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INVARIANT MEASURES
WHOSE SUPPORTS POSSESS

THE STRONG OPEN SET PROPERTY

Abstract. Let X be a complete metric space, and S the union of a finite number of strict
contractions on it. If P is a probability distribution on the maps, and K is the fractal
determined by S, there is a unique Borel probability measure µP on X which is invariant
under the associated Markov operator, and its support is K. The Open Set Condition (OSC)
requires that a non-empty, subinvariant, bounded open set V ⊂ X exists whose images under
the maps are disjoint; it is strong if K∩V 6= ∅. In that case, the core of V , V̌ =

T∞
n=0 Sn(V )

is non-empty and dense in K. Moreover, when X is separable, V̌ has full µp-measure for
every P . We show that the strong condition holds for V satisfying the OSC iff µP (∂V ) = 0,
and we prove a zero-one law for it. We characterize the complement of V̌ relative to K, and
we establish that the values taken by invariant measures on cylinder sets defined by K, or
by the closure of V , form multiplicative cascades.
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1. INTRODUCTION

This paper is a companion to our article [2], which presents background and moti-
vation. The difference is that there we used topological methods, while here we use
measure-theoretic ones. We start with a resumé of the fundamental definitions and
the principal results stated in [2].

Suppose that X is a complete metric space and wi, i ∈ {1, 2, . . . , N}, are strict
contractions of X. Call the wi scaling maps, and define the scaling operator S on 2X as

S(E) =
N⋃

i=1

wi(E),

for E ⊂ X. Say E is subinvariant under scaling if S(E) ⊆ E, invariant if equality
holds.
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These notions were introduced by Hutchinson in his fundamental paper [3]. There,
he established the existence of a unique-empty bounded closed subset K of X that
is invariant under scaling, and showed it to be compact. The set K is termed the
fractal, or invariant set, determined by the scaling maps.

He also introduced fractal measures. Each probability distribution P =
(p1, p2, . . . , pN ) on the index set defines a Markov operator

MP µ =
N∑

i=1

pi · µ ◦ w−1
i ,

acting on finite Borel measures µ and transforming them into probability measures
on the Borel σ-algebra B(X).

A probability measure µP on B(X) for which MP µP = µP is called an invariant
or fractal measure. Hutchinson [3], 733, proved the existence and uniqueness of such
measures, assuming that P is non-degenerate, and established that K is their topo-
logical support.

The Open Set Condition (OSC) posits the existence of a non-empty subinvariant
bounded open set V whose images under the scaling maps are disjoint. If, in addition,
V meets K, it is called the Strong Open Set Condition (SOSC).

We establish, in Section 4, that the alternatives K ∩ V 6= ∅ and its negation are
reflected in the dichotomy µP (∂V ) = 0 or 1, resp. In view of this, the SOSC can be
formulated without any reference to K.

In [2] we studied the core V̌ of the set V occurring in the OSC, defined by the
formula

V̌ =
∞⋂

n=0

Sn(V ),

where Sn denotes the n-th iterate of S. There, we showed by a category argument
that V̌ is non-empty whenever the SOSC holds and the restriction of the scaling maps
to V are open: this includes the case of homeomorphisms. When it is non-empty, it
is a dense subset of K. It is invariant under scaling. Conversely, V 6= ∅ implies the
SOSC.

Our goal now is to remove the assumption that the maps be open, and show, by
an appeal to measure theory, that the SOSC implies that V̌ is non-empty in general.
This would happen if it were possible to show that it has positive µP -measure for
some P .

A difficulty that arises is that, without the openness assumption, there is no
longer any reason to expect that the images of V under the mappings Sn will be
Borel measurable. Indeed, as the space X has not been assumed to be separable, the
images of Borel sets under continuous maps may fail to be Borel, or even analytic, as
pointed out by Sierpinski [8], 220. Consequently, there is no assurance that the sets
Sn(V ) and the core are going to be µP -measurable.

We are able to get around this obstacle by the following device. Consider K with
the induced metric as the ambient space, in place of X, and replace V by U = K ∩V .
Then U is open in the topology of K and if the OSC or the SOSC holds for V , it also
holds for U .
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However, continuous images of U belong to the Borel σ-algebra B(K), for U is
an Fσ subset of a compact space, thus it is σ-compact. Consequently, any continuous
image of U is likewise σ-compact, hence Borel, in the topology of K.

2. INVARIANT MEASURES AND THE CORE

Define the core Ǔ of U in the same way that V̌ was defined for V :

Ǔ =
∞⋂

n=0

Sn(U).

The properties established in [2] for V̌ hold for Ǔ . In particular, Ǔ is invariant under
scaling, i.e., S(Ǔ) = Ǔ .

What is new is that Ǔ ∈ B(K). This puts us in a position to show, in Corollary 2.6,
that when V and, therefore, U satisfy the SOSC, the core of U is non-empty, because
it has positive µp-measure. Since Ǔ ⊂ V̌ , it follows that V̌ is non-empty.

Proposition 2.1. The set U is subinvariant.

Proof. This follows from the inclusions

S(U) = S(K ∩ V ) ⊂ S(K) ∩ S(V ) ⊂ K ∩ V = U.

Proposition 2.2 (cf. [1,p. 226]). If E is an open set that meets K, then µP (K∩E)>0.

Proof. Let x ∈ K ∩ E. As K is the support of µP , the balls B(x, r), centered at x,
with radius r, will have µP ◦ B(x, r) > 0, for every r > 0. Since E is open, they will
lie in E when r is sufficiently small. For these r, 0 < µP ◦B(x, r) ≤ µP (K ∩E), and
the assertion follows.

Remark 2.3. If V satisfies the SOSC, then, setting V = E gives µP (V ) > 0. The
converse is likewise true, for µP (V ) = µP (K ∩V ), since K supports µP . Accordingly,
if µP (V ) > 0 for some probability distribution P , then K ∩ V 6= ∅, and the SOSC
holds for V .

Suppose now that E ⊂ X is arbitrary. For every natural number n and each string
of indices i1, i2, . . . , in with values in {1, 2, . . . , N}, define the cylinder set

Ei1i2...in
= wi1 ◦ wi2 ◦ . . . ◦ win

(E).

Then Sn(E) can be expressed as

Sn(E) =
⋃

i1,...,in

Ei1i2...in
,

where the i1, i2, . . . , in vary independently over {1, 2, . . . , N}.



474 Gerald S. Goodman

The following fundamental theorem was suggested by a folklore result, recorded
in Graf [1], 226.

Theorem 2.4. Let n be any natural number. If E is a subinvariant Borel set, and,
as the indices i1, i2, . . . , in vary over {1, 2, . . . , N}, the subsets Ei1i2...in are disjoint,
modulo sets of µP -measure zero, then the Ei1i2...in

form a partition of E modulo
µP -null sets, and

µP (Ei1i2...in) = pi1pi2 · · · pinµP (E),

for any string of indices i1, i2, . . . , in, and any distribution P .

Proof. By the subinvariance of E, Sn(E) ⊂ E, for each n. Hence,

µP (E) ≥ µP (Sn(E)) =
∑

i1i2...in

µP (Ei1i2...in
).

By the invariance of µP ,

µP (Ei1i2...in
) = MP µP (Ei1i2...in

) ≥ pi1 · µP (Ei2...in
),

for any string of indices i1, i2, . . . , in. Arguing recursively gives, ultimately,

µP (Ei1i2...in
) ≥ pi1pi2 · · · pin

µP (E).

Summing over all the indices yields

µP (E) ≥ µP ◦ Sn(E) =
∑

i1i2...in

µP (Ei1i2...in) ≥ µP (E).

Hence, equality holds throughout, and the assertion follows.

Corollary 2.5 (of the proof). If the SOSC holds, then µP (U) = µP (Ǔ).

Proof. The proof of Theorem 2.4 reveals that µP (E) = µP ◦Sn(E), for every n. Hence
setting E = U, and sending n →∞, gives µP (U) = µP (Ǔ), as stated.

Proposition 2.6. If U satisfies the SOSC, then the core Ǔ is non-empty.

Proof. Since µP (U) > 0, by Remark 2.3, and µP (U) = µP (Ǔ), it must be that
Ǔ 6= ∅.

Scholium 2.7. The SOSC is a necessary and sufficient condition for Ǔ , and hence V̌ ,
to be non-empty.

Remark 2.8. The foregoing product formula shows that the probabilities act ge-
ometrically on µP (E) as scaling factors. The notion of a partition modulo sets of
µP -measure zero is the measure-theoretic analog of the idea of set-theoretic partition
and serves the same purpose. It is valid whenever the latter condition holds, but it
may hold when that condition fails, as we shall see in Theorem 5.2 and Corollary 5.5
below.
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3. THE ZERO ONE LAW AND ITS IMPLICATIONS

In fact, when X is separable, µP (Ǔ) = 1. This is a direct consequence of a remarkable
Zero-One Law, proved in [5]. There, the authors consider Markov operators of the
form

Mµ(E) =
∫

X

p(x, E)µ(dx), for E ∈ B(X),

acting on Borel measures µ, where the transition kernel p(x, E) is measurable in x
for every E ∈ B(X), and p(x, ·) is a Borel probability measure for every x ∈ X.
The image Mµ of µ is then a Borel measure. They define the Markov function
Γ(x) = suppMδx = supp p(x, ·), where supp denotes the topological support, and δx

is the Dirac measure concentrated at x. When MP is taken as M , the transition
kernel assumes either of the equivalent forms

p(x, ·) =
N∑

i=1

pi · 1w−1
i (·)(x) =

N∑
i=1

pi · 1(·) ◦ wi(x),

where 1 denotes the indicator function, and Γ(x) then reduces to S(x).

Theorem 3.1 ([5, p. 346]). (Zero-One Law) Assume X to be a Polish space, and let
M have a unique invariant measure µ∗. If E ∈ B(X) is such that Γ(E) ⊂ E, then
µ∗(E) = 0 or 1.

Proof. Loc. cit.

Corollary 3.2. If X is separable and U satisfies the SOSC, then µP (U) = µP (V ) = 1.

Proof. Proposition 2.2 implies that µP (U) > 0. By Proposition 2.1, U is subinvariant.
As it is open, hence Borel, and µP is unique, Theorem 3.1 implies that µP (U) = 1.
The result for V follows from the inequalities µP (U) ≤ µP (V ) ≤ 1.

Theorem 3.3. If X is separable and U satisfies the SOSC, then µP (Ǔ) = 1.

Proof. By Corollary 2.5, µP (U) = µP (Ǔ), so the assertion follows from Corollary 3.2.

Theorem 3.4. If V satisfies the SOSC and X is separable, then, for every P , the
sets Sn(V ) and the core V̌ belong to the µP -completion of B(X) for each n, and have
measure one.

Proof. Since Ǔ ⊂ V̌ ⊂ Sn(V ) ⊂ X, for each n, while Ǔ and X both belong to B(X)
and satisfy µP (X \ Ǔ) = 0, the sets Sn(V ) and V̌ lie in the µP -completion of B(X),
for every P . As

1 = µP (Ǔ) ≤ µP (V̌ ) ≤ µP Sn(V ) ≤ µP (X) = 1,

where µP denotes the completion of µP , the second assertion follows.
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Remark 3.5. The authors of [5] go on to assert that under the assumptions of
Theorem 3.1, µ∗ ◦

⋂∞
n=0 Γn(E) = 0 or 1. However, their proof presupposes that the

sets Γn(E) belong to B(X), without addressing the question of how this follows from
their assumptions. Nevertheless, when Γ reduces to the scaling operator S, their
reasoning can be applied to U . Accordingly, under the OSC, there holds µP (Ǔ) = 0
or 1. We have already seen that these two alternatives reflect the absence or presence
of the SOSC, and, in fact, in the first instance, Ǔ is empty.

Proposition 3.6. If V satisfies the SOSC, and X is separable, then the subset of K
made up of points having multiple addresses is an µP -null set, for every P .

Proof. Theorem 4.4 of [2] states that the points in V̌ have unique addresses, and,
therefore, so do the points in Ǔ . Consequently, the ones in K with multiple addresses
belong to the complement of Ǔ , and this has measure zero.

Remark 3.7. Proposition 3.6 implies that, under the SOSC, µP vanishes on the
intersection of any pair of self-images of K under the scaling maps. This generalizes
a finding of Hutchinson, [3], 738, who proved it for the Hausdorff measure of suitable
dimension, when the scaling maps are Euclidean similitudes. This was extended
by Moràn and Rey [6], Th. 2.1, and Patzschke [7], to other invariant measures on
self-similar K.

Theorem 3.8. If X is separable and U satisfies the SOSC, the subset of K where
two or more of its self-images under the scaling maps overlap does not contain any
set that is open in the relative topology of K.

Proof. Any open set in the induced topology of K is the intersection of K with an
open set of X. Since Ǔ is dense in K, the intersection contains a point of U . That
is impossible, because points in the overlap have multiple addresses, while those in Ǔ
have only one.

Theorem 3.9. If the scaling maps are injective, then V̌ and Ǔ coincide.

Proof. By definition, U = K ∩ V, so that

S(U) = S(K ∩ V ) = S(K) ∩ S(V ) = K ∩ S(V ),

by injectivity and the invariance of K. Iterating n times, taking the intersection over
n and sending n →∞, gives

Ǔ =
∞⋂

n=0

Sn(U) =
∞⋂

n=0

Sn(K ∩ V ) = K ∩
∞⋂

n=0

Sn(V ) = K ∩ V̌ .

By Theorem 4.2 of [2], V̌ ⊂ K, hence, K ∩ V̌ = V̌ , so V̌ and Ǔ coincide.

Corollary 3.10. When the scaling maps are injective, V̌ is Borel.

Remark 3.11. We suspect that when Γ reduces to the scaling operator S, the sep-
arability assumption can be dropped from the results of this Section.
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4. A MEASURE-THEORETIC CHARACTERIZATION OF THE SOSC

Proposition 4.1 (Hutchinson [3, p. 724]). If E is non-empty and subinvariant, then,
for every non-negative integer n, there holds K ⊂ Sn(clE).

Corollary 4.2. If V satisfies the OSC, then K ⊂ clV .

Corollary 4.3. If E ⊂ X is non-empty, subinvariant, and K∩E = ∅, then K ⊂ ∂E,
and thus µP (∂E) = 1, for every P .

Proof. From Proposition 4.1, Since, K ⊂ clE = E ∩ ∂E by hypothesis, K ∩E = ∅, it
follows that K ⊂ ∂E. As K is the support of µP , this implies that µP (∂E) = 1 for
every P , as stated.

Thus, if V satisfies the OSC, but not the SOSC, it is because K ⊂ ∂V .

Theorem 4.4. If V satisfies the SOSC and X is separable, then µP (∂V ) = 0, for
every P .

Proof. By Corollary 3.2, µP (V ) = 1. As clV = ∂V ∪ V , and the union is disjoint,
while K ⊂ clV , there holds

1 = µP (K) ≤ µP (clV ) = µP (∂V ) + µP (V ) = µP (∂V ) + 1 ≤ 1.

Hence, µP (∂V ) = 0, as claimed.

When the scaling maps are homeomorphisms, this result can be extended as fol-
lows.

Theorem 4.5. If V satisfies the SOSC, X is separable, and the scaling maps are
homeomorphisms, then, µP (∂Sn(V )) = 0, for every natural number n, and every P .

Proof. Let V ′ = S(V ). Then, V ′ is open and subinvariant, and its images under
the scaling maps are disjoint. Moreover, K ∩ V ′ 6= ∅, otherwise, for each natural
number m,

∅ = Sm(K ∩ V ′) = Sm(K) ∩ Sm(V ′) = K ∩ Sm(V ′) = K ∩ Sm+1(V ).

Sending m →∞ would yield K ∩ V̌ = V̌ = ∅, in violation of Corollary 2.6. Thus, V ′

satisfies the SOSC, and, applying Theorem 4.4 to V ′, yields µP (∂V ′)=µP (∂S(V ))=0.
This proves the theorem in the case n = 1, and the rest follows by induction.

Definition 4.6. Call the rim of V̌ , denoted V̌∂ , the set of points given by the formula

V̌∂ =
∞⋃

n=0

∂Sn(V ).

Theorem 4.7. If V satisfies the SOSC, then µP ◦ V̌∂ = 0, for every P .

Proof. The rim is a countable union of null sets, hence it has measure zero.
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Theorem 4.8. If V satisfies the SOSC, and the scaling maps are homeomorphisms,
then K \ V̌∂ = V̌ .

Proof. For each non-negative integer n there holds Sn(clV ) = Sn(V )∪Sn(∂V ), where
the union is disjoint. Since Sn(∂V ) = ∂Sn(V ), it follows that Sn(clV ) \ ∂Sn(V ) =
Sn(V ). Taking the intersection over n gives

∞⋂
n=0

Sn(clV ) \
∞⋃

n=0

∂Sn(V ) =
∞⋂

n=0

Sn(V ).

By Theorem 2.3 of [2], K =
⋂∞

n=0 Sn(clV ). Recalling the definitions of V̌∂ and V̌
gives K \ V̌∂ = V̌ , as stated.

We can define the rim of Ǔ in a way analogous to V̌∂ .

Corollary 4.9. If U satisfies the SOSC, and the scaling maps are homeomorphisms,
then, K admits the decomposition K = Ǔ ∪ Ǔ∂ , and the union is disjoint.

Proof. This follows from the preceding theorem by noting that K ∩ V̌∂ = Ǔ∂ .

Theorem 4.10 (Characterization of the SOSC). If V satisfies the OSC, then the
property µP (∂V ) = 0 is both a necessary and sufficient condition for the SOSC to
hold.

Proof. Theorem 4.4 gives the necessity, while the sufficiency follows from the contra-
positive of Corollary 4.3, taking E = V .

We are thus led to a measure-theoretic characterization of the SOSC. It has the
virtue of being expressed in terms of V itself, without any need to construct the
fractal K.

In fact, using the full strength of Corollary 4.3, yields the following dichotomy:

Theorem 4.11 (Zero - One Law for ∂V ). Let V satisfy the OSC. Then µP (∂V ) = 0
or 1, depending as to whether V meets K or not, and it is independent of P .

5. MULTIPLICATIVE CASCADES

The results of the preceding section, along with Theorem 2.6, allow us to prove that
the values assigned by invariant measures to certain cylinder sets form multiplicative
cascades. We start with a definition.

Definition 5.1. Let n be a natural number, and let µP be an invariant probabil-
ity measure on B(X). Suppose E is a Borel set with µP (E) = 1, and the subsets
Ei1i2...in form a Borel measureable partition of E, modulo µP -null sets, as the indices
i1, i2, . . . , in vary over {1, 2, . . . , N}. If

µP (Ei1i2...in
) = pi1pi2 · · · pin

,
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for any string of indices i1, i2, . . . , in and any n, the values of µP are said to form a
multiplicative cascade on the cylinder sets associated with E.

Theorem 5.2. If X is separable, the scaling maps are homeomorphisms, and V
satisfies the SOSC, then, for each natural number n, the sets clVi1i2...in

form a par-
tition of clV , modulo sets of µP -measure zero, as the indices i1, i2, . . . , in vary over
{1, 2, . . . , N}.

Proof. Let n be fixed. Then, for each string i1, i2, . . . , in, the sets Vi1i2...in are open,
and clVi1i2...in = Vi1i2...in ∪ ∂Vi1i2...in , where the union is disjoint. Hence,

µP (clVi1i2...in) = µP (Vi1i2...in) + µP (∂Vi1i2...in).

Since
∂Sn(V ) =

⋃
i1,...,in

∂Vi1i2...in
,

Theorem 4.5 implies that µP (∂Vi1i2...in) = 0, for each string i1, i2, . . . , in. As the sets
Vi1i2...in are disjoint, it follows that their closures clVi1i2...in are disjoint modulo sets
of µP -measure zero, for every P .

Since clV is subinvariant, the conditions of Theorem 2.6 are satisfied, and the
assertion concerning the partitioning of clV follows.

Corollary 5.3. Under the assumptions of the preceding theorem, there holds

µP (clVi1i2...in
) = pi1pi2 · · · pin

,

for any string of indices i1, i2, . . . , in in {1, 2, . . . , N}, and any distribution P .

Proof. The set clV is subinvariant, and thus, by Proposition 4.1, K ⊂ clV . Since K
is the support of µP for each P , 1 = µP (K) ≤ µP (clV ) ≤ 1, because µP is a proba-
bility measure. Hence, equality holds, and the formula results from the conclusion of
Theorem 2.6.

We have thus established that the values assigned by µP to the cylinder sets
associated with clV form a multiplicative cascade. Next, we show that an analogous
result holds for K.

Theorem 5.4. Under the assumptions of the preceding theorem, for each n,

µP (Ki1i2...in
) = pi1pi2 · · · pin

,

for any string of indices i1, i2, . . . , in, and any distribution P .

Proof. Since K ⊂ clV, there holds Ki1i2...in ⊂ clVi1i2...in , and thus µP (Ki1i2...in) ≤
µP (clVi1i2...in), for each indices i1, i2, . . . , in, and any P . As K is the support of µP ,

1 = µP (K) = µP (Sn(K)) ≤
∑

i1i2...in

µP (Ki1i2...in
) ≤

≤
∑

i1i2...in

µP (clVi1i2...in
) =

∑
i1i2...in

pi1pi2 · · · pin
= 1,
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hence equality holds throughout, and, therefore, for every string i1, i2, . . . , in,

µP (Ki1i2...in) = pi1pi2 · · · pin ,

as asserted.

Corollary 5.5. Under the assumptions of the previous theorem, the sets Ki1i2...in

form a partition of V , modulo sets of µP -measure zero, as the indices i1, i2, . . . , in
vary over {1, 2, . . . , N}.
Proof. The equality µP (K) =

∑
i1i2...in

µP (Ki1i2...in
) implies that the Ki1i2...in

are
disjoint, modulo sets of µP -measure zero, and their union has measure µP (K), as
required.

Acknowledgements
The author is indebted to Siegfried Graf, Stephen Lalley, Andy Lasota and Tomasz
Szarek for useful discussions.

REFERENCES

[1] S. Graf, On Bandt’s tangential distribution for self-similar measures, Monatsh. Math.
120 (1995) 3–4, 223–246.

[2] G.S. Goodman, Fractal sets satisfying the strong open set condition in complete metric
spaces, Opusc. Math. 28 (2008) 4, 463–470.

[3] J.E. Hutchinson, Fractals and self-similarity, Indiana J. Math. 30 (1981), 713–747.

[4] S.P. Lalley, The packing and covering dimensions of some self-similar fractals, Indiana
Univ. Math. J. 37 (1988), 699–709.

[5] A. Lasota, J. Myjak, and T. Szarek, Markov operators with a unique invariant measure,
J. Math. Anal. Appl. 276 (2002), 343–356.

[6] M. Moran and H.-M, Rey, Singularity of self-similar measures with respect to Hausdorff
measures, Trans. A.M.S. 350 (1998), 2297–2310.

[7] N. Patzschke, Self-conformal multifractal measures, Adv. Appl. Math. 10 (1997),
487–513.

[8] W. Sierpinski, General Topology, University of Toronto Press, Toronto, 1952.

Gerald S. Goodman
gerald.goodman@gmail.com

via Dazzi, 11
50141 Firenze, Italy

Received: January 7, 2008.
Revised: April 7, 2008.
Accepted: April 21, 2008.


