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1. INTRODUCTION

The present paper deals with the existence of optimal solutions to some optimal
control problem for partial differential inclusions. Partial differential inclusions con-
sidered in the paper are investigated by stochastic methods connected with diffusion
properties of weak solutions to stochastic differential inclusions considered in the
author’s paper [9].

In the recent years, some properties of partial differential inclusions have been
investigated by G. Bartuzel and A. Fryszkowski (see [1–3]) as applications of some
general methods of abstract differential inclusions. Partial differential inclusions con-
sidered by G. Bartuzel and A. Fryszkowski have the form Du ∈ F (u), where D is
a partial differential operator and F is a given lower semicontinuous (l.s.c.) multi-
function. In the present paper we consider partial differential inclusions of the form
u′t(t, x) ∈ (LFGu)(t, x)+c(t, x)u(t, x) and ψ(t, x) ∈ (LFGu)(t, x)+c(t, x)u(t, x), where
c and ψ are given continuous functions, u denotes an unknown function and LFG is
the set-valued partial differential operator generated by the given l.s.c. set-valued
mappings F and G. Partial differential inclusions considered in the paper are investi-
gated together with some initial and boundary conditions and solutions to such initial
and boundary valued problems are characterised by weak solutions to stochastic dif-
ferential inclusions. Such approach leads to natural methods of solving some optimal
control problems for systems described by partial differential equations depending

507



508 Michał Kisielewicz

on control parameters. These methods use the weak compactness with respect to
distributions of the sets of all weak solutions to stochastic differential inclusions (see
[7] and [8]).

In what follows we shall denote by C1,2
0 (Rn+1) and C2

0 (Rn) the spaces of all func-
tions h̃ ∈ C1,2(Rn+1,R) and h ∈ C2(Rn,R), respectively with compact supports. By
∂D and ∂U we denote the boundaries of given domains D ⊂ Rn and U ⊂ Rn+1,
respectively. By PF we shall denote a complete filtered probability space (Ω,F ,F, P )
with a filtration F = (Ft)0≤t≤T satisfying the usual conditions, i.e., such that F0 con-
tains all A ∈ F such that P (A) = 0 and Ft =

⋂
ε>0 Ft+ε for t ∈ [0, T ]. We shall deal

with set-valued mappings F : [0,∞)×Rn → Cl(Rn) and G : [0,∞)×Rn → Cl(Rn×m),
where Cl(Rn) and Cl(Rn×m) denote spaces of all nonempty closed subsets of Rn

and Rn×m, respectively. Given the set-valued mappings F and G, we shall de-
note by C(F ) and C(G) sets of all continuous selectors f : [0,∞) × Rn → Rn and
g : [0,∞)×Rn → Rn×m of F and G, respectively. For a given n-dimensional stochastic
process Xs,x = (Xs,x(t))0≤t<∞ on PF satisfying Xs,x(s) = x for (s, x) ∈ [0,∞)× Rn,
we shall denote by Ys,x, an (n + 1)-dimensional stochastic process defined on PF by
Ys,x = (Ys,x(t))0≤t<∞, where Ys,x(t) = (s + t,Xs,x(s + t)) for 0 ≤ t < ∞. For the
stochastic processes given above, T > 0 and a domain D ⊂ Rn we can define the
first exit times τ s

D and τ s
U of Xs,x and Ys,x from D and U = (0, T )×D, respectively,

namely, τ s
D = inf{r > s : Xs,x(r) 6∈ D} and τ s

U = inf{t > s : Ys,x(t) 6∈ U}. It can be
verified (see [12], p. 226) that τ s

U = τ s
D − s.

In what follows we shall need some continuous selection theorem. We recall it
(see [9], Th.3) in the general form. Let (X, ρ), (Y, | · |) and (Z, || · ||) be a Polish and
Banach space, respectively. Similarly as above by Cl(Y ) we denote the space of all
nonempty closed subsets of Y .

Theorem 1 ([9], Th. 3). Let λ : X × Y → Z and u : X → Z be continuous
and H : X → Cl(Y ) be l.s.c. such that u(x) ∈ λ(x,H(x)) for x ∈ X. Assume
λ(x, ·) is affine and H(x) is a convex subset of Y for every x ∈ X. Then for every
ε > 0 there is a continuous function fε : X → Y such that fε(x) ∈ H(x) and
||λ(x, fε(x))− u(x)|| ≤ ε for x ∈ X.

2. STOCHASTIC DIFFERENTIAL INCLUSIONS AND SET-VALUED PARTIAL
DIFFERENTIAL OPERATOR

Given set-valued measurable and bounded mappings F : [0,∞) × Rn → Cl(Rn) and
G : [0,∞) × Rn → Cl(Rn×m), by a stochastic differential inclusion SDI(F,G), we
mean a relation

xt − xs ∈ clL2

(∫ t

s

F (τ, xτ )dτ +
∫ t

s

G(τ, xτ )dBτ

)
(1)

which has to be satisfied for every 0 ≤ s ≤ t < ∞ by a system (PF, X,B) consist-
ing of a complete filtered probability space PF, an L2-continuous F-nonanticipative
n-dimensional stochastic process X = (X(t))0≤t<∞ and m-dimensional F-Brownian
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motion B = (Bt)0≤t<∞. In a particular case, when F and G take convex values,
SDI(F,G) takes the form

xt − xs ∈
∫ t

s

F (τ, xτ )dτ +
∫ t

s

G(τ, xτ )dBτ (2)

and for its every solution (PF, X,B) the process X is continuous. It can be treated
as a random variable X : (Ω,F) → (C, β(C)), where C = C([0,∞),Rn) and β(C)
denotes the Borel σ-algebra on C. We call the above system (PF, X,B) a weak
solution to SDI(F,G). We call a weak solution (PF, X,B) to (2) unique in law if for
any other weak solution (P ′F′ , X ′, B′) to SDI(F,G) there is PX−1 = P (X ′)−1, where
PX−1 and P (X ′)−1 denote the distributions of X and X ′, respectively, defined by
(PX−1)(A) = P (X−1(A)) and (P (X ′)−1)(A) = P ′((X ′)−1(A)) for A ∈ β(C). In
what follows, we shall consider stochastic differential inclusion (2) together with an
initial condition Xs = x a.s., for fixed (s, x) ∈ [0,∞) × Rn. Every weak solution
(PF, X,B) to (2) will be identified with a pair (X,B) or simply with a stochastic
process X defined on PF. In what follows we shall denote by Xs,x(F,G) the set of all
weak solutions to stochastic differential inclusions (2) satisfying an initial condition
xs = x a.s. We shall consider SDI(F,G) of the form (2) with F and G satisfying the
following conditions (A).

Conditions (A):

(i) F : [0,∞) × Rn → Cl(Rn) and G : [0,∞ × Rn → Cl(Rn×m) are measurable,
bounded and take convex values,

(ii) F (t, ·) and G(t, ·) are continuous for every fixed t ∈ [0,∞),
(iii) G is diagonally convex-valued, i.e., for every (t, x) ∈ [0,∞) × Rn, the set

D(G)(t, x) = {g · gT : g ∈ G(t, x)} is convex, where gT denotes the transposition
of g,

(iv) G is such that for every continuous selector σ of a multifunction D(G) defined
above, there is a continuous selector g of G such that g · gT is uniformly positive
defined and σ = (g · gT ),

(v) F and G are continuous.

Similarly as in [8] and [9] we can prove the following theorems.

Theorem 2. Assume conditions (i)–(iii) of (A) are satisfied. Then for every (s, x) ∈
[0,∞) × Rn the set Xs,x(F,G) is nonempty and weakly compact with respect to the
convergence in distributions.

Theorem 3. Assume conditions (i)–(iv) of (A) are satisfied. Then for every (f, g) ∈
C(F ) × C(G) and (s, x) ∈ [0,∞) × Rn there is Xfg

s,x ∈ Xs,x(F,G) such that a process
Y fg

s,x = (Y fg
s,x(t))0≤t<∞ with Y fg

s,x(t) = (s + t,Xfg
s,x(s + t)) for 0 ≤ t < ∞ is an Itô

diffusion such that Y fg
s,x(0) = (s, x), a.s.

Proof. Let (f, g) ∈ C(F ) × C(G) and (s, x) ∈ [0,∞) × Rn be fixed. By virtue of
([5], Th.IV.6.1) and Strook and Varadhan uniqueness theorem (see [13]) there is a
unique in law weak solution (PF, X

fg
s,x, B) to a stochastic differential equation xt =
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x +
∫ t

s
f(τ, xτ )dτ +

∫ t

s
g(τ, xτ )dBτ . Let af = (1, fT )T and bg = (0, g1, . . . , gn)T

with 0, gi ∈ R1×m, where 0 = (0, . . . , 0) and gi denotes the i -th row of g for i =
1, . . . , n. Similarly as in ([9], p.1044) we can verify that the process Y fg

s,x defined
above is a unique in law weak solution to stochastic differential equation yt = (s, x)+∫ t

0
af (yτ )dτ+

∫ t

s
bg(yτ )dBτ . Therefore (see [9]), Y fg

s,x is an Itô diffusion on PF satisfying
Y fg

s,x(0) = (s, x).

Corollary 1. If conditions (i)–(iv) of (A) are satisfied, then for every (f, g) ∈ C(F )×
C(G) there is a nonempty set Dfg(Rn+1) of functions h̃ : [0,∞)× Rn → R such that

lim
t→0

Es,xh̃(Y fg
s,x(t)− h̃(s, x)
t

(3)

exists for every (s, x) ∈ [0,∞) × Rn, where Es,x denotes the mean value operator
with respect to a probability law Qs,x of Y fg

s,x so that Qs,x[Y fg
s,x(t1) ∈ E1, . . . , Y

fg
s,x(tk) ∈

Ek] = P [Y fg
s,x(t1) ∈ E1, . . . , Y

fg
s,x(tk) ∈ Ek] for 0 ≤ ti < ∞ and Ei ∈ β(Rn+1) with

1 ≤ i ≤ k.

In what follows the above limit will be denoted by (LCfgh̃)(s, x) and called the
infinitesimal generator of Y fg

s,x . Similarly as in ([12], Th.7.3.3), we can verify that for
every h̃ ∈ C1,2

0 (Rn+1) there is

(LCfgh̃)(s, x) = h̃′t(s, x) +
n∑

i=1

fi(s, x)h̃′xi
(s, x) +

1
2

n∑
i,j=1

(g · gT )ij(s, x)h̃′′xixj
(s, x) (4)

for every (s, x) ∈ [0,∞)× Rn. Hence in particular, for h ∈ C2
0 (Rn) we obtain

(LCfgh)(s, x) =
n∑

i=1

fi(s, x)h′xi
(x) +

1
2

n∑
i,j=1

(g · gT )ij(s, x)h′′xixj
(x) (5)

for every (s, x) ∈ [0,∞) × Rn. Similarly as in ([12], Th.7.4.1), we obtain Dynkin’s
formula

Es,x
[
h̃(Y fg

s,x(τ)
]

= h̃(s, x) + Es,x

[∫ τ

0

(LCfgh̃)(Y
fg
s,x(t))dt

]
(6)

for h̃ ∈ C1,2
0 (Rn+1), (s, x) ∈ [0,∞)×Rn and a stopping time τ such that Es,x[τ ] <∞.

In particular, for h ∈ C2
0 (Rn), one obtains

E0,x
[
h̃(Xfg

0,x(τ)
]

= h(x) + E0,x

[∫ τ

0

(LCfgh)(t,X
fg
0,x(t))dt

]
(7)

for x ∈ Rn.
Given the above set-valued mappings F and G we can define a set-valued partial

differential operator on C1,2
0 (Rn+1) by setting

(LFGh̃)(s, x) = {(Luvh̃)(s, x) : u ∈ F (s, x), v ∈ G(s, x)}, (8)
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where

(Luvh̃)(s, x) =
n∑

i=1

uih̃
′
xi

(s, x) +
1
2

n∑
i,j=1

(v · vT )ij h̃
′′
xixj

(s, x)

for (s, x) ∈ [0,∞)× Rn.

From Theorem 1, the next result follows immediately.

Theorem 4. Assume F and G satisfy conditions (i)–(iv) of (A), let R+ = [0,∞)
and u, v : R+ × R+ × Rn → R be continuous and such that u(t, ·) ∈ C1,2

0 (Rn+1) and
v(t, s, x) ∈ (LFGu(t, ·))(s, x) for (s, x) ∈ [0,∞) × Rn and t ∈ [0,∞). Then for every
ε > 0 there is (fε, gε) ∈ C(F ) × C(G) such that gε · gT

ε is uniformly positive defined
and |v(t, s, x)− (Lfεgε

u(t, ·)(s, x)| ≤ ε for (s, x) ∈ [0,∞)× Rn and t ∈ [0,∞).

Proof. Let X = R+ × R+ × Rn, Y = Rn × Rn×m, λ((t, s, x), (z, σ)) =∑n
i=1 ziu

′
xi

(t, s, x) + 1
2

∑n
i,j=1 σiju

′′
xixj

(t, s, x), F̃ (t, s, x) = F (π(t, s, x)) and
G̃(t, s, x) = G(π(t, s, x)) for (t, s, x) ∈ X, where π denotes the orthogonal projec-
tion of R × R × Rn onto R × Rn. From the properties of v there follows v(t, s, x) ∈
λ((t, s, x), H̃(t, s, x)) for (t, s, x) ∈ X, where H̃(t, s, x) = F̃ (t, s, x)×D(G̃)(t, s, x). By
virtue of Theorem 1, for every ε > 0 there is a continuous selector h̃ε of H̃ such
that |v(t, s, x) − λ((t, s, x), h̃ε(t, s, x))| ≤ ε for (t, s, x) ∈ X. By the definition of
H̃, there are continuous selectors f̃ε and σ̃ε of F̃ and D(G̃), respectively, such that
h̃ε = (f̃ε, σ̃ε). From this and (iv) it follows that for every (s, x) ∈ [0,∞)×Rn there are
fε(s, x) ∈ F (s, x) and gε(s, x) ∈ G(s, x) such that f̃ε(t, s, x) = fε(π(t, s, x)) = fε(s, x)
and g̃ε(t, s, x) = gε(π(t, s, x)) = gε(s, x) and |v(t, s, x) − (Lfεgε

u(t, ·)(s, x)| ≤ ε for
(s, x) ∈ [0,∞) × Rn and t ∈ [0,∞). In this way we have defined, on [0,∞) × Rn,
continuous functions fε and gε, selectors of F and G, such that f̃ε(t, s, x) = fε(s, x)
and g̃ε(t, s, x) = gε(s, x).

3. INITIAL AND BOUNDARY VALUED PROBLEMS
FOR PARTIAL DIFFERENTIAL INCLUSIONS

Let F and G satisfy conditions (i)–(iv) of (A) and LFG be the set-valued partial
differential operator on C1,2

0 (Rn+1) defined above. By LCFGh̃ we shall denote a family
LCFG = {LCfg : (f, g) ∈ C(F ) × C(G)}. For every (f, g) ∈ C(F ) × C(G)} and h̃ ∈
DFG :=

⋂
{Dfg : (f, g) ∈ C(F ) × C(G)} there is (LCfg)h̃)(t, x) ∈ (LCFGh̃)(t, x) for

(t, x) ∈ [0, T ]× Rn. In [10] , the following results were proved.

Theorem 5. Assume conditions (i)–(iv) of (A) are satisfied, T > 0, h̃ ∈ C1,2
0 (Rn+1)

and let c ∈ C([0, T ] × Rn,R) be bounded. For every (s, x) ∈ [0, T ) × Rn and every
weak solution Xs,x to SDI(F,G) with an initial condition xs = x a.s., defined on a
probability space (Ω,F , P ), a function

v(t, s, x) = Es,x

[
exp

(
−
∫ s+t

s

c(τ,Xs,x(τ))dτ
)
h̃(s+ t,Xs,x(s+ t))

]
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satisfies
v′t(t, s, x) ∈

(
LCFGv(t, ·)

)
(s, x)− c(s, x)v(t, s, x) for (s, x) ∈ [0, T )× Rn,

and t ∈ [0, T − s],
v(0, s, x) = h̃(s, x) for (s, x) ∈ [0, T )× Rn.

(9)

Theorem 6. Assume conditions (i), (iii)–(v) of (A) are satisfied, T > 0 and let
h̃ ∈ C1,2

0 (Rn+1). Suppose c ∈ C([0, T ]×Rn,R) and v ∈ C1,1,2([0, T ]× [0, T ]×Rn,R)
are bounded and such that

v′t(t, s, x)− v′s(t, s, x) ∈ (LFGv(t, ·)) (s, x)− c(s, x)v(t, s, x),
for (s, x) ∈ [0, T )× Rn and t ∈ [0, T − s],
v(0, s, x) = h̃(s, x) for (s, x) ∈ [0, T )× Rn.

(10)

Then for every (s, x) ∈ [0, T )×Rn there exists X̃s,x ∈ Xs,x(F,G) defined on a proba-
bility space (Ω̃, F̃ , P̃ ) such that

v(t, s, x) = Ẽ

[
exp

(
−
∫ s+t

s

c(τ, X̃s,x(τ))dτ
)
h̃(s+ t, X̃s,x(s+ t))

]
for (s, x) ∈ [0, T )× Rn and t ∈ [0, T − s].

Theorem 7. Assume conditions (i), (iii)–(v) of (A) are satisfied, T > 0, D is a
bounded domain in Rn and let Φ ∈ C((0, T ) × ∂D,R) and u ∈ C((0, T ) × D,R) be
bounded. If v ∈ C1,2

0 (Rn+1) is bounded and such that{
u(t, x)− v′t(t, x) ∈ (LFGv)(t, x) for (t, x) ∈ (0, T )×D,

limD3x→y v(t, x) = Φ(t, y) for (t, y) ∈ (0, T ]× ∂D

then for every x ∈ D there exists X̃0,x ∈ X0,x(F,G) defined on a probability space
(Ω̃, F̃ , P̃ ) such that

v(t, x) = Ẽ[Φ(τ̃T
D , X̃0,x(τ̃T

D))]− Ẽ

[∫ eτT
D

0

u(t, X̃0,x(t))dt

]

for (t, x) ∈ (0, T )×D, where τ̃T
D = inf{r ∈ (0, T ] : X̃0,x(r) 6∈ D} ∧ T .

Theorem 8. Assume conditions (i), (iii)–(v) of (A) are satisfied, T > 0, D is a
bounded domain in Rn and let Φ ∈ C((0, T ) × ∂D,R), c ∈ C([0, T ] × D,R) and
u ∈ C((0, T )×D,R) be bounded. If v ∈ C1,2

0 (Rn+1) is bounded and such that{
u(t, x)− v′t(t, x) ∈ (LFGv)(t, x)− c(t, x)v(t, x) for (t, x) ∈ (0, T )×D,

limx→y v(t, x) = Φ(t, y) for (s, y) ∈ (0, T ]× ∂D
(11)
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then for every x ∈ D there exists X̃0,x ∈ X0,x(F,G) defined on a probability space
(Ω̃, F̃ , P̃ ) such that

v(t, x) = Ẽ

[
Φ(τ̃T

D , X̃0,x(τ̃T
D))exp

(
−
∫ eτT

D

0

c(t, X̃0,x(t))dt

)]
−

− Ẽ

{∫ eτT
D

0

[
u(t, X̃0,x(t))exp

(
−
∫ t

0

c(z, X̃0,x(z))dz
)]

dt

}

for (t, x) ∈ (0, T )×D, where τ̃T
D = inf{r ∈ (0, T ] : X̃0,x(r) 6∈ D} ∧ T .

Remark 1. The above results are also true for T = ∞, because by the boundedness
of D there is τD < ∞ a.s., which implies that limT→∞ τT

D = τD a.s. The case
T <∞ is more applicable in practice.

4. EXISTENCE OF SOLUTION TO OPTIMAL CONTROL PROBLEMS FOR
PARTIAL DIFFERENTIAL INCLUSIONS

Given set-valued mappings F , G and functions h̃, Φ, c and u, by Λ(F,G, h̃, c) we
denote the set of all solutions to initial valued problem:

v′t(t, s, x)− v′s(t, s, x) ∈
(
LCFGv(t, ·)

)
(s, x)− c(s, x)v(t, s, x),

for (s, x) ∈ [0, T )× Rn and t ∈ [0, T − s]
v(0, s, x) = h̃(s, x) for (s, x) ∈ [0, T )× Rn,

(12)

and by and Γ(F,G,Φ, u, c) the set of all solutions to the boundary value problem{
u(t, x) ∈ (LCFGv)(t, x)− c(t, x)v(t, x) for (t, x) ∈ (0, T )×D,

limx→y v(t, x) = Φ(t, y) for (s, y) ∈ (0, T ]× ∂D.
(13)

Let us recall that by a solution to initial value problem (12) we mean a function
v ∈ C1([0, T ]×[0, T ]×Rn,R) such that v(t, ·) ∈ DFG for every t ∈ [0, T ] and conditions
(12) are satisfied. Similarly by a solution to boundary valued problem (13) we mean
a function v ∈ C1([0, T ] × Rn) such that v ∈ DFG and conditins (13) are satisfied.
In what follows, we shall denote the sets Λ(F,G, h̃, c) ∩ C1,1,2([0, T ]× [0, T ]× Rn,R)
and Γ(F,G,Φ, u, c) ∩ C1,2(Rn+1) by ΛC(F,G, h̃, c) and ΓC(F,G,Φ, u, c), respectively.
It is easy to see that ΛC(F,G, h̃, c) and ΓC(F,G,Φ, u, c) are solutions sets to (10) and
(11), respectively. Indeed, by the definitions of LCFG and LFG there is (LCFGh̃)(t, x) =
h̃′t(t, x) + (LFGh̃)(t, x) for h̃ ∈ C1,2(Rn+1) and (t, x) ∈ [0, T ]× Rn.

Let H : [0, T ]× R → R be a given measurable and uniformly integrably bounded
function and let H and Z be mappings defined on Λ(F,G, h̃, c) and Γ(F,G,Φ, u, c)
for fixed (s, x) ∈ [0, T )× Rn by settings:

H(v)(s, x) =
∫ T

0

H(t, v(t, s, x))dt for v ∈ Λ(F,G, h̃, c)
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and

Z(v)(x) =
∫ T

0

H(t, v(t, x))dt for v ∈ Γ(F,G,Φ, u, c).

Theorem 9. Assume conditions (i), (iii)–(v) of (A) are satisfied and let c ∈
C([0, T ]× Rn,R) be bounded. Let h̃ ∈ C1,2(Rn+1) and assume H : [0, T ]× R → R is
measurable, uniformly integrably bounded and such that H(t, ·) is continuous. If F and
G are such that for the h̃ and c given above the set ΛC(F,G, h̃, c) is nonempty, then
there is ṽ ∈ Λ(F,G, h̃, c) such that H(ṽ)(s, x) = inf{H(v)(s, x) : v ∈ ΛC(F,G, h̃, c)}
for every (s, x) ∈ [0, T ]× Rn.

Proof. Let (s, x) ∈ [0, T ] × Rn be fixed. The set {H(v)(s, x) : v ∈ ΛC(F,G, h̃, c)}
is nonempty and bounded, because there is a k ∈ L([0, T ],R+) such that
|H(v)(s, x)| ≤

∫ T

0
k(t)dt for every v ∈ ΛC(F,G, h̃, c). Therefore, there is a se-

quence (vn)∞n=1 of ΛC(F,G, h̃, c) such that α := inf{H(v)(s, x) : v ∈ ΛC(F,G, h̃, c) =
limn→∞H(vn)(s, x). By virtue of Theorem 6 for every n = 1, 2, . . . and fixed
(s, x) ∈ [0, T ]× Rn there is Xn

s,x ∈ Xs,x(F,G) such that

vn(t, s, x) = Es,x

[
exp

(
−
∫ s+t

s

c(τ,Xn
s,x(τ))dτ

)
h̃(s+ t,Xn

s,x(s+ t))
]

for t ∈ [0, T − s]. By the weak compactness of Xs,x(F,G) and ([5],Th.I.2.1) there are
a subsequence (nk)∞k=1 of (n)∞n=1, a probability space (Ω̃, F̃ , P̃ ), stochastic processes
X̃nk and X̃ on (Ω̃, F̃ , P̃ ) such that P (Xnk

s,x)−1 = P (X̃nk)−1 for k = 1, 2, . . . and
sup0≤t≤T |X̃nk(t)− X̃(t)| → 0, P̃ - a.s. Hence, in particular there follows

vnk(t, s, x) = Es,x

[
exp

(
−
∫ s+t

s

c(τ,Xnk
s,x(τ))dτ

)
h̃(s+ t,Xnk

s,x(s+ t))
]

=

= Ẽ

[
exp

(
−
∫ s+t

s

c(τ, X̃nk(τ))dτ
)
h̃(s+ t, X̃nk(s+ t))

]
.

By the properties of processes X̃nk , X̃ and functions c and h̃, thence there follows
that

lim
k→∞

vnk(t, s, x) = Ẽ

[
exp

(
−
∫ s+t

s

c(τ, X̃(τ))dτ
)
h̃(s+ t, X̃(s+ t))

]
.

Let

ṽ(t, s, x) = Ẽ

[
exp

(
−
∫ s+t

s

c(τ, X̃(τ))dτ
)
h̃(s+ t, X̃(s+ t))

]
.

By virtue of Theorem 5, ṽ ∈ Λ(F,G, h̃, c). Hence, by the properties of the function
H we get α = limk→∞H(vnk)(s, x) = H(ṽ)(s, x) for (s, x) ∈ [0, T ]× Rn.
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In a similar way, we can also prove the following theorem.

Theorem 10. Assume conditions (i), (iii)–(v) of (A) are satisfied and let D be a
bounded domain in Rn. Let c ∈ C([0, T ] × Rn,R), u ∈ C((0, T ) × D) and Φ ∈
C((0, T ) × ∂D,R) be bounded. Assume H : [0, T ] × R → R is measurable, uniformly
integrably bounded and such that H(t, ·) is continuous. If F and G are such that for
the Φ, u and c given above the set ΓC(F,G,Φ, u, c) is nonempty, then for every x ∈ Rn

there is X̃0,x ∈ X0,x(F,G) such that Z(ṽ)(x) = inf{Z(v)(x) : v ∈ ΓC(F,G,Φ, u, c)}
for x ∈ Rn, where

ṽ(t, x) = E0,x

[
Φ(τD, X̃0,x(τD))exp

(
−
∫ τD

0

c(t, X̃0,x(t))dt
)]

−

− E0,x

{∫ τD

0

[
u(t, X̃0,x(t))exp

(
−
∫ t

0

c(z, X̃0,x(z))dz
)]

dt

}
for (t, x) ∈ (0, T )×D, where τD = inf{r ∈ (0, T ] : X0,x(r) 6∈ D}.
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