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SOME REMARKS ON THE OPTIMIZATION
OF EIGENVALUE PROBLEMS

INVOLVING THE p-LAPLACIAN

Abstract. Given a bounded domain Ω ⊂ Rn, numbers p > 1, α ≥ 0 and A ∈ [0, |Ω|],
consider the optimization problem: find a subset D ⊂ Ω, of measure A, for which the first
eigenvalue of the operator u 7→ −div(|∇u|p−2∇u)+αχD|u|p−2u with the Dirichlet boundary
condition is as small as possible. We show that the optimal configuration D is connected
with the corresponding positive eigenfunction u in such a way that there exists a number
t ≥ 0 for which D = {u ≤ t }. We also give a new proof of symmetry of optimal solutions in
the case when Ω is Steiner symmetric and p = 2.
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1. INTRODUCTION

In this paper we obtain some results closely connected with those of [9], concerning
the optimal pairs of an eigenvalue problem involving the p-Laplacian. The paper [9]
is available online at www.im.uj.edu.pl/actamath. For the reader’s convenience we
shall recall the basic notation and terminology of [9], which in turn follow those of [1].
The paper [1] has originated research in the optimizaton of eigenvalues for the linear
case of p = 2.

Let Ω be a bounded domain (i.e. open and connected set) in the space Rn (n ≥ 1)
with the closure Ω and boundary ∂Ω. We denote by |Ω| the Lebesgue measure of Ω.
Given numbers p > 1, α ≥ 0 and a measurable subset D of Ω, we shall be concerned
with the eigenvalue problem of the form{

−∆p(u) + αχD ϕp(u) = λϕp(u) in Ω,
u = 0 on ∂Ω,

(1)
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where ∆p is the p-Laplacian, χD is the characteristic function of D, while ϕp is a
function defined by

ϕp(u) :=

{
|u|p−2u, if u 6= 0,
0, if u = 0.

The p-Laplacian is a nonlinear differential operator of the form

∆p(u) = div(|∇u|p−2∇u) = div(ϕp(∇u)),

which coincides with the Laplacian ∆ for p = 2.
In this paper we deal with real function spaces only. In paticular, we use standard

Sobolev spaces W 1,p(Ω) and W 1,p
0 (Ω), with 1 < p < ∞. It is customary to use

solutions of (1) in a weak sense. Any nontrivial function u : Ω → R is said to be an
eigenfunction of problem (1) if and only if u ∈ W 1,p

0 (Ω) and∫
Ω

ϕp(∇u)∇v + α

∫
Ω

χD ϕp(u)v = λ

∫
Ω

ϕp(u)v, for any v ∈ W 1,p
0 (Ω).

Let λ(α, D) stand for the lowest eigenvalue λ of problem (1). It is known that λ(α, D)
is positive and its eigenfunction is unique up to a scalar multiple (see, e.g., [3,10] and
the references therein). Let us fix A ∈ [0, |Ω|] and define

Λ(α, A) := inf {λ(α, D) : D ⊂ Ω, |D| = A }. (2)

Any minimizer in (2) is called an optimal configuration. If u is an eigenfunction of
problem (1) with λ = Λ(α, A) and with an optimal configuration D, then (u, D) is
said to be an optimal pair (or optimal solution).

If u is an eigenfunction corresponding to the first eigenvalue of problem (1), then
u does not change sign in Ω (see, e.g., [3, 10] and the references therein). From now
on it will be chosen positive in Ω.

The above results were discussed in detail in our paper [9]. We shall also use the
following lemmas:

Lemma 1. Let u ∈ W 1,1
loc (Ω) and t ∈ R. Then ∇u(x) = 0 for almost every x ∈ {u= t}.

In this connection refer to [5], Lemma 7.7, or [8], Theorem 6.19. We use the
notation {u = t} := {x ∈ Ω: u(x) = t}.

Lemma 2. Assume that u ∈ W 1,p
loc (Ω) is a weak solution of the equation

−∆p(u) = f in Ω

with p > 1, f ∈ Lq(Ω), q >
n

p
, q ≥ 2. Let

Z := {x ∈ Ω: ∇u(x) = 0}.

Then |∇u|p−1 ∈ W 1,2
loc (Ω) and f(x) = 0 for almost every x ∈ Z.

This result comes from [7] and is quoted in [2].
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2. OPTIMAL PAIRS

We recall that Ω is any bounded domain in Rn and p ∈ (1,∞). It is worth noting that
we need no additional assumptions concerning the regularity of the boundary ∂Ω.

Theorem 3. For any α ≥ 0 and A ∈ [0, |Ω|] there exists an optimal pair.

A proof of this result can be found in our paper [9].

Theorem 4. Every optimal pair (u, D) has the following properties:

(a) u ∈ W 1,p
0 (Ω)∩L∞(Ω) and ∇u is locally Hölder continuous, i.e., for every compact

K ⊂ Ω there exists β ∈ (0, 1) such that ∇u ∈ C0,β(K),
(b) there is a number t ≥ 0 such that (up to a set of measure zero)

D = {u ≤ t}. (3)

As usual, we write {u < t} instead of {x ∈ Ω: u(x) < t} and similarly we put
{u ≤ t} := {x ∈ Ω: u(x) ≤ t}.

Proof. The regularity properties of eigenfunctions, stated in assertion (a), are rather
well known. In this connection see [9] and the references therein. Equality (3) in the
case of p = 2 was stated in [1]. A lack of higher regularity of eigenfunctions is a source
of difficulty in obtaining more general results.

We now claim that (3) holds for arbitrary p > 1. For p 6= 2 this is a new result. Let
(u, D) be an optimal solution, corresponding to the optimal eigenvalue λ1 = Λ(α, A)
with A > 0 (the case of A = 0 is obvious). Note that according to [9], Theorem 1,
there exists a number t > 0 such that

{u < t} ⊂ D ⊂ {u ≤ t}. (4)

In fact
t = sup {s : |{u < s}| ≤ A} .

In view of (4), it is sufficient to show that

|Dc ∩ {u = t}| = 0,

where Dc := Ω r D. To begin with, let us introduce the critical set

Z := {x ∈ Ω: ∇u(x) = 0}.

According to Lemma 1, {u = t } ⊂ Z and hence we see that Dc ∩ {u = t } ⊂ Z. By
Lemma 2,

−∆p(u) = 0 in Z, (5)

(i.e. this equality holds almost everywhere in Z). On the other hand,

−∆p(u) = (λ1 − αχD)ϕp(u) = λ1ϕp(u) in Dc. (6)
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It now follows from (5) and (6) that

λ1ϕp(u) = 0 in Dc ∩ {u = t}.

Note that λ1 6= 0 and ϕp(u) = tp−1 6= 0 in {u = t}. Thus

λ1ϕp(u) 6= 0 in Dc ∩ {u = t}.

This is only possible when |Dc ∩ {u = t}| = 0, as desired.

Remark 5. In a similar way, we can conclude that all level sets {u = s} (with s > 0)
have measure zero, provided that α 6= Λ(α, A).

Remark 6. According to (3), our optimization of eigenvalue problem is equivalent to
finding the smallest eigenvalue and an associated eigenfunction of the problem

−∆p(u) + αχ{u≤t}ϕp(u) = λϕp(u) in Ω,
u = 0 on ∂Ω,
|{u ≤ t}| = A

with free variables u and t.

3. STEINER SYMMETRY

In this section we consider the linear case with p = 2 and we give another proof of
a known result concerning the symmetry of optimal solutions (see [1], Theorem 4).
Some ideas of [6] are adopted here.

From now on we shall assume that Ω satisfies the exterior cone condition at each
point x ∈ ∂Ω, which means that there exists a finite right circular cone V = Vx with
vertex x such that Ω ∩ Vx = {x}.

Let us recall that a domain G of Rn is Steiner symmetric with respect to a hy-
perplane P iff for any point x = (x1, . . . , xn) ∈ G the segment connecting x and the
point x∗ reflected with respect to P is contained in G.

The next theorem is a key result of interesting book [4]. Theorem 3.6 of [4] may
be stated as follows:

Theorem 7. Let Ω be bounded, connected and Steiner symmetric relative to the
hyperplane P = {x = (x1, x

′) : x1 = 0}. Assume that u ∈ C(Ω) ∩ C1(Ω) is a positive
weak solution of the boundary value problem{

−∆u = f1(u) + f2(u) in Ω,
u = 0 on ∂Ω,

where f1 : [0,∞) → R is locally Lipschitz continuous, while f2 : [0,∞) → R is
non-decreasing and is identically zero on an interval [0, h] for some h > 0. Then

u(−x1, x
′) = u(x1, x

′) for (x1, x
′) ∈ Ω.
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Moreover,
∂u

∂x1
(x1, x

′) < 0 if (x1, x
′) ∈ Ωand x1 > 0.

A proof of Theorem 7 is an essential part of book [4]. We are now in a position
to prove the following theorem.

Theorem 8. Let p = 2. If the domain Ω is Steiner symmetric with respect to a
hyperplane P , then for any optimal pair (u, D) both u and D are symmetric with
respect to P , and Dc is Steiner symmetric with respect to P .

Proof. Without loss of generality, we may assume that

P = {x = (x1, x
′) : x1 = 0}.

Let (u, D) be an optimal solution. It follows from assertion (a) of Theorem 4 that
u ∈ C1(Ω). Next, the assumption that Ω satisfies the exterior cone condition at each
point of ∂Ω yields u ∈ C(Ω) (see, e. g., [5], Theorem 8.30). By statement (b) of
Theorem 4, there exists t such that

D = {u ≤ t} = {u− t ≤ 0}.

Suppose that t > 0. Using the Heaviside function H : R → R defined by

H(s) :=

{
0 if s < 0,

1 if s ≥ 0,

we observe that
χD = H(t− u) in Ω.

Since {
−∆u + αχDu = λ1u in Ω,
u = 0 on ∂Ω,

where λ1 = Λ(α, A), we see that the eigenfunction u is a weak solution of the problem{
−∆u = λ1u− αH(t− u)u in Ω,
u = 0 on ∂Ω.

An application of Theorem 7 with

f1(u) = (λ1 − α)u, f2(u) = α (1−H(t− u))u

and h = t gives the desired result. In the case of t = 0, corresponding to the
assumption that A = 0, there is |D| = 0 and thus{

−∆u = λ1u in Ω,
u = 0 on ∂Ω,

so that Theorem 7 may be applied again. This completes the proof.
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