 6. Assume conditions (i), (iii)-(v) of (A) are satisfied, T > 0 and let

h e CY2R™1). Suppose ¢ € C([0,T] x R™,R) and v € C-12([0,T] x [0,T] x R™,R)
are bounded and such that

vy(t, s,x) — vi(t,s,x) € (Lrpgu(t,-)) (s,z) — c(s, z)v(t, s, x),
for (s,z) € p,T) xR™ and tel0,T — s, (10)
v(0,s,2) = h(s,z) for (s,x) €[0,T) x R™.

Then for every (s,xz) € [0,T) x R™ there exists )Z's_,z € X »(F,G) defined on a proba-
bility space (Q, F, P) such that

v(t,s,x) = E {exp (- / o o(r, XS,I(T))dT) h(s+t, Xou(s +1))

for (s,z) € [0,T) xR™ and t € [0,T — s].

Theorem 7. Assume conditions (i), (iii)—(v) of (A) are satisfied, T > 0, D is a
bounded domain in R™ and let ® € C((0,T) x 0D,R) and u € C((0,T) x D,R) be
bounded. If v € Cy®(R™*1) is bounded and such that

u(t,z) —vi(t,z) € (Lrpgv)(t,x) for (t,z)€ (0,T)x D,
limpsgyv(t,z) = @(t,y) for (t,y) € (0,T]x 0D

then for every x € D there exists )2'071; € Xo(F,G) defined on a probability space
(Q, F, P) such that

U(t,l‘) = E[q)(;gv)?o,w(;g))] - E

/ ™ . )?o,w(t))dt]
0

for (t,x) € (0,T) x D, where 74, = inf{r € (0,7 : )?o’w(r) ZD}NT.

Theorem 8. Assume conditions (i), (ii)-(v) of (A) are satisfied, T > 0, D is a
bounded domain in R™ and let ® € C((0,T) x dD,R), ¢ € C([0,T] x D,R) and
ue C((0,T) x D,R) be bounded. If v e Cy*(R™) is bounded and such that

{u(t,m) —uy(t,x) € (Lpgv)(t,x) — c(t,x)v(t,z) for (t,z)€ (0,T)x D, 1)

lim, ., v(t,xz) = ®(t,y) for (s,y) € (0,7] x oD
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then for every x € D there exists XO,% € Xy .(F,G) defined on a probability space
(Q,F, P) such that

q)(?g,)?o’w(?g))el‘p <_ /OTD C(t,XO,z(t))dt>] -

—E { /0 g {u(t,i*o,z(t))exp ( /0 tc(z,)?07x(z))dz>} dt}

Jor (t,z) € (0,T) x D, where 75 = inf{r € (0,T] : Xo.(r) € D} AT.

Remark 1. The above results are also true for T = oo, because by the boundedness
of D there is Tp < o0 a.s., which implies that limp_ s Tg = 71p a.s. The case
T < oo is more applicable in practice.

o(t,x) = E

4. EXISTENCE OF SOLUTION TO OPTIMAL CONTROL PROBLEMS FOR
PARTIAL DIFFERENTIAL INCLUSIONS

Given set-valued mappings F, G and functions i~L, ®, ¢ and u, by A(F,G,%, c) we
denote the set of all solutions to initial valued problem:

vy(t, s,x) — vi(t,s,2) € (LSqu(t,-)) (s, @) — c(s, z)v(t, s, ),
for (s,x)€[0,T)xR™ and t¢t€[0,T— ] (12)
v(0,s,x) = h(s,z) for (s,z)€[0,T)xR",

and by and T'(F, G, ®,u, c) the set of all solutions to the boundary value problem

(13)

{u(t,x) € (LSqv)(t, x) — c(t,x)v(t,x) for (t,z)€ (0,T) x D,
lim,_,, v(t,z) = ®(t,y) for (s,y) € (0,T] x ID.

Let us recall that by a solution to initial value problem (12) we mean a function
v e CL([0,T]x [0, T|xR"™, R) such that v(t, ) € Dpg for every t € [0,7] and conditions
(12) are satisfied. Similarly by a solution to boundary valued problem (13) we mean
a function v € C1([0,7] x R™) such that v € Dpe and conditins (13) are satisfied.
In what follows, we shall denote the sets A(F, G, h, c)NCHL2([0, 7] x [0,T] x R™, R)
and I'(F, G, ®,u, ¢) N CH2(R™1) by AC(F, G, h,c) and TC(F, G, ®, u, c), respectively.
It is easy to see that A€(F, G,?L, ¢) and I'°(F, G, ®,u, c) are solutions sets to (10) and
(11), respectively. Indeed, by the definitions of L%, and Ly there is (L%GE)(t, x) =
R(t, ) + (Lpgh)(t, z) for h € CY2(R™) and (t,z) € [0,T] x R™,

Let H : [0,T] x R — R be a given measurable and uniformly integrably bounded
function and let H and Z be mappings defined on A(F,G,ﬁ,c) and I'(F, G, @, u, c)
for fixed (s,x) € [0,T) x R™ by settings:

T ~
H(v)(s,m):/o H(t,v(t,s,x))dt for ve A(F,G,h,c)
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and

T
Z(v)(x):/o H(t ot 2))dt for veT(F,G,®,u,c).

Theorem 9. Assume conditions (i), (iii)-(v) of (A) are satisfied and let ¢ €
C([0,T] x R™,R) be bounded. Let h € C2(R™*Y) and assume H : [0,T] x R — R is
measurable, uniformly mtegmbly bounded and such that H(t,-) is continuous. If F and
G are such that for the h and ¢ given above the set A€(F,G, h ,C) is nonempty, then

there is v € A(F,G, h,c) such that H(V)(s,z) = inf{H(v)(s,z) : v € A°(F,G, h, o)}
for every (s,x) € [O,T] x R™.

Proof. Let (s,x) € [0,T] x R™ be fixed. The set {H(v)(s,z) : v € AC(F,G, h,c)}
is nonempty and bounded because there is a k € L([0,7],Ry) such that
|H(v) fo t)dt for every v € AC(F,G, h,c). Therefore, there is a se-
quence (v”)%ozl of AC(F,G,h, ¢) such that o := inf{H(v)(s,z) : v € A°(F,G, h,c) =
lim,, oo H(v™)(s,z). By virtue of Theorem 6 for every n = 1,2,... and fixed
(s,2) €[0,T] x R™ there is X, € X; .(F,G) such that

s+t -
v (t,s,2) = E5® [eg;p <—/ (T, sz(T))dT> h(s+t, X, (s+1))

for t € [0,T — s]. By the weak compactness of X ;(F,G) and ([5],Th.I1.2.1) there are
a subsequence (nk) hey Of (n)>2,, a probablhty space (Q F, P), stochastic processes
X™ and X on (9, f P) such that P(XI')~! = P(X™)~! for k = 1,2,... and

SUPg<i<T | X" (t) — X(t)] — 0, P - a.s. Hence, in particular there follows

V"™ (t, s, 1) = E57 [ea:p (— / - o(r, X;@(T))m) (s +t, X2 (s + t))] -
_F {el’p < / g (T))dT) Bi(s + 1, X (s + t))} .

By the properties of processes X T X and functions ¢ and E, thence there follows
that

lim v™(t,s,2) = E {exp (- / - c(T,)Z(T))dT) h(s+t, X (s + t))] .

k—oo
Let
o(t,s,x)=E {emp (- / o c(T,)?(T))dT) h(s+t,X(s+ t))} .

By virtue of Theorem 5, v € A(F, Gﬁ, ¢). Hence, by the properties of the function
H we get a = limy_,oo H(v™)(s,2) = H(V)(s, x) for (s,z) € [0,T] x R™. O
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In a similar way, we can also prove the following theorem.

Theorem 10. Assume conditions (i), (iii)-(v) of (A) are satisfied and let D be a
bounded domain in R™. Let ¢ € C(]0,T] x R",R), u € C((0,T) x D) and ® €
C((0,T) x 0D,R) be bounded. Assume H :[0,T] x R — R is measurable, uniformly
integrably bounded and such that H(t,-) is continuous. If F' and G are such that for
the ®, u and c given above the set T'C (F, G, ®,u,c) is nonempty, then for every x € R™
there is Xo. € Xoo(F,G) such that Z([@)(z) = inf{Z(v)(z) : v € T°(F, G, ®,u,c)}
for x € R™, where

Stw) = B0 [q,(m Xo.o(7p))exp (— /0 " c(t,)?o,x(t))dtﬂ _

_ o { /O " [u(t,)?07z(t))emp (— /0 t c(z,)?o,w(z))dz)] dt}

for (t,z) € (0,T) x D, where 7p =inf{r € (0,T]: Xo,(r) & D}.
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