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1. INTRODUCTION AND NOTATION

Subdifferential maps play an important role in the non-smooth analysis and the op-
timization theory [1-3], in nonlinear boundary value problems for partial differential
equations, the theory of control of the distributed systems [4, 5], as well as the theory
of differential games and mathematical economy [6,7]. For basic properties of such
maps we refer the reader to [2,3,8]. In this paper we will generalize basic properties
of subdifferentials and local subdifferentials known for Banach spaces to the case of
Frechet spaces.

Let X be a Frechet space, X* its topologically dual (adjoint) space. For x € X
and f € X* as usual, the symbol (f,x) stands for the bilinear pairing between X
and X*. Assume that X is endowed with the topology 7 generated by a family of
seminorms {p;}$2; separating points of X. Recall that the topology 7 is Hausdorff
and metrizable by the metric

_ — i pilr—y)
d(w’y)_Z;Z L+ pi(z —y) o

Observe that d(z+h, y+h) = d(z,y), d(az, ay) < |a|d(z,y) if |a| > 1 and d(az, ay) >
lafd(z,y) if |af < 1.
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Let Y be a locally convex linear space and T : Y — X be a linear continuous map.
Recall that the adjoint (dual) transformation T* : X* — Y™ is given by a formula
(x*,Ty) = (T*x*,y) for y € Y, 2* € X*. For the existence and uniqueness of such
transformation, see [10] .

Throughout the paper, F stands for the functional F': X — R U {+oo} and the
symbol dom F' denotes the set {x € X | F(x) < +00}.

Given a functional F' and a convex body U such that intU C domF, a local
subdifferential of F' at the point xqg € U N domF is, by definition, the set

OF (zg;U)={£ e X" | {{,z —x0)x < F(z) — F(xp) forall z € U}

Observe that OF (zg; U1) D OF (x0; Us), if Uy C Us. In particular, OF (zg; X) =
OF (z9) C OF(x0;U). The last set is called the subdifferential of F at the point xg.

2. RESULTS

Proposition 1. Let a functional F : X — RU{+00} be given. Assume that there are
a convez body U and a point xo € int U such that OF (xo; U) # 0. Then the functional
F is weakly lower semicontinuous at xo. Moreover, if OF (xo; U) # 0 for every x € U,
then F is convex on U.

Proof. Let {4} be a net converging to {zo} and W C U be a neighborhood of {z}.
Obviously there exists g such that xz, € W for aag. Let * € OF (x0,U). For
aray, there is (x*, x4 —x0) < F(24) — F(x0). Passing with z,, to zo, we deduce that
lim F(z4) > F(xo).

«

Now suppose that OF (zg;U) # 0 for an arbitrary =9 € U. Fix 2o € U. For
z* € OF(zo;U) and z1, xo € U, there is F(z1) — F(zo) > (x*,21 — o), and
F(x2) — F(xo) > (x*, 29 — xg) for all x1,29 € U.

Let ¢t € [0,1]. Adding the first inequality multiplied by ¢ to the second one multi-
plied by 1 — ¢, we obtain

tF(z1) + (1 —t)F(z2) > F(xo) + (¥, tx1 + (1 — t)xg — x0).
Since U is a convex set we can take xo = tx; + (1 — t)xa. O

Proposition 2. Let X be a Frechet space, Y a locally convex linear space, F : X —
RU {400} and T : Y — X a linear continuous map admitting an adjoint map T*.
Let U C X be a convex body and V = T~Y(U). Then for every Tv € intU, where
v €V, there is

O(F o T)(v: V) = T*(OF(T(v; V)

Proof. Let x € OF (Twv; U). Obviously,
(x*, 2 —Tv) < F(z) — F(T(v)) for every z € U.
Taking = T'(y) with y € V, we can rewrite the last inequality in the form
(x*, Ty —Tv) < F(T(y)) — F(T(v)) foreveryyeV



Local subdifferentials and multivariational inequalities. . . 297

or
(T*2",y —v) < (FoT)(y) ~ (FoT)(v) for every y € V,

which means that T*z* € O(F o T)(v; V). Thus O(F o T)(v; V) D T*(0F (T (v); V)).
To prove the inverse inclusion, take y* € (F o T)(v; V). Clearly
(" y—v) < (FoT)(y) — (FoT)(v) foreveryye V.
Taking z* € X* such that y* = Tz, we can rewrite the last inequality in the form
(", Ty —Tv) < F(T(y)) — F(T'(v)) foreveryyeV
or
(", —Tv) < F(x) — F(T(v)) for every z € U,
which means that y* = T*z* € T*(OF(T'(v;V))) and this completes the proof. [

Theorem 1. Let U be a convez body in X, F : X — RU{+o0} be a convex functional
on U and a lower semicontinuous functional on intU (intU C domF). Then for
every xg € intU and every h € X, the quantity

F th) — F
D+F(£L’0; h) _ tl_i}gl_‘r (550 + t) (:EO)

(2)

1s finite and the following statements hold true:

(i) there exists a counterbalanced (cf. [12]) convex absorbing neighborhood of zero ©
(xo+ O C intU) such that for every h € ©

F(xg) — F(zo — h) < Dy F(zo;h) < F(xo + h) — F(x0); (3)

(i) the functional int U x X 3 (x;h) — Dy F(x;h) is upper semicontinuous;

(iii) the functional DL F(xg;-) : X — R is positively homogeneous and semiadditive
for every xg € intU;

(iv) there exist a neighborhood O(hg) and a constant ¢; > 0 such that for every
xo € ntU and every hg € X,

|Dy F(xo; h) — Dy F(x0; ho)| < c1d(h,hg) for every h € O(hg).

Proof. First we introduce some auxiliary statements.

Claim 1. The functional F is locally upper bounded on int U, that is for every xg €
int U there exist positive constants v and ¢ such that F(x) < ¢, for each x € B, (x¢),

where By(zg) = {z € X | d(z,x0) <1 }.

Proof of Claim 1. For arbitrary z¢ € int U there exists £; > 0 such that Ba., (zg) C
intU C domF, hence Be,(xo) C Bac, (x9) C domF. Since F is lower semicontinuous,
than for each n = 1,2, ... the set

A, ={x € B, (x9) |F(z) < n}
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is closed in X and
o0

U A, = B¢, (z9) C dom F.

n=1

Since the metric space (B., (zg), d) is complete, due to the Baire Category Theorem,
there exists ng € N such that intA,, # 0 in B., (z9). We now prove that intA,, # 0
in X. Since intA,, # 0 in B, (z0), we conclude that there exist z1 € intA,, and
€9 > 0 such that the following equality holds true:

Apn, D {x € B, (z0) | d(z, 1) < €2} = Be, (x0) N Be,(x1) # 0.

Thus the following two cases are possible:

1) Be,(z0) N Be,(x1) # 0;
2) B, (xO) N Be, (zl) - ®7 aBEl (1‘0) N B, (371) # 0.

In the first case, the set B, (z) N Be,(x1) is open in topology 7; therefore, there
exist 9 € X and 3 > 0 such that B.,(22) C B, (zg) N Be,(x1) C Aypy. Thus, for
each © € B.,(z2), there is F(x) < ng. Hence x5 € intA,, in X.

In the second case, for an arbitrary € 0B;, (29)NBe,(x1), there exists {z,, }n>1 C
B, (z9) such that z,, — = as n — +o00. Since x € B, (1), then there exists N such
that for each n > N, xz,, € B.,(z1). Therefore, z,, € B, (x0) N Be,(x1) # 0, and we
may proceed further as in the first case. Thus intA,, # 0 in X.

Now we show that the functional F' is upper bounded in some neighborhood of zg.

Let xo # o, y = T2 + %. Therefore,

T

0—%2, where A =

€1

y:$0+7d(1‘2’x0)(1‘0—3}2),

£1 €1
dy,xg) =d| ————— (20 — 22),0 | < ——————d(xg,w2) = €1,
(y 0) (d(xmm)( 0 2) ) d(fo,mz) (0 2) 1

that is y € Be, (z9) C domF. For an arbitrary © € B, (o), we consider z =
(x 4+ Axe —20)/A = (x — (1 — N)y)/A. Since 0 < A < 1, we conclude that

B T — Xg _ T — T 1 Aez
d(z,z2) —d(azg—l—/\,xg) —d( 5\ ,O) < Xd(m,xo) < ~ =

hence z € B, (z2), and F(z) < ng. Due to convexity of F, there is
F(z) = FAz+ (1= Ay) SAF(z) + (1 = M) F(y) <no+ (1= A)F(y).

From this we conclude that F' is upper bounded in the neighborhood B, (zy) with
r=Aeg and c =ng + (1 — \)F(y). O

Claim 2. The functional F is locally Lipschitzean on int U, i.e., for every xg € int U
there exist r1 > 0 and c1 > 0 such that

[F(@) = F(y)| < crd(w,y)  for all 2,y € By, (z0).
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Proof of Claim 2. The local upper boundedness of the functional F' on int U follows
from Claim 1. Therefore, for every xg € int U there exist r > 0 and ¢ > 0 such that
F(z) < c for every x € B,(z9).

For an arbitrary x € B,.(x9) (z # x0) and t = %, we put
zo+ (t — 1)z 1-1t
yzo(%zﬂﬁo-FT(on—f)a

where t € (0,1). Then

r

d(y, z0) = d (1 ;t(xo —x),O) —d (d(g:xo)(xo —x),()) < dam a0 =

i.e., F(y) < c. Due to convexity of F,
F(zo) = F(ty + (1 —t)z) <tF(y) + (1 — ) F(z) <tc+ (1 —t)F(x),
or (1 —t)F(xo) <t(c— F(xo))+ (1 —t)F(z). Hence

_(e=F(o)
(o= Flag) =

~+

F(xg) — F(z) < d(z, xp). (4)

Now let z = 17(17;7)10 =z + ==, where 7 = @ € (0,1). Then

T — X9

d(z,z9) =d ( ,O) < ld(x,xo) =r,
T

i.e., F(z) < ¢, and since F is convex, we obtain
Fl@)=F(rz4+ (1 —=1)xg) < 7F(2) + (1 = 7)F(x0) < Tc+ (1 — 7)F(x0)

or
¢ — F(x0)

r

F(z) — F(xg) < 7(c— F(xp)) = d(z, xp). (5)

Relations (4) and (5) imply the following estimate

¢ — F(xzo)

|F@) = Flao)| < “

d(z, xzo). (6)
Now we show that the Lipschitz condition holds true for F on B, (xg) with

€1 =r/3. Hence in view of (6), for all z1,22 € Bs., (x9) F(z1) < ¢, F(z2) < ¢

If 1 € Be, (), then By, (z1) C By(x0), that is z; € int U. Therefore, from (6) we

obtain

¢ — F(x1)

() = )| < <5

d(xz,x1) for every x € Ba., (z1). (7)

In particular, inequality (7) is valid for an arbitrary element of B, (o). Further, due
to (6)

—F(a1) < (¢ — F(ao)) + |F1) — Flao)] <

¢ — F(xzo)

< (c— F(z0)) + d(z1,20) < 2(c — F(zp)).
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From the last relation, using (7), we finally obtain

¢ — F(xo)

[Flas) = Flan)| < S

d(x9,x1) for all xq,29 € Be, (20),

i.e., C1 = , 1 =¢€1. O

Now we continue to prove Theorem 1. Let z¢ € int U and B, (x¢) = z¢ + B,(0).
Then due to Claims 1 and 2 the upper boundness and the Lipschitz condition for F'
on B, (zg) follow. We recall that, unlike in the case of a Banach space, B,(0) is not
absolutely convex, but at the same time there exists a convex absorbing counterbal-
anced set © = O(zg) in a basis of topology 7, such that © C B,.(0). Then F(z) <,
for every x € xg + O,

|F(x1) — F(x2)] < c1d(x1,22) for all x1,x9 € 29 + O. (8)

For each u € X there exists t = ¢(u) > 0 such that t~'u € © (if u € O, then we
take t = 1). So for each 7 € (0,¢7!] the element Tu € ©, as tO C %@. Further, due
to convexity of F, for every 71,7 € R such that 0 < 7, < 75 < ¢!, there follows:

T2 T2

F(xo + 1yu) — F(zg) = F <x0 (1 - ﬁ) + (20 + m)ﬁ) — F(w) <

< (1 - 2) F(xzo) + %F(mo + mou) — F(xg) =
= E(F(gzjo + ru) — F(x0)).

T2

Hence the function 7 s ZZotr)=F(zo) monotonely decreases as 7 — 0+.

For each u € ©, the quantity Dy F(xo;u) is finite. In fact, au € O for every «a
such that |a| < 1, therefore

. F(xog+71u) — F(x
D+F($0;U):;I;fo (o T) (o)
< F(zg+u) — F(x) < +00 as g +u € By(xg) C intU C dom F.

<

On the other hand, for every 7 € (0,1) =z = ﬁ(xo + 1u) + 1 (20 — ), ie.,
—u € O, and moreover, for each 7 € (0, 1),

F(xo + Tu) —F(xo).

o0 < Flao) — Flan — ) <
Thus, for each u € ©,
—00 < F(x()) — F((E() — u) < D+F((E()§U) < F(if() + U) — F(.’E()) < +00,

i.e., Dy F(xo;u) € R for every u € ©. The validity of (3) follows from these facts.
From (2) we immediately obtain

D, F(xzp;0u) = aDy F(xzg;u) for all @ >0and u € X, (9)
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and since the set © is absorbing, then for each u € X there is a > 0 such that au € ©.
Then from (9) we obtain

D, F(zo;u) e R forall zg € intU and u € X.

Now taking ¢ > 0, we consider the function
F(x +th) — F(x)
" .

Claim 3. For each pair (xo;ho) € intU x X there exists | > 0 such that for each
t € (0,1) the function Fy(- ;) is continuous at the point (xo; ho).

Proof of Claim 3. Let hg € X be arbitrary, xo € int U (the set © = O(z0) is defined
above), then there exists tg > 0 such that hy € t,©. For ¢t € (0,1), putting [ =
min(5~, 1), we consider the function Fy(z; h) in a neighborhood of the point (xg, ho) :

intU x © 3 (z,h) — Fi(x;h) =

(10)

1
2to?

|Fy(z;h) — Fy(zo; ho)| = %‘ [F (20 + tho + (z — x0) + t(h — ho))—

= F(zo + tho)] + [F(zo) — F(x)]( (11)
If we take z € xg + i@, h € hg + i97 then
zo + tho Ea:o-i-%@ Caxo+0, tlh—hg) € i@,
(x —x0) +t(h — hg) € %@, xo +tho + (x — x0) + t(h — ho) € zo + O.
From (11) using (8), we derive
[Fy(a;h) = Fiao; ho)| < = (d(a + th, o + tho) + d(z, 20)) — 0
as r — xg, h — hg. O]

Claim 3 implies the upper semicontinuity of the map

intU x X 3 (x;h) — Dy F(x;h) = inf Fy(z;h) = inf Fy(xz;h),
t>0 te(0,1)
since it is a “pointwise infimum” of continuous functions. The positive homogeneity
of D4 F(xg;-) is obvious. Now we show that this map is semiadditive. Indeed, for all
v, € X

F t _F
Dy F (w03 vy + v2) = inf (wo + t(v1 +v2)) — Fxo) _

t
9F(Zottvr 4 zottva) o
= lim ( 2 + 2 ) (‘IO) <
t—0+ t
<t FEoF0) ZF(o) |, Floodive) = Flwo)
t—0+ t t—0+ t

D F(xo;v1) + D4 F (203 v2).
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In order to complete the proof it suffices to show that the map D F'(zo; -) satisfies (iv).
From semiadditivity it follows that

|D4F(zo; h) — Dy F(20; ho)| < max{D4F(xo;h—hg), Dy F(zo; ho —h)} < c1d(h, ho)
for any h € hg + %@. This completes the proof of Theorem 1. O
Definition 1. We call a set B C X* bounded in the o(X*; X) topology (*-bounded),
if sup [{y, ) x| < o0 for each x € X.
yeB
It is obvious that each bounded set in X* is *-bounded.
Definition 2. A multivalued map A : X7 X* is called:

a) *-bounded, if for any bounded set B in X the image A(B) is *- bounded in X*;

b) *-upper semicontinuous, if for any set B open in the o(X*, X) topology the set
A (B) ={z € X | A(z) C B} is open in X ;

¢) upper hemicontinuous, if the function

X sz [A(x),yl+ = sup (d,y)x
deA(x)

is upper semicontinuous for each y € X.

Let us note that c) follows from b).

Theorem 2. Let U be a convex body and int U C domF, where F : X — R is a
convex functional on U and a semicontinuous function on intU. Then:

i) OF (z;U) is a nonempty convex compact set for every x € intU in the o(X*; X)
topology;

ii) OF(;U) : UZX* is a monotone map (on U);
iti) the map intU 3 x — Op(x;U) C X* is *-upper semicontinuous (on intU) and
[0¢(xo; U), h]l+ = Dip(zo;h)  for all h € X and xy € int U. (12)
Proof. First we prove condition ii). Let x1,29 € U and &; € 0F (x;;U), i = 1,2. Then
F(z2) — F(x1) > (61,22 — 21)x, F(21) — F(22) > (§&2,21 — 22) x.
Adding the first inequality to the second, we obtain

(&1 —&a,1 —x2)x >0,

or
[OF (21;U), 21 — @]~ > [0F (21;U), 21 — x2)+ for all zy,25 € U.

The last relation proves the monotonicity on U. Convexity and weak star closure
are obvious. Let us prove nonemptiness. Let us set an arbitrary x,h € int U and
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consider the real convex function ¢(t) = F(x + ¢(h — z)) defined on [0,1]. So there
exist p(t—), ¢(t+) such that

o(t—) < p(t+) = lim #(t) = ¢(0)

Jm ; = Dip(z;2 — h),

or
D_p(z;x —h) < Dyp(z;z — h),

where D_p(z;v) = —Di¢(x; —v). From Theorem 1 it follows that
M < (1) —(0) for every « € (0,1)
or
Dy F(x;h—2) < F(h)— F(z) forall z,heintU. (13)

Claim 4. For arbitrary x € int U there exists {(x) € X* such that
D_F(z;h) < (£(x),h)x < DyF(x;h)  for every h € X.

Proof of Claim 4. Let us fix hg € X and consider the one-dimensional subspace
Xo = {ahg | @ € R}. Let us choose an element £ € X* satisfying the following condi-
tion
(&, aho)x = Dy F(x,ahy), a>0

(We remark that since x is an interior point of U, then due to Theorem 1 for every
h € X there exists Dy F(x;h)). It is possible to choose £ in such a way, since
X 3 h — DiF(z;h) is a positively homogeneous functional. Further, taking into
account the semiadditivity of X 3 h — D, F(x;h), we obtain

0=D F(x;h—h) < Dy F(x;h) + Dy F(x;—h)

or

—DF(x;h) < Dy F(x;—h). (14)

Then for o < 0, from (14), the following relation follows:

(& aho)x = aD F(x;ho) = —|a| Dy F(x; ho) <
< |a| Dy F(x;—ho) = Dy F(x; —|alho) = Dy F(x; ahg).
Since (§,v)x < Dy F(x;v) for each v € Xy and X 3 h +— D F(x;h) is a continuous
positively homogeneous semiadditive functional, then according to the Hahn-Banach

Theorem there exists ( € X* such that ((,h)x < DiF(x;h) for each h € X and
(¢, ho)x = (€, ho)x. Hence we obtain ((, —h)x < D, F(xz;—h) and

(¢, hyx = —(¢,—h)x > =D, F(x;—h) = D_F(x;h) for every h € X.

The last relation proves the required inequality. O
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Claim 4 and inequality (13) guarantee the existence of £(z) € X* such that
&(x),h—z)x < DyF(x;h —xz) < F(h)— F(z) forevery heU,
ie., &(z) € OF(z,U), and hereby the nonemptiness of OF (x,U) is proved.
Claim 5. For every xg € intU, the following inequality holds true:
dp(zo;U) = {p € X [ (p,h)x < Dyp(xo;h) for every h e X},

Proof of Claim 5. Let p € OF (x0;U). Then there exists an open convex set V' con-
taining zero such that o +V C int U and

(p,h)x < F(zog+ h) — F(xg) forevery heV.

Hence,
F(xg+th) — F(x
(. < DI = F o)

Due to Theorem 1,

for every t € (0,1).

. F(xo + th) — F(Z‘o)
<
(p,h)x < inf ,

= D, F(zg;h) for every heV.
Since the set V' is absorbing and functions

X>hw— DiF(z;h), X>hw— (p,hyx
are positively homogeneous, then

(p,h)x < Dy F(xo;h) for every h e X.

On the other hand, let for every h € X the relation (p,h)x < D;F(xzo;h) hold
true. Due to Theorem 1, there follows the existence of a counterbalanced convex
absorbing neighborhood of zero © (zg 4+ © C int U) such that

Dy F(zo;v) < F(axg+v) — F(xg) for every v € 6.

Let us fix an arbitrary h € UNdomF. Then there is a € (0, 1) such that a(h—z) € ©.
Therefore,

a-(p,h—xzo)x = (pya(h —x0))x < Dy F(xo;a(h —x0)) < F(zo+ alh —x9))—
— Flzo) < aF (k) + (1 - a)F(xo) — F(zo) = a(F(h) — F(0)).

Hence we obtain that (p,h — zo)x < F(h) — F(x) for each h € U N domF, and for
this reason (p,h — xg)x < F(h) — F(xg) for each h € U. Hence p € 0F (zo;U). O

By Claim 5, it immediately follows that

[0F (xo;U),h)+ < Dy F(xo;h) for every h € X,
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that is, due to Claim 5,
{pe X" | {p,h—xo)x <[0F(x0;U),h — xp]+ forevery he€ X} C
C{pe X" |{p,h)x < DyF(xo;h —x9) for every h € X} = 0F (zo;U).
On the other hand, every element p € 9F (zo; U) satisfies the condition
(b, h)x < [OF (w03 U), bl for every h € X,

which proves the inverse inclusion. Therefore, equality (12) holds.
Further, due to (12) and Theorem 1, 9F(-;U) is upper hemicontinuous on int U.
Moreover, the boundedness of 0F(xo; U) follows from the estimate

[OF (x0; U), hl+ = Dy F(xg,h) < c1d(h,0) for every h € O,

where © is absorbing. So, by virtue of the Banach-Alaoglu Theorem (cf. [10]),
OF (29;U) is a compact set in the o(X*, X) topology. Under these conditions, upper
hemicontinuity of the map OF (-; U) and the Castaing Theorem (cf. [2]) imply *-upper
semicontinuity of 9F(-;U) on int U. This completes the proof of Theorem 2. O

Theorem 3. Let F1,Fy : X — R and U = Uy N Us, where intU # 0, U, Us are
convezx sets and

OF (z1;U1) # 0, OF(x2;Us) # 0 for all x1 € Uy, 22 € Us.
Then OF(x;U) # 0 for every x € U, where F = Fy + Fy, and
OF (z;U) = OFy(x;U) + 0Fy(x; U)  for every x € intU.
Proof. Suppose that x € U. It is clear that
OF (x;U) D 0F (z;U) + 0F3(z; U) D OF (x;Uy) + OF (x5 Us) # 0.

In order to complete the proof, it is necessary to show that for every x € int U and
for every h € X the following equality is fulfilled:

D, F(z;h) = Dy Fy(x;h) + Dy Fy(z; h). (15)

Indeed, since functions F, F, Fy satisfy assumptions of Proposition 1, then all condi-
tions of Theorem 2 hold true for them as well. Thus, due to equality (12) and [11,
Proposition 1],

[0F (2;U),h]+ = Dy F(z;h) = Dy Fi(z3h) + D Fa(a;h) =
= [0F (z;U), hly + [0F2(x;U), h]y =
= [0F(z;U) + OF3(x;U), h]; for all z € intU and h € X.

Hence
OF (z;U) = OF 1 (x2;U) 4+ 0Fs(a;U)  for every x € int U.
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Now we prove (15). For functions F, Fy, F», due to Proposition 1, Theorem 1 holds
true. Consequently, for all z € int U and h € X, we obtain

D, F(z:h) = lim ZEE = F(@)

t—0+ t
— lim F1($+th)—Fl(x)+F2($+th)—F2($) B
= . : =
t—0+ t t—0+ t

= Dy Fi(x;h) + Dy Fa(x; h).
This completes the proof of Theorem 3. O

Definition 3. Suppose that U is a convex body. The functional F : X — RU {+o0}
(intU C domF) is said to be upper bounded on int U if for every bounded set B C
int U the image F(B) is upper bounded in R.

The following result is new even in the case of X being a Banach space.

Theorem 4. Let F': X — R be a convexr lower semicontinuous functional. Then the
following statements are equivalent:

a) F is an upper bounded functional on X ;
b) a multivalued map OF(-) = OF (-; X) is *-bounded on X.

Proof. The following statements are true.

Claim 6. If B is a bounded set in X and C is a *-bounded set in X*, then the
quantity sup sup [(p, x) x| is finite.
zeB peC

Proof of Claim 6. Let p(z) = sup |(p, x) x|. *-boundedness of C' implies that the given
peC
functional is well defined on X. We remark that p(—x) = p(x) for € X. Moreover,
p is convex positively homogeneous and lower semicontinuous as the supremum of
convex positively homogeneous continuous functionals. Hence, due to Claim 2, p is
continuous on X, i.e., p is a continuous seminorm on X. By Theorem V.23 in [12],
the boundedness of B in X implies that sup sup |[(p, ) x| = sup p(z) < +oo. O
z€B peC zEB

Definition 4. Let X be a separable locally convex topological space, U C X be an
unbounded convex body. Then the functional F': U — RU{+o0} is called coercive on
U if F(z) = +00 as p(z) — +oo, x € U, where p an arbitrary continuous seminorm
on X.

Claim 7. Let B C X be a nonempty set satisfying one of the two conditions:

(i) B is bounded,
(ii) F s coercive on B.

Then inf F(z) > —oc.
z€B
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Proof of Claim 7. For some integer n, we consider the following set:
A, ={zxeB|F(z) <n}#0.

The boundedness of A,, follows from the boundedness of B or coercivity of F'. Indeed,
if the set A,, is unbounded, then there exists a continuous seminorm p and a sequence
{Zn}n>1 C B such that p(z,) — +o0o0. Thus we obtain F(z,) — +oo, and this
fact contradicts the construction of A,. Therefore, taking into account Theorem 2
and Claim 6 with C = {p}, p € 9F(0), we deduce that inf,ep F(z) > F(0) —
sup,ep |(p, z)| > —oo. This completes the proof. O

We continue with the proof of Theorem 4. Let the set B be bounded in X. First
we assume that the multivalued map 0F(-) is *-bounded on X. Then, by definition
of a subdifferential,

F(xzo) — F(z) > (pz,x0 —x)x for all z € B and p, € OF(x).
Whence for all z € B and p, € OF(z), we obtain

F(z) < F(zo) + (P, x —zo)x <|F(zo)|+ sup [{p,z—z0)x]| <
peIF(B)
<[F(zo)|+ sup  sup [(p,z)x].
z€x0+B pedF (B)

Claim 6 and the fact that zg + B is the bounded set in X yield

sup  sup |[{p,x)x]| < +o0.
z€xo+B pcdF(B)

Moreover, let the functional F' be upper bounded. Then, due to Theorem 2, for
every u € X there is

sup |(p,u)x| =sup sup (p,u)x = sup[0F(x),u]y = sup Dy F(z;u).
pEIOF(B) TEB pEDF (x) z€EB z€B

Further, from Theorem 1 we infer that

sup Dy F(z;u) < sup(F(z +u) — F(x)) < sup F(z)— inf F(x)=:1.
z€B z€B TE€B+u z€B

Since B, B+u are bounded sets in X, then (due to Claim 7 and the definition of an up-
per bounded functional) the quantity I is finite. Consequently, SUPLeoF(BU) (p,uyx <
+oo for every u € X. Hence, the set 9F (B) is *-bounded. O

Remark 1. For an arbitrary multivalued map A 1Y C X X*, coA and ¢6A stand
for multivalued maps defined as follows: coA(y) := co(A(y)), c0A(y) := co(A(y)) for
everyy €Y.

Remark 2. Claim 7 holds true if X is reflexive, but F : X — RU {400} is weakly
lower semicontinuous.
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Corollary 1. Let @1, p2 : X — R be lower semicontinuous convex functionals upper
bounded on X. Then dp1+ 0ps : X7 X* is a *-bounded *-upper semicontinuous map
with compact values in the o(X*, X) topology.

Proof. The map G = Op1 + dps is upper hemicontinuous, since it is the sum of upper
hemicontinuous maps. Also, d¢; = c00p; (i = 1,2). Now we prove that coG = G.
As coG = G, i.e., ©0G D Jp; + Jps = G, it remains to prove the inverse inclusion.
Let u € ¢0G(y), then there exists a net {u,} € G(y) such that u, — u in X*, and
Ue = U, + u,., where u,, € dp1(y), u., € Apa(y). Since dp1(y), dpa(y) are compact
sets in o(X™*, X)-topology, we deduce that u = v’ + v, v’ € 9p1(y), v’ € dpa(y),
ie., c0G(y) C G(y).

Thus, G satisfies all conditions of the Castaing Theorem, whence *-upper semi-
continuity of the map dp;1 + dypo follows. The *-boundedness of the map dp; + dps
follows from a similar statement for dp; and Op,.

For an arbitrary bounded set B, images 0¢1(B) and d¢a(B) are *-bounded in X*.
Then

sup l{g,z)x| = sup sup  [{(g1 + 92, 2) x| <
9€0¢p1(B)+0p2(B) 91€09¢1(B) g2€0p2(B)
< sup  [gz)x|+ sup (g2, 7)x| <
91€0¢1(B) 92€0p2(B)

< 400 for every x € X,

ie., Op1 + Ops is a *-bounded set in X*. O
Let us define
o(y) = v1(y) + w2(y) —{fy)x, (16)

where U is a nonempty convex set, f € X* ¢1 : X — RU {400} is a convex upper
semicontinuous functional on X (int domp; # 0), 2 : X — R U {+o0} is a convex
functional on U and domp, C domps.

The following results are true.

Theorem 5. Under the above assumptions, the following conditions are equivalent:
1) 2o € int dom o1 NU, ¢(xg) = ing o(x);
EAS

2) xg € int dom p1 NU, [0p1(z0;U),x — x0]++
+p2(x) — 2(w0) = (f, 2 —w0)x  for every x € U. (17)

Proof. First we prove that 1) = 2). Let a point zg € int dom ¢, N U satisfy condi-
tion 1). Then for all z € U and all ¢ € [0, 1] there is

¢(w0) = p1(z0) + p2(z0) — (f,0)x <
< p1(zo + t(z — x0)) + p2(xo + t(x — x0)) — (fyx0 + t(x — 20))x <
< p1(wo + t(x — w0)) + tp2(x) + (1 — t)p2(w0) — t{f, 2 — T0) x
Hence,

¢1(wo + t(z — x0)) — p1(x0)
t

+ @2(z) — p2(z0) = (f, 2 — 20) x
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or, passing to a limit as ¢t — +0,

D p1(zo;x — x0) + p2(x) — p2(z0) > (f, 2 — 20) X

Then, due to relation (12), we arrive at inequality (17).
To prove the inverse implication, assume that inequality (17) holds. By the defi-
nition of dy1(zg; U), we obtain

[8()01('1:0; U)a T — $0]+ + 4102(33) — @2(330) >
(fyx —xo)x for every x € U

1(x) — p1(z0) + p2(x) — pa(0)

IV v

ie., p(z) > ¢(x0), which is equivalent to 1). This completes the proof of Theorem 5.
O

Remark 3. In the literature, inequality (17) is called a variational inequality with a
multivalued map. In Banach spaces, such maps are being actively studied.

Theorem 6. Let X be a reflexive space and the functional ¢ be of the form (16).
Let it be coercive and satisfy all conditions of Theorem 5. Let U C domy = X be a
closed convex set. If the functional py is lower semicontinuous on U, then variational
inequality (17) has at least one solution xo € X.

Proof. The following statement is true. (It represents a generalization of the Weier-
strass Theorem onto the case of Frechet spaces.)

Claim 8. Let X be a reflexive Frechet space, ¢ : X — R U {400} weakly lower
semicontinuous functional, B C domy a closed convexr set. Moreover, suppose that
one of the following conditions holds:

a) set B is bounded in X;
b) the functional ¢ is coercive on B.
Then functional @ is lower bounded on B and reaches its exact lower bound d, and
the set
K = {z € Blp(z) = d}

18 weakly compact in X.

Proof of Claim 8. Due to Claim 7 and Remark 2, the functional ¢ is lower bounded.
Therefore, there exists a net {x,}o C B such that

lim p(z,) = d = inf p(z) < +oo.
a r€B

The set {4}« is bounded in X due to either the boundedness B or coercivity of ¢.
Hence, in virtue of the Banach-Alaoglu Theorem, there exists a subnet (which we
also denote by {x4}s) such that z, — ¢ in o(X; X*)-topology of the space X, and
xo € B, because the set B is closed in o(X; X*)-topology.

Hence, due to the lower semicontinuity of the functional ¢ in o(X; X*)-topology,
we obtain

4,0(:1;0) < LW(xa) = lim@(xa) =d,

[e3%

ie., xo € K.
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Finally, let {xo}o C K be an arbitrary net. By the construction, the set K is
bounded. Consequently, we may assume that z, — xg in o(X; X*)-topology. So,
p(xo) < lim p(z4) = d, whence zg € K. Claim 8 is proved. O

«@

In our case, U C X = domy and it satisfies the conditions of Claim 8; therefore,
the problem ¢(x) — inf, € U has a solution zy € X. In order to complete the proof
it remains to use Theorem 5. This completes the proof of Thorem 6. O
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