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SOME REMARKS ON THE OPTIMIZATION
OF EIGENVALUE PROBLEMS
INVOLVING THE p-LAPLACIAN

Abstract. Given a bounded domain Q@ C R", numbers p > 1, > 0 and A € [0, 9],
consider the optimization problem: find a subset D C €, of measure A, for which the first
eigenvalue of the operator u +— —div(|Vu|P"2Vu) + axp|u|P~>u with the Dirichlet boundary
condition is as small as possible. We show that the optimal configuration D is connected
with the corresponding positive eigenfunction u in such a way that there exists a number
t > 0 for which D = {u <t}. We also give a new proof of symmetry of optimal solutions in
the case when €2 is Steiner symmetric and p = 2.
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1. INTRODUCTION

In this paper we obtain some results closely connected with those of [9], concerning
the optimal pairs of an eigenvalue problem involving the p-Laplacian. The paper [9]
is available online at www.im.uj.edu.pl/actamath. For the reader’s convenience we
shall recall the basic notation and terminology of [9], which in turn follow those of [1].
The paper [1] has originated research in the optimizaton of eigenvalues for the linear
case of p = 2.

Let Q be a bounded domain (i.e. open and connected set) in the space R™ (n > 1)
with the closure Q and boundary 9Q. We denote by |Q| the Lebesgue measure of .
Given numbers p > 1, @ > 0 and a measurable subset D of 2, we shall be concerned
with the eigenvalue problem of the form

—Ap(u) + axpep(u) = App(u) in €, (1)
w=0 on 0f),
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where A, is the p-Laplacian, xp is the characteristic function of D, while ¢, is a

function defined by
|u|P=2u, if u # 0,
pp(u) =

0, if u=0.

The p-Laplacian is a nonlinear differential operator of the form
Ap(w) = div(|VulP2Tu) = div(p,(Vu),

which coincides with the Laplacian A for p = 2.

In this paper we deal with real function spaces only. In paticular, we use standard
Sobolev spaces W'(Q) and WyP(Q), with 1 < p < co. It is customary to use
solutions of (1) in a weak sense. Any nontrivial function u: @ — R is said to be an
eigenfunction of problem (1) if and only if u € W, *(Q) and

/gap(Vu)Vv—l—a/ ngap(u)v:)\/ op(u)v, for any ve W) P(Q).
Q Q Q

Let A(«, D) stand for the lowest eigenvalue A of problem (1). It is known that A(«, D)
is positive and its eigenfunction is unique up to a scalar multiple (see, e.g., [3,10] and
the references therein). Let us fix A € [0, |Q|] and define

Ala,A) :=inf{Na,D): DCQ, |D|=A}. (2)

Any minimizer in (2) is called an optimal configuration. If u is an eigenfunction of
problem (1) with A = A(a, A) and with an optimal configuration D, then (u, D) is
said to be an optimal pair (or optimal solution).

If u is an eigenfunction corresponding to the first eigenvalue of problem (1), then
u does not change sign in Q (see, e.g., [3,10] and the references therein). From now
on it will be chosen positive in €.

The above results were discussed in detail in our paper [9]. We shall also use the
following lemmas:

Lemmal. Letu € VVlt)cl () andt € R. Then Vu(z) = 0 for almost every x € {u=t}.

In this connection refer to [5|, Lemma 7.7, or [8], Theorem 6.19. We use the
notation {u =t} := {z € Q: u(zx) = t}.

Lemma 2. Assume that u € Wéf(Q) is a weak solution of the equation

—Ap(u)=f in

withp > 1, f € L1(Q), ¢ > E, q>2. Let
p

Z :={zxe€Q: Vu(z) =0}
Then |VulP~' € W,"2(Q) and f(z) = 0 for almost every x € Z.

loc

This result comes from [7] and is quoted in [2].
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2. OPTIMAL PAIRS

We recall that Q is any bounded domain in R™ and p € (1, 00). It is worth noting that
we need no additional assumptions concerning the regularity of the boundary 0.

Theorem 3. For any o > 0 and A € [0,|Q|] there exists an optimal pair.
A proof of this result can be found in our paper [9].
Theorem 4. Every optimal pair (u, D) has the following properties:

(a) u e Wy P(Q)NL®(Q) and Vu is locally Hélder continuous, i.e., for every compact
K C Q there exists 3 € (0,1) such that Vu € C*P(K),
(b) there is a number t > 0 such that (up to a set of measure zero)

D={u<t. (3)

As usual, we write {u < t} instead of {z € Q: u(x) < ¢} and similarly we put
{u <t} :={x e Q:ulx) <t}

Proof. The regularity properties of eigenfunctions, stated in assertion (a), are rather
well known. In this connection see [9] and the references therein. Equality (3) in the
case of p = 2 was stated in [1]. A lack of higher regularity of eigenfunctions is a source
of difficulty in obtaining more general results.

We now claim that (3) holds for arbitrary p > 1. For p # 2 this is a new result. Let
(u, D) be an optimal solution, corresponding to the optimal eigenvalue \; = A(a, A)
with A > 0 (the case of A = 0 is obvious). Note that according to [9], Theorem 1,
there exists a number ¢ > 0 such that

{u<t}cCDcC{u<t}. (4)

In fact
t=sup{s: {u<s} <A}.

In view of (4), it is sufficient to show that
[D°N{u=1t} =0,
where D¢ := Q ~ D. To begin with, let us introduce the critical set
Z:={xeQ: Vu(z)=0}.

According to Lemma 1, {u = ¢} C Z and hence we see that D°N{u =1t} C Z. By
Lemma 2,

—Ap(u) =0 in Z, (5)

(i.e. this equality holds almost everywhere in Z). On the other hand,

—Ap(u) = (M —axp)ep(u) = App(u) in D°. (6)
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It now follows from (5) and (6) that
App(u) =0 in D°N{u=t}.
Note that A1 # 0 and ¢, (u) = tP~! % 0 in {u = t}. Thus
App(u) #0 in DN {u =t}
This is only possible when |D N {u = t}| =0, as desired. O

Remark 5. In a similar way, we can conclude that all level sets {u = s} (with s > 0)
have measure zero, provided that a # Aa, A).

Remark 6. According to (3), our optimization of eigenvalue problem is equivalent to
finding the smallest eigenvalue and an associated eigenfunction of the problem

—Ap(u) + axqucey ep(u) = App(u) in Q,
u=20 on 01,
{fu<ti=A

with free variables u and t.

3. STEINER SYMMETRY

In this section we consider the linear case with p = 2 and we give another proof of
a known result concerning the symmetry of optimal solutions (see [1], Theorem 4).
Some ideas of [6] are adopted here.

From now on we shall assume that €2 satisfies the exterior cone condition at each
point x € 0f), which means that there exists a finite right circular cone V =V, with
vertex x such that Q NV, = {x}.

Let us recall that a domain G of R™ is Steiner symmetric with respect to a hy-
perplane P iff for any point @ = (21,...,z,) € G the segment connecting  and the
point z* reflected with respect to P is contained in G.

The next theorem is a key result of interesting book [4]. Theorem 3.6 of [4] may
be stated as follows:

Theorem 7. Let Q be bounded, connected and Steiner symmetric relative to the
hyperplane P = {z = (z1,2'): x1 = 0}. Assume that u € C(2) N C(Q) is a positive
weak solution of the boundary value problem

—Au= fi(u) + fo(u)  in €,
u=20 on 012,

where f1: [0,00) — R s locally Lipschitz continuous, while fo: [0,00) — R is
non-decreasing and is identically zero on an interval [0, h] for some h > 0. Then

u(—x1,2") = u(xy,2’)  for (z1,2') € Q.
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Moreover,

867”(331737/) <0 if (x1,2") € Qand x1 > 0.
1

A proof of Theorem 7 is an essential part of book [4]. We are now in a position
to prove the following theorem.

Theorem 8. Let p = 2. If the domain ) is Steiner symmetric with respect to a
hyperplane P, then for any optimal pair (u, D) both u and D are symmetric with
respect to P, and D¢ is Steiner symmetric with respect to P.

Proof. Without loss of generality, we may assume that
P={z=(x1,2"): z; = 0}.

Let (u, D) be an optimal solution. It follows from assertion (a) of Theorem 4 that
u € C1(2). Next, the assumption that ) satisfies the exterior cone condition at each
point of 9Q yields u € C(Q) (see, e.g., [5], Theorem 8.30). By statement (b) of
Theorem 4, there exists ¢ such that

D= {u<t}={u—-t<0}.
Suppose that ¢t > 0. Using the Heaviside function H: R — R defined by
if
H(s) = 0 1 s <0,
1 if s >0,

we observe that
xp = H(t —u) in Q.

Since
—Au+ axpu = Mu in €,
u=0 on 012,

where A\ = A(q, A), we see that the eigenfunction u is a weak solution of the problem

—Au= M u—aH(({t—u)u in Q,
u=0 on 0.

An application of Theorem 7 with
filw) = —aJu,  folu) =a(l—H(t—u))u

and h = t gives the desired result. In the case of ¢t = 0, corresponding to the
assumption that A = 0, there is |D| = 0 and thus

—Au = M\u in Q,
u=0 on 0f,

so that Theorem 7 may be applied again. This completes the proof. O
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