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1. INTRODUCTION AND NOTATION

Subdifferential maps play an important role in the non-smooth analysis and the op-
timization theory [1–3], in nonlinear boundary value problems for partial differential
equations, the theory of control of the distributed systems [4,5], as well as the theory
of differential games and mathematical economy [6, 7]. For basic properties of such
maps we refer the reader to [2, 3, 8]. In this paper we will generalize basic properties
of subdifferentials and local subdifferentials known for Banach spaces to the case of
Frechet spaces.

Let X be a Frechet space, X∗ its topologically dual (adjoint) space. For x ∈ X
and f ∈ X∗, as usual, the symbol 〈f, x〉 stands for the bilinear pairing between X
and X∗. Assume that X is endowed with the topology τ generated by a family of
seminorms {ρi}∞i=1 separating points of X. Recall that the topology τ is Hausdorff
and metrizable by the metric

d(x, y) =
∞∑

i=1

2−i ρi(x− y)
1 + ρi(x− y)

. (1)

Observe that d(x+h, y+h) = d(x, y), d(αx, αy) < |α|d(x, y) if |α| > 1 and d(αx, αy) ≥
|α|d(x, y) if |α| ≤ 1.
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Let Y be a locally convex linear space and T : Y → X be a linear continuous map.
Recall that the adjoint (dual) transformation T ∗ : X∗ → Y ∗ is given by a formula
〈x∗, T y〉 = 〈T ∗x∗, y〉 for y ∈ Y , x∗ ∈ X∗. For the existence and uniqueness of such
transformation, see [10] .

Throughout the paper, F stands for the functional F : X → R ∪ {+∞} and the
symbol dom F denotes the set {x ∈ X | F (x) < +∞}.

Given a functional F and a convex body U such that intU ⊂ domF , a local
subdifferential of F at the point x0 ∈ U ∩ domF is, by definition, the set

∂F (x0;U) = {ξ ∈ X∗ | 〈ξ, x− x0〉X ≤ F (x)− F (x0) for all x ∈ U}

Observe that ∂F (x0;U1) ⊃ ∂F (x0;U2), if U1 ⊂ U2. In particular, ∂F (x0;X) =
∂F (x0) ⊂ ∂F (x0;U). The last set is called the subdifferential of F at the point x0.

2. RESULTS

Proposition 1. Let a functional F : X → R∪{+∞} be given. Assume that there are
a convex body U and a point x0 ∈ int U such that ∂F (x0;U) 6= ∅. Then the functional
F is weakly lower semicontinuous at x0. Moreover, if ∂F (x0;U) 6= ∅ for every x ∈ U ,
then F is convex on U .

Proof. Let {xα} be a net converging to {x0} and W ⊂ U be a neighborhood of {x0}.
Obviously there exists α0 such that xα ∈ W for α�α0. Let x∗ ∈ ∂F (x0, U). For
α�α0, there is 〈x∗, xα−x0〉 ≤ F (xα)−F (x0). Passing with xα to x0, we deduce that
lim
α

F (xα) ≥ F (x0).

Now suppose that ∂F (x0;U) 6= ∅ for an arbitrary x0 ∈ U . Fix x0 ∈ U . For
x∗ ∈ ∂F (x0;U) and x1, x2 ∈ U , there is F (x1) − F (x0) ≥ 〈x∗, x1 − x0〉, and
F (x2)− F (x0) ≥ 〈x∗, x2 − x0〉 for all x1, x2 ∈ U .

Let t ∈ [0, 1]. Adding the first inequality multiplied by t to the second one multi-
plied by 1− t, we obtain

tF (x1) + (1− t)F (x2) ≥ F (x0) + 〈x∗, tx1 + (1− t)x2 − x0〉.

Since U is a convex set we can take x0 = tx1 + (1− t)x2.

Proposition 2. Let X be a Frechet space, Y a locally convex linear space, F : X →
R ∪ {+∞} and T : Y → X a linear continuous map admitting an adjoint map T ∗.
Let U ⊂ X be a convex body and V = T−1(U). Then for every Tv ∈ intU , where
v ∈ V , there is

∂(F ◦ T )(v;V ) = T ∗(∂F (T (v;V ))

Proof. Let x ∈ ∂F (Tv;U). Obviously,

〈x∗, x− Tv〉 ≤ F (x)− F (T (v)) for every x ∈ U.

Taking x = T (y) with y ∈ V , we can rewrite the last inequality in the form

〈x∗, T y − Tv〉 ≤ F (T (y))− F (T (v)) for every y ∈ V
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or
〈T ∗x∗, y − v〉 ≤ (F ◦ T )(y)− (F ◦ T )(v) for every y ∈ V,

which means that T ∗x∗ ∈ ∂(F ◦ T )(v;V ). Thus ∂(F ◦ T )(v;V ) ⊃ T ∗(∂F (T (v);V )).
To prove the inverse inclusion, take y∗ ∈ ∂(F ◦ T )(v;V ). Clearly

〈y∗, y − v〉 ≤ (F ◦ T )(y)− (F ◦ T )(v) for every y ∈ V.

Taking x∗ ∈ X∗ such that y∗ = T ∗x∗, we can rewrite the last inequality in the form

〈x∗, T y − Tv〉 ≤ F (T (y))− F (T (v)) for every y ∈ V

or
〈x∗, x− Tv〉 ≤ F (x)− F (T (v)) for every x ∈ U,

which means that y∗ = T ∗x∗ ∈ T ∗(∂F (T (v;V ))) and this completes the proof.

Theorem 1. Let U be a convex body in X, F : X 7→ R∪{+∞} be a convex functional
on U and a lower semicontinuous functional on int U (int U ⊂ domF ). Then for
every x0 ∈ int U and every h ∈ X, the quantity

D+F (x0;h) = lim
t→0+

F (x0 + th)− F (x0)
t

(2)

is finite and the following statements hold true:

(i) there exists a counterbalanced (cf. [12]) convex absorbing neighborhood of zero Θ
(x0 + Θ ⊂ int U) such that for every h ∈ Θ

F (x0)− F (x0 − h) ≤ D+F (x0;h) ≤ F (x0 + h)− F (x0); (3)

(ii) the functional int U ×X 3 (x;h) 7→ D+F (x;h) is upper semicontinuous;
(iii) the functional D+F (x0; ·) : X 7→ R is positively homogeneous and semiadditive

for every x0 ∈ int U ;
(iv) there exist a neighborhood O(h0) and a constant c1 > 0 such that for every

x0 ∈ int U and every h0 ∈ X,

|D+F (x0;h)−D+F (x0;h0)| ≤ c1d(h, h0) for every h ∈ O(h0).

Proof. First we introduce some auxiliary statements.

Claim 1. The functional F is locally upper bounded on int U , that is for every x0 ∈
int U there exist positive constants r and c such that F (x) ≤ c, for each x ∈ Br(x0),
where Br(x0) = {x ∈ X | d(x, x0) < r }.

Proof of Claim 1. For arbitrary x0 ∈ int U there exists ε1 > 0 such that B2ε1(x0) ⊂
int U ⊂ domF , hence Bε1(x0) ⊂ B2ε1(x0) ⊂ domF . Since F is lower semicontinuous,
than for each n = 1, 2, . . . the set

An = {x ∈ Bε1(x0) |F (x) ≤ n}



298 Pavlo O. Kasyanov, Valery S. Mel’nik, Anna M. Piccirillo

is closed in X and
+∞⋃
n=1

An = Bε1(x0) ⊂ dom F.

Since the metric space (Bε1(x0), d) is complete, due to the Baire Category Theorem,
there exists n0 ∈ N such that intAn0 6= ∅ in Bε1(x0). We now prove that intAn0 6= ∅
in X. Since intAn0 6= ∅ in Bε1(x0), we conclude that there exist x1 ∈ intAn0 and
ε2 > 0 such that the following equality holds true:

An0 ⊃ {x ∈ Bε1(x0) | d(x, x1) < ε2} = Bε1(x0) ∩Bε2(x1) 6= ∅.

Thus the following two cases are possible:

1) Bε1(x0) ∩Bε2(x1) 6= ∅;
2) Bε1(x0) ∩Bε2(x1) = ∅, ∂Bε1(x0) ∩Bε2(x1) 6= ∅.

In the first case, the set Bε1(x0) ∩Bε2(x1) is open in topology τ ; therefore, there
exist x2 ∈ X and ε3 > 0 such that Bε3(x2) ⊂ Bε1(x0) ∩ Bε2(x1) ⊂ An0 . Thus, for
each x ∈ Bε3(x2), there is F (x) ≤ n0. Hence x2 ∈ intAn0 in X.

In the second case, for an arbitrary x ∈ ∂Bε1(x0)∩Bε2(x1), there exists {xn}n≥1 ⊂
Bε1(x0) such that xn → x as n → +∞. Since x ∈ Bε2(x1), then there exists N such
that for each n ≥ N , xn ∈ Bε2(x1). Therefore, xn ∈ Bε1(x0) ∩ Bε2(x1) 6= ∅, and we
may proceed further as in the first case. Thus intAn0 6= ∅ in X.

Now we show that the functional F is upper bounded in some neighborhood of x0.
Let x2 6= x0, y = x2 + x0−x2

1−λ , where λ = ε1/d(x2,x0)
1+ε1/d(x2,x0)

. Therefore,

y = x0 +
ε1

d(x2, x0)
(x0 − x2),

d(y, x0) = d

(
ε1

d(x0, x2)
(x0 − x2), 0

)
<

ε1

d(x0, x2)
d(x0, x2) = ε1,

that is y ∈ Bε1(x0) ⊂ domF . For an arbitrary x ∈ Bλε3(x0), we consider z =
(x + λx2 − x0)/λ = (x− (1− λ)y)/λ. Since 0 < λ < 1, we conclude that

d(z, x2) = d

(
x2 +

x− x0

λ
, x2

)
= d

(
x− x0

λ
, 0

)
<

1
λ

d(x, x0) <
λε3

λ
= ε3,

hence z ∈ Bε3(x2), and F (z) ≤ n0. Due to convexity of F , there is

F (x) = F (λz + (1− λ)y) ≤ λF (z) + (1− λ)F (y) ≤ n0 + (1− λ)F (y).

From this we conclude that F is upper bounded in the neighborhood Br(x0) with
r = λε3 and c = n0 + (1− λ)F (y).

Claim 2. The functional F is locally Lipschitzean on int U , i.e., for every x0 ∈ int U
there exist r1 > 0 and c1 > 0 such that

|F (x)− F (y)| ≤ c1d(x, y) for all x, y ∈ Br1(x0).
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Proof of Claim 2. The local upper boundedness of the functional F on int U follows
from Claim 1. Therefore, for every x0 ∈ int U there exist r > 0 and c > 0 such that
F (x) ≤ c for every x ∈ Br(x0).

For an arbitrary x ∈ Br(x0) (x 6= x0) and t = d(x,x0)
r+d(x,x0)

, we put

y =
x0 + (t− 1)x

t
= x0 +

1− t

t
(x0 − x),

where t ∈ (0, 1). Then

d(y, x0) = d

(
1− t

t
(x0 − x), 0

)
= d

(
r

d(x, x0)
(x0 − x), 0

)
<

r

d(x, x0)
d(x, x0) = r,

i.e., F (y) ≤ c. Due to convexity of F ,

F (x0) = F (ty + (1− t)x) ≤ tF (y) + (1− t)F (x) ≤ tc + (1− t)F (x),

or (1− t)F (x0) ≤ t(c− F (x0)) + (1− t)F (x). Hence

F (x0)− F (x) ≤ t

1− t
(c− F (x0)) =

(c− F (x0))
r

d(x, x0). (4)

Now let z = x−(1−τ)x0
τ = x0 + x−x0

τ , where τ = d(x,x0)
r ∈ (0, 1). Then

d(z, x0) = d

(
x− x0

τ
, 0

)
<

1
τ

d(x, x0) = r,

i.e., F (z) ≤ c, and since F is convex, we obtain

F (x) = F (τz + (1− τ)x0) ≤ τF (z) + (1− τ)F (x0) ≤ τc + (1− τ)F (x0)

or
F (x)− F (x0) ≤ τ(c− F (x0)) =

c− F (x0)
r

d(x, x0). (5)

Relations (4) and (5) imply the following estimate

|F (x)− F (x0)| ≤
c− F (x0)

r
d(x, x0). (6)

Now we show that the Lipschitz condition holds true for F on Bε1(x0) with
ε1 = r/3. Hence in view of (6), for all x1, x2 ∈ B3ε1(x0) F (x1) ≤ c, F (x2) ≤ c.
If x1 ∈ Bε1(x0), then B2ε1(x1) ⊂ Br(x0), that is x1 ∈ int U . Therefore, from (6) we
obtain

|F (x)− F (x1)| ≤
c− F (x1)

2ε1
d(x, x1) for every x ∈ B2ε1(x1). (7)

In particular, inequality (7) is valid for an arbitrary element of Bε1(x0). Further, due
to (6)

−F (x1) ≤ (c− F (x0)) + |F (x1)− F (x0)| ≤

≤ (c− F (x0)) +
c− F (x0)

r
d(x1, x0) < 2(c− F (x0)).
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From the last relation, using (7), we finally obtain

|F (x2)− F (x1)| ≤
c− F (x0)

ε1
d(x2, x1) for all x1, x2 ∈ Bε1(x0),

i.e., c1 = c−F (x0)
ε1

, r1 = ε1.

Now we continue to prove Theorem 1. Let x0 ∈ int U and Br(x0) = x0 + Br(0).
Then due to Claims 1 and 2 the upper boundness and the Lipschitz condition for F
on Br(x0) follow. We recall that, unlike in the case of a Banach space, Br(0) is not
absolutely convex, but at the same time there exists a convex absorbing counterbal-
anced set Θ = Θ(x0) in a basis of topology τ , such that Θ ⊂ Br(0). Then F (x) ≤ c,
for every x ∈ x0 + Θ,

|F (x1)− F (x2)| ≤ c1d(x1, x2) for all x1, x2 ∈ x0 + Θ. (8)

For each u ∈ X there exists t = t(u) > 0 such that t−1u ∈ Θ (if u ∈ Θ, then we
take t = 1). So for each τ ∈ (0, t−1] the element τu ∈ Θ, as tΘ ⊂ 1

τ Θ. Further, due
to convexity of F , for every τ1, τ2 ∈ R such that 0 < τ1 ≤ τ2 ≤ t−1, there follows:

F (x0 + τ1u)− F (x0) = F

(
x0

(
1− τ1

τ2

)
+ (x0 + τ2u)

τ1

τ2

)
− F (x0) ≤

≤
(

1− τ1

τ2

)
F (x0) +

τ1

τ2
F (x0 + τ2u)− F (x0) =

=
τ1

τ2
(F (x0 + τ2u)− F (x0)).

Hence the function τ 7→ F (x0+τu)−F (x0)
τ monotonely decreases as τ → 0+.

For each u ∈ Θ, the quantity D+F (x0;u) is finite. In fact, αu ∈ Θ for every α
such that |α| ≤ 1, therefore

D+F (x0;u) = inf
τ>0

F (x0 + τu)− F (x0)
τ

≤

≤ F (x0 + u)− F (x0) < +∞ as x0 + u ∈ Br(x0) ⊂ int U ⊂ dom F.

On the other hand, for every τ ∈ (0, 1) x0 = 1
1+τ (x0 + τu) + τ

1+τ (x0 − u), i.e.,
−u ∈ Θ, and moreover, for each τ ∈ (0, 1),

−∞ < F (x0)− F (x0 − u) ≤ F (x0 + τu)− F (x0)
τ

.

Thus, for each u ∈ Θ,

−∞ < F (x0)− F (x0 − u) ≤ D+F (x0;u) ≤ F (x0 + u)− F (x0) < +∞,

i.e., D+F (x0;u) ∈ R for every u ∈ Θ. The validity of (3) follows from these facts.
From (2) we immediately obtain

D+F (x0;αu) = αD+F (x0;u) for all α > 0 and u ∈ X, (9)
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and since the set Θ is absorbing, then for each u ∈ X there is α > 0 such that αu ∈ Θ.
Then from (9) we obtain

D+F (x0;u) ∈ R for all x0 ∈ int U and u ∈ X.

Now taking t > 0, we consider the function

int U ×Θ 3 (x, h) 7→ Ft(x;h) =
F (x + th)− F (x)

t
. (10)

Claim 3. For each pair (x0;h0) ∈ int U × X there exists l > 0 such that for each
t ∈ (0, l) the function Ft(· ; ·) is continuous at the point (x0;h0).

Proof of Claim 3. Let h0 ∈ X be arbitrary, x0 ∈ int U (the set Θ = Θ(x0) is defined
above), then there exists t0 > 0 such that h0 ∈ t0Θ. For t ∈ (0, l), putting l =
min( 1

2t0
, 1), we consider the function Ft(x;h) in a neighborhood of the point (x0, h0) :

|Ft(x;h)− Ft(x0;h0)| =
1
t

∣∣∣[F (x0 + th0 + (x− x0) + t(h− h0))−

− F (x0 + th0)
]
+

[
F (x0)− F (x)

]∣∣∣ (11)

If we take x ∈ x0 + 1
4Θ, h ∈ h0 + 1

4Θ, then

x0 + th0 ∈ x0 +
1
2
Θ ⊂ x0 + Θ, t(h− h0) ∈

1
4
Θ,

(x− x0) + t(h− h0) ∈
1
2
Θ, x0 + th0 + (x− x0) + t(h− h0) ∈ x0 + Θ.

From (11) using (8), we derive

|Ft(x;h)− Ft(x0;h0)| ≤
c1

t
(d(x + th, x0 + th0) + d(x, x0)) → 0

as x → x0, h → h0.

Claim 3 implies the upper semicontinuity of the map

int U ×X 3 (x;h) 7→ D+F (x;h) = inf
t>0

Ft(x;h) = inf
t∈(0,l)

Ft(x;h),

since it is a “pointwise infimum” of continuous functions. The positive homogeneity
of D+F (x0; ·) is obvious. Now we show that this map is semiadditive. Indeed, for all
v1, v2 ∈ X

D+F (x0; v1 + v2) = inf
t>0

F (x0 + t(v1 + v2))− F (x0)
t

=

= lim
t→0+

2F (x0+tv1
2 + x0+tv2

2 )− 2F (x0)
t

≤

≤ lim
t→0+

F (x0 + tv1)− F (x0)
t

+ lim
t→0+

F (x0 + tv2)− F (x0)
t

=

= D+F (x0; v1) + D+F (x0; v2).



302 Pavlo O. Kasyanov, Valery S. Mel’nik, Anna M. Piccirillo

In order to complete the proof it suffices to show that the map D+F (x0; ·) satisfies (iv).
From semiadditivity it follows that

|D+F (x0;h)−D+F (x0;h0)| ≤ max{D+F (x0;h−h0), D+F (x0;h0−h)} ≤ c1d(h, h0)

for any h ∈ h0 + 1
4Θ. This completes the proof of Theorem 1.

Definition 1. We call a set B ⊂ X∗ bounded in the σ(X∗;X) topology (*-bounded),
if sup

y∈B
|〈y, x〉X | < +∞ for each x ∈ X.

It is obvious that each bounded set in X∗ is *-bounded.

Definition 2. A multivalued map A : X 7→
7→X∗ is called:

a) *-bounded, if for any bounded set B in X the image A(B) is *- bounded in X∗;
b) *-upper semicontinuous, if for any set B open in the σ(X∗, X) topology the set

A−1
M (B) = {x ∈ X | A(x) ⊂ B} is open in X ;

c) upper hemicontinuous, if the function

X 3 x 7→ [A(x), y]+ = sup
d∈A(x)

〈d, y〉X

is upper semicontinuous for each y ∈ X.

Let us note that c) follows from b).

Theorem 2. Let U be a convex body and int U ⊂ domF , where F : X → R is a
convex functional on U and a semicontinuous function on int U . Then:

i) ∂F (x;U) is a nonempty convex compact set for every x ∈ int U in the σ(X∗;X)
topology;

ii) ∂F (·;U) : U→→X∗ is a monotone map (on U);
iii) the map int U 3 x 7→ ∂ϕ(x;U) ⊂ X∗ is *-upper semicontinuous (on intU) and

[∂ϕ(x0;U), h]+ = D+ϕ(x0;h) for all h ∈ X and x0 ∈ int U. (12)

Proof. First we prove condition ii). Let x1, x2 ∈ U and ξi ∈ ∂F (xi;U), i = 1, 2. Then

F (x2)− F (x1) ≥ 〈ξ1, x2 − x1〉X , F (x1)− F (x2) ≥ 〈ξ2, x1 − x2〉X .

Adding the first inequality to the second, we obtain

〈ξ1 − ξ2, x1 − x2〉X ≥ 0,

or
[∂F (x1;U), x1 − x2]− ≥ [∂F (x1;U), x1 − x2]+ for all x1, x2 ∈ U.

The last relation proves the monotonicity on U . Convexity and weak star closure
are obvious. Let us prove nonemptiness. Let us set an arbitrary x, h ∈ int U and
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consider the real convex function ϕ(t) = F (x + t(h − x)) defined on [0, 1]. So there
exist ϕ(t−), ϕ(t+) such that

ϕ(t−) ≤ ϕ(t+) = lim
t→+0

ϕ(t)− ϕ(0)
t

= D+ϕ(x;x− h),

or
D−ϕ(x;x− h) ≤ D+ϕ(x;x− h),

where D−ϕ(x; v) = −D+ϕ(x;−v). From Theorem 1 it follows that

ϕ(α)− ϕ(0)
α

≤ ϕ(1)− ϕ(0) for every α ∈ (0, 1)

or
D+F (x;h− x) ≤ F (h)− F (x) for all x, h ∈ int U. (13)

Claim 4. For arbitrary x ∈ int U there exists ξ(x) ∈ X∗ such that

D−F (x;h) ≤ 〈ξ(x), h〉X ≤ D+F (x;h) for every h ∈ X.

Proof of Claim 4. Let us fix h0 ∈ X and consider the one-dimensional subspace
X0 = {αh0 | α ∈ R}. Let us choose an element ξ ∈ X∗ satisfying the following condi-
tion

〈ξ, αh0〉X = D+F (x, αh0), α ≥ 0

(We remark that since x is an interior point of U , then due to Theorem 1 for every
h ∈ X there exists D+F (x;h)). It is possible to choose ξ in such a way, since
X 3 h 7→ D+F (x;h) is a positively homogeneous functional. Further, taking into
account the semiadditivity of X 3 h 7→ D+F (x;h), we obtain

0 = D+F (x;h− h) ≤ D+F (x;h) + D+F (x;−h)

or
−D+F (x;h) ≤ D+F (x;−h). (14)

Then for α < 0, from (14), the following relation follows:

〈ξ, αh0〉X = αD+F (x;h0) = −|α|D+F (x;h0) ≤
≤ |α|D+F (x;−h0) = D+F (x;−|α|h0) = D+F (x;αh0).

Since 〈ξ, v〉X ≤ D+F (x; v) for each v ∈ X0 and X 3 h 7→ D+F (x;h) is a continuous
positively homogeneous semiadditive functional, then according to the Hahn-Banach
Theorem there exists ζ ∈ X∗ such that 〈ζ, h〉X ≤ D+F (x;h) for each h ∈ X and
〈ζ, h0〉X = 〈ξ, h0〉X . Hence we obtain 〈ζ,−h〉X ≤ D+F (x;−h) and

〈ζ, h〉X = −〈ζ,−h〉X ≥ −D+F (x;−h) = D−F (x;h) for every h ∈ X.

The last relation proves the required inequality.
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Claim 4 and inequality (13) guarantee the existence of ξ(x) ∈ X∗ such that

〈ξ(x), h− x〉X ≤ D+F (x;h− x) ≤ F (h)− F (x) for every h ∈ U,

i.e., ξ(x) ∈ ∂F (x,U), and hereby the nonemptiness of ∂F (x,U) is proved.

Claim 5. For every x0 ∈ int U , the following inequality holds true:

∂ϕ(x0;U) = {p ∈ X∗ | 〈p, h〉X ≤ D+ϕ(x0;h) for every h ∈ X}.

Proof of Claim 5. Let p ∈ ∂F (x0;U). Then there exists an open convex set V con-
taining zero such that x0 + V ⊂ int U and

〈p, h〉X ≤ F (x0 + h)− F (x0) for every h ∈ V.

Hence,

〈p, h〉X ≤ F (x0 + th)− F (x0)
t

for every t ∈ (0, 1).

Due to Theorem 1,

〈p, h〉X ≤ inf
t>0

F (x0 + th)− F (x0)
t

= D+F (x0;h) for every h ∈ V.

Since the set V is absorbing and functions

X 3 h 7→ D+F (x;h), X 3 h 7→ 〈p, h〉X

are positively homogeneous, then

〈p, h〉X ≤ D+F (x0;h) for every h ∈ X.

On the other hand, let for every h ∈ X the relation 〈p, h〉X ≤ D+F (x0;h) hold
true. Due to Theorem 1, there follows the existence of a counterbalanced convex
absorbing neighborhood of zero Θ (x0 + Θ ⊂ int U) such that

D+F (x0; v) ≤ F (x0 + v)− F (x0) for every v ∈ Θ.

Let us fix an arbitrary h ∈ U∩domF . Then there is α ∈ (0, 1) such that α(h−x0) ∈ Θ.
Therefore,

α · 〈p, h− x0〉X = 〈p, α(h− x0)〉X ≤ D+F (x0;α(h− x0)) ≤ F (x0 + α(h− x0))−
− F (x0) ≤ αF (h) + (1− α)F (x0)− F (x0) = α(F (h)− F (x0)).

Hence we obtain that 〈p, h − x0〉X ≤ F (h) − F (x0) for each h ∈ U ∩ domF , and for
this reason 〈p, h− x0〉X ≤ F (h)− F (x0) for each h ∈ U . Hence p ∈ ∂F (x0;U).

By Claim 5, it immediately follows that

[∂F (x0;U), h]+ ≤ D+F (x0;h) for every h ∈ X,
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that is, due to Claim 5,

{p ∈ X∗ | 〈p, h− x0〉X ≤ [∂F (x0;U), h− x0]+ for every h ∈ X} ⊂
⊂ {p ∈ X∗ | 〈p, h〉X ≤ D+F (x0;h− x0) for every h ∈ X} = ∂F (x0;U).

On the other hand, every element p ∈ ∂F (x0;U) satisfies the condition

〈p, h〉X ≤ [∂F (x0;U), h]+ for every h ∈ X,

which proves the inverse inclusion. Therefore, equality (12) holds.
Further, due to (12) and Theorem 1, ∂F (·;U) is upper hemicontinuous on int U .

Moreover, the boundedness of ∂F (x0;U) follows from the estimate

[∂F (x0;U), h]+ = D+F (x0, h) ≤ c1d(h, 0) for every h ∈ Θ,

where Θ is absorbing. So, by virtue of the Banach-Alaoglu Theorem (cf. [10]),
∂F (x0;U) is a compact set in the σ(X∗, X) topology. Under these conditions, upper
hemicontinuity of the map ∂F (·;U) and the Castaing Theorem (cf. [2]) imply *-upper
semicontinuity of ∂F (·;U) on int U . This completes the proof of Theorem 2.

Theorem 3. Let F1, F2 : X → R and U = U1 ∩ U2, where int U 6= ∅, U1, U2 are
convex sets and

∂F1(x1;U1) 6= ∅, ∂F2(x2;U2) 6= ∅ for all x1 ∈ U1, x2 ∈ U2.

Then ∂F (x;U) 6= ∅ for every x ∈ U , where F = F1 + F2, and

∂F (x;U) = ∂F1(x;U) + ∂F2(x;U) for every x ∈ intU.

Proof. Suppose that x ∈ U . It is clear that

∂F (x;U) ⊃ ∂F1(x;U) + ∂F2(x;U) ⊃ ∂F1(x;U1) + ∂F2(x;U2) 6= ∅.

In order to complete the proof, it is necessary to show that for every x ∈ int U and
for every h ∈ X the following equality is fulfilled:

D+F (x;h) = D+F1(x;h) + D+F2(x;h). (15)

Indeed, since functions F, F1, F2 satisfy assumptions of Proposition 1, then all condi-
tions of Theorem 2 hold true for them as well. Thus, due to equality (12) and [11,
Proposition 1],

[∂F (x;U), h]+ = D+F (x;h) = D+F1(x;h) + D+F2(x;h) =
= [∂F1(x;U), h]+ + [∂F2(x;U), h]+ =
= [∂F1(x;U) + ∂F2(x;U), h]+ for all x ∈ int U and h ∈ X.

Hence
∂F (x;U) = ∂F1(x;U) + ∂F2(x;U) for every x ∈ int U.
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Now we prove (15). For functions F, F1, F2, due to Proposition 1, Theorem 1 holds
true. Consequently, for all x ∈ int U and h ∈ X, we obtain

D+F (x;h) = lim
t→0+

F (x + th)− F (x)
t

=

= lim
t→0+

F1(x + th)− F1(x) + F2(x + th)− F2(x)
t

=

= lim
t→0+

F1(x + th)− F1(x)
t

+ lim
t→0+

F2(x + th)− F2(x)
t

=

= D+F1(x;h) + D+F2(x;h).

This completes the proof of Theorem 3.

Definition 3. Suppose that U is a convex body. The functional F : X 7→ R ∪ {+∞}
(int U ⊂ domF ) is said to be upper bounded on int U if for every bounded set B ⊂
int U the image F (B) is upper bounded in R.

The following result is new even in the case of X being a Banach space.

Theorem 4. Let F : X 7→ R be a convex lower semicontinuous functional. Then the
following statements are equivalent:

a) F is an upper bounded functional on X ;
b) a multivalued map ∂F (·) = ∂F (·;X) is *-bounded on X.

Proof. The following statements are true.

Claim 6. If B is a bounded set in X and C is a *-bounded set in X∗, then the
quantity sup

x∈B
sup
p∈C

|〈p, x〉X | is finite.

Proof of Claim 6. Let ρ(x) = sup
p∈C

|〈p, x〉X |. *-boundedness of C implies that the given

functional is well defined on X. We remark that ρ(−x) = ρ(x) for x ∈ X. Moreover,
ρ is convex positively homogeneous and lower semicontinuous as the supremum of
convex positively homogeneous continuous functionals. Hence, due to Claim 2, ρ is
continuous on X, i.e., ρ is a continuous seminorm on X. By Theorem V.23 in [12],
the boundedness of B in X implies that sup

x∈B
sup
p∈C

|〈p, x〉X | = sup
x∈B

ρ(x) < +∞.

Definition 4. Let X be a separable locally convex topological space, U ⊂ X be an
unbounded convex body. Then the functional F : U 7→ R∪{+∞} is called coercive on
U if F (x) → +∞ as ρ(x) → +∞, x ∈ U , where ρ an arbitrary continuous seminorm
on X.

Claim 7. Let B ⊂ X be a nonempty set satisfying one of the two conditions:

(i) B is bounded,
(ii) F is coercive on B.

Then inf
x∈B

F (x) > −∞.
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Proof of Claim 7. For some integer n, we consider the following set:

An = {x ∈ B | F (x) ≤ n} 6= ∅.

The boundedness of An follows from the boundedness of B or coercivity of F . Indeed,
if the set An is unbounded, then there exists a continuous seminorm ρ and a sequence
{xn}n≥1 ⊂ B such that ρ(xn) → +∞. Thus we obtain F (xn) → +∞, and this
fact contradicts the construction of An. Therefore, taking into account Theorem 2
and Claim 6 with C = {p}, p ∈ ∂F (0̄), we deduce that infx∈B F (x) ≥ F (0̄) −
supx∈B |〈p, x〉| > −∞. This completes the proof.

We continue with the proof of Theorem 4. Let the set B be bounded in X. First
we assume that the multivalued map ∂F (·) is *-bounded on X. Then, by definition
of a subdifferential,

F (x0)− F (x) ≥ 〈px, x0 − x〉X for all x ∈ B and px ∈ ∂F (x).

Whence for all x ∈ B and px ∈ ∂F (x), we obtain

F (x) ≤ F (x0) + 〈px, x− x0〉X ≤ |F (x0)|+ sup
p∈∂F (B)

|〈p, x− x0〉X | ≤

≤ |F (x0)|+ sup
x∈x0+B

sup
p∈∂F (B)

|〈p, x〉X |.

Claim 6 and the fact that x0 + B is the bounded set in X yield

sup
x∈x0+B

sup
p∈∂F (B)

|〈p, x〉X | < +∞.

Moreover, let the functional F be upper bounded. Then, due to Theorem 2, for
every u ∈ X there is

sup
p∈∂F (B)

|〈p, u〉X | = sup
x∈B

sup
p∈∂F (x)

〈p, u〉X = sup
x∈B

[∂F (x), u]+ = sup
x∈B

D+F (x;u).

Further, from Theorem 1 we infer that

sup
x∈B

D+F (x;u) ≤ sup
x∈B

(F (x + u)− F (x)) ≤ sup
x∈B+u

F (x)− inf
x∈B

F (x) =: I.

Since B, B+u are bounded sets in X, then (due to Claim 7 and the definition of an up-
per bounded functional) the quantity I is finite. Consequently, supp∈∂F (B;U)〈p, u〉X <
+∞ for every u ∈ X. Hence, the set ∂F (B) is *-bounded.

Remark 1. For an arbitrary multivalued map A : Y ⊂ X 7→
7→X∗, coA and coA stand

for multivalued maps defined as follows: coA(y) := co(A(y)), coA(y) := co(A(y)) for
every y ∈ Y .

Remark 2. Claim 7 holds true if X is reflexive, but F : X → R ∪ {+∞} is weakly
lower semicontinuous.
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Corollary 1. Let ϕ1, ϕ2 : X 7→ R be lower semicontinuous convex functionals upper
bounded on X. Then ∂ϕ1 +∂ϕ2 : X 7→

7→X∗ is a *-bounded *-upper semicontinuous map
with compact values in the σ(X∗, X) topology.

Proof. The map G = ∂ϕ1 +∂ϕ2 is upper hemicontinuous, since it is the sum of upper
hemicontinuous maps. Also, ∂ϕi = co∂ϕi (i = 1, 2). Now we prove that coG = G.
As coG = G, i.e., coG ⊃ ∂ϕ1 + ∂ϕ2 = G, it remains to prove the inverse inclusion.
Let u ∈ coG(y), then there exists a net {uα} ∈ G(y) such that uα → u in X∗, and
uα = u

′

α + u
′′

α, where u
′

α ∈ ∂ϕ1(y), u
′′

α ∈ ∂ϕ2(y). Since ∂ϕ1(y), ∂ϕ2(y) are compact
sets in σ(X∗, X)-topology, we deduce that u = u′ + u′′, u′ ∈ ∂ϕ1(y), u′′ ∈ ∂ϕ2(y),
i.e., coG(y) ⊂ G(y).

Thus, G satisfies all conditions of the Castaing Theorem, whence *-upper semi-
continuity of the map ∂ϕ1 + ∂ϕ2 follows. The *-boundedness of the map ∂ϕ1 + ∂ϕ2

follows from a similar statement for ∂ϕ1 and ∂ϕ2.
For an arbitrary bounded set B, images ∂ϕ1(B) and ∂ϕ2(B) are *-bounded in X∗.

Then

sup
g∈∂ϕ1(B)+∂ϕ2(B)

|〈g, x〉X | = sup
g1∈∂ϕ1(B)

sup
g2∈∂ϕ2(B)

|〈g1 + g2, x〉X | ≤

≤ sup
g1∈∂ϕ1(B)

|〈g1, x〉X |+ sup
g2∈∂ϕ2(B)

|〈g2, x〉X | <

< +∞ for every x ∈ X,

i.e., ∂ϕ1 + ∂ϕ2 is a *-bounded set in X∗.

Let us define
ϕ(y) = ϕ1(y) + ϕ2(y) − 〈f, y〉X , (16)

where U is a nonempty convex set, f ∈ X∗, ϕ1 : X 7→ R ∪ {+∞} is a convex upper
semicontinuous functional on X (int domϕ1 6= ∅), ϕ2 : X 7→ R ∪ {+∞} is a convex
functional on U and domϕ1 ⊂ domϕ2.

The following results are true.

Theorem 5. Under the above assumptions, the following conditions are equivalent:
1) x0 ∈ int dom ϕ1 ∩ U, ϕ(x0) = inf

x∈U
ϕ(x);

2) x0 ∈ int dom ϕ1 ∩ U, [∂ϕ1(x0;U), x− x0]++

+ϕ2(x)− ϕ2(x0) ≥ 〈f, x− x0〉X for every x ∈ U. (17)

Proof. First we prove that 1) ⇒ 2). Let a point x0 ∈ int dom ϕ1 ∩ U satisfy condi-
tion 1). Then for all x ∈ U and all t ∈ [0, 1] there is

ϕ(x0) = ϕ1(x0) + ϕ2(x0)− 〈f, x0〉X ≤
≤ ϕ1(x0 + t(x− x0)) + ϕ2(x0 + t(x− x0))− 〈f, x0 + t(x− x0)〉X ≤
≤ ϕ1(x0 + t(x− x0)) + tϕ2(x) + (1− t)ϕ2(x0)− t〈f, x− x0〉X .

Hence,
ϕ1(x0 + t(x− x0))− ϕ1(x0)

t
+ ϕ2(x)− ϕ2(x0) ≥ 〈f, x− x0〉X
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or, passing to a limit as t → +0,

D+ϕ1(x0;x− x0) + ϕ2(x)− ϕ2(x0) ≥ 〈f, x− x0〉X .

Then, due to relation (12), we arrive at inequality (17).
To prove the inverse implication, assume that inequality (17) holds. By the defi-

nition of ∂ϕ1(x0;U), we obtain

ϕ1(x)− ϕ1(x0) + ϕ2(x)− ϕ2(x0) ≥ [∂ϕ1(x0;U), x− x0]+ + ϕ2(x)− ϕ2(x0) ≥
≥ 〈f, x− x0〉X for every x ∈ U

i.e., ϕ(x) ≥ ϕ(x0), which is equivalent to 1). This completes the proof of Theorem 5.

Remark 3. In the literature, inequality (17) is called a variational inequality with a
multivalued map. In Banach spaces, such maps are being actively studied.

Theorem 6. Let X be a reflexive space and the functional ϕ be of the form (16).
Let it be coercive and satisfy all conditions of Theorem 5. Let U ⊂ dom ϕ = X be a
closed convex set. If the functional ϕ2 is lower semicontinuous on U , then variational
inequality (17) has at least one solution x0 ∈ X.

Proof. The following statement is true. (It represents a generalization of the Weier-
strass Theorem onto the case of Frechet spaces.)

Claim 8. Let X be a reflexive Frechet space, ϕ : X → R ∪ {+∞} weakly lower
semicontinuous functional, B ⊂ domϕ a closed convex set. Moreover, suppose that
one of the following conditions holds:

a) set B is bounded in X;
b) the functional ϕ is coercive on B.

Then functional ϕ is lower bounded on B and reaches its exact lower bound d, and
the set

K = {x ∈ B|ϕ(x) = d}
is weakly compact in X.

Proof of Claim 8. Due to Claim 7 and Remark 2, the functional ϕ is lower bounded.
Therefore, there exists a net {xα}α ⊂ B such that

lim
α

ϕ(xα) = d = inf
x∈B

ϕ(x) < +∞.

The set {xα}α is bounded in X due to either the boundedness B or coercivity of ϕ.
Hence, in virtue of the Banach-Alaoglu Theorem, there exists a subnet (which we
also denote by {xα}α) such that xα → x0 in σ(X;X∗)-topology of the space X, and
x0 ∈ B, because the set B is closed in σ(X;X∗)–topology.

Hence, due to the lower semicontinuity of the functional ϕ in σ(X;X∗)-topology,
we obtain

ϕ(x0) ≤ lim
α

ϕ(xα) = lim
α

ϕ(xα) = d,

i.e., x0 ∈ K.
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Finally, let {xα}α ⊂ K be an arbitrary net. By the construction, the set K is
bounded. Consequently, we may assume that xα → x0 in σ(X;X∗)–topology. So,
ϕ(x0) ≤ lim

α
ϕ(xα) = d, whence x0 ∈ K. Claim 8 is proved.

In our case, U ⊂ X = domϕ and it satisfies the conditions of Claim 8; therefore,
the problem ϕ(x) → inf, x ∈ U has a solution x0 ∈ X. In order to complete the proof
it remains to use Theorem 5. This completes the proof of Thorem 6.
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