
Opuscula Mathematica • Vol. 28 • No. 3 • 2008

Maciej Goćwin, Marek Szczęsny

RANDOMIZED AND QUANTUM ALGORITHMS

FOR SOLVING INITIAL-VALUE PROBLEMS

IN ORDINARY DIFFERENTIAL EQUATIONS

OF ORDER k

Abstract. The complexity of initial-value problems is well studied for systems of equations
of first order. In this paper, we study the ε-complexity for initial-value problems for scalar
equations of higher order. We consider two models of computation, the randomized model
and the quantum model. We construct almost optimal algorithms adjusted to scalar equa-
tions of higher order, without passing to systems of first order equations. The analysis of
these algorithms allows us to establish upper complexity bounds. We also show (almost)
matching lower complexity bounds. The ε-complexity in the randomized and quantum set-
ting depends on the regularity of the right-hand side function, but is independent of the
order of equation. Comparing the obtained bounds with results known in the deterministic
case, we see that randomized algorithms give us a speed-up by 1/2, and quantum algorithms
by 1 in the exponent. Hence, the speed-up does not depend on the order of equation, and is
the same as for the systems of equations of first order.
We also include results of some numerical experiments which confirm theoretical results.

Keywords: k-th order initial-value problems, randomized computing, quantum computing,
optimal algorithms, complexity.

Mathematics Subject Classification: 68Q25, 65L05, 68W20.

1. INTRODUCTION

The optimal solution of initial-value problems has been widely studied for systems of
first order equations. Such systems were considered in the worst-case and asymptotic
deterministic setting ([4]), and in the randomized and quantum settings in [5,6]. For
right-hand side functions with r continuous bounded derivatives, the ε-complexity

was shown to be essentially (1/ε)
1/(r+ϕ)

, where ϕ = 0 in the deterministic setting,
ϕ = 1/2 in the randomized setting, and ϕ = 1 in the quantum setting (for details see

247

248 Maciej Goćwin, Marek Szczęsny

Section 3). A speed-up for systems of equations over deterministic computing is thus
by 1/2 in the exponent in the randomized case, and by 1 in the quantum case.
In this paper, we deal with the ε-complexity of initial-value problems for scalar

equations of order k. The complexity of equations of order k has so far been studied in
the deterministic worst-case setting. It was shown in [9] that the ε-complexity for stan-

dard information is Θ
(

(1/ε)
1/r)
. If the right-hand side function g depends on the so-

lution function only, then the ε-complexity for linear information is Θ
(

(1/ε)
1/(r+k))

.
This shows how the order k of the equation contributes to the ε-complexity in the
worst-case setting.
In this paper, we show almost tight complexity bounds in the randomized and

quantum settings. In particular, we explain the dependence of the ε-complexity on k.
An improvement dependent on k in the deterministic worst-case setting was achieved
by passing from the standard to linear (integral) information. One may hope that
proper randomized or quantum approximation of the integrals involved in the com-
putations will lead to algorithms with improved error bounds dependent on k. In
this paper we show that such an improvement is not possible, and a speed-up in the
randomized and quantum setting is independent of k. We show lower complexity

bounds of order (1/ε)
1/(r+1/2)

in the randomized setting, and (1/ε)
1/(r+1)

in the
quantum setting, no matter how large k is.
We define such algorithms designed for scalar initial-value problems of order k

which do not require a transformation of the problem into a system of first order
equations. The error analysis of these algorithms leads to (almost) matching upper
complexity bounds.
Let us remark that, although a scalar equation of order k can be written as a

special system of k + 1 equations of the first order, we cannot directly apply the
upper bounds from [6], since the right-hand side function is then unbounded.
Numerical tests performed in the randomized case confirm theoretical results. The

speed-up with exponent 1/2 − γ is observed, where γ is a small positive constant.
The paper is organized as follows. After introducing necessary definitions in the

three settings (Section 2), we recall in Section 3 for further comparison known com-
plexity bounds for initial-value problems. In Section 4 we define randomized and quan-
tum algorithms for scalar initial-value problems of order k. In Section 5 we analyse
the error and cost analysis of these algorithms. Lower bounds on the ε-complexity in
the randomized and quantum settings are shown in Section 6. In Section 7 we present
results of numerical tests in the randomized case, which confirm theoretical results.

2. PROBLEM DEFINITION AND BASIC NOTATION

We consider the complexity of a problem in the following form

{

u(k)(x) = g
(

x, u(x), u′(x), . . . , u(q)(x)
)

, x ∈ [a, b],
u(j)(a) = uja, j = 0, 1, . . . , k − 1,

(1)

where 0 ≤ q < k, g : [a, b] × R
q+1 → R, u : [a, b] → R (a < b).

Randomized and quantum algorithms for solving initial-value problems. . . 249

For r ≥ 1 and given positive numbers D0, . . . , Dr, we consider the class of
right-hand side functions g defined by

Gr =
{

g | g ∈ C(r)([a, b] × R
q+1), |∂jg(x, y)| ≤ Dj , for

x ∈ [a, b], y ∈ R
q+1, j = 0, 1, . . . r

}

,
(2)

where ∂jg represents all partial derivatives of order j of g.
Instead of (1) we can write an equivalent system of differential equations of the

first order of the form:

u
′(x) =















u′0(x)
u′1(x)
...

u′k−1(x)
u′k(x)















=















1
u2(x)
...

uk(x)
g(u0(x), u1(x), . . . , uq+1(x))















= g(u(x)), x ∈ [a, b], (3)

with initial conditions

u(a) =
[

a, u0
a, . . . , u

k−1
a

]T
. (4)

Then the solution u(x) of (1) corresponds to the function u1(x).
Before we start analyzing the complexity of (1), we recall some definitions. We

are interested in finding a bounded function l = l(x) that approximates the solution
of (1). The construction of l is based on certain information on the right-hand side
function g. In the deterministic setting, we usually consider standard information,
in which we compute values of g or its partial derivatives at some points, or linear
information in which we know values of linear functionals of g.
In the randomized setting the values of g or its partial derivatives can be computed

at randomly chosen points. In the quantum setting, information about g is gathered
by applying a quantum query for g. The reader is referred to [2] for a detailed
explanation of what a quantum query is.
To get an approximate solution l(x), we use an algorithm A, which is a mapping

from the information space into the space of bounded functions. We assume that A
uses M information values.
In the deterministic setting, the worst-case error of an algorithm A in the class Gr

is defined by

eworstM (A,Gr) = sup
g∈Gr

sup
x∈[a,b]

|u(x) − l(x)|. (5)

In the randomized and quantum settings, the approximation obtained is random.
Letting (Ω,Σ,P) be a probability space, an algorithm A provides us with an approx-
imate solution lω, where ω ∈ Ω. The local error of the algorithm A at g is defined
by

eωM (A, g) = sup
x∈[a,b]

|u(x) − lω(x)| (6)

250 Maciej Goćwin, Marek Szczęsny

(we assume that eωM (A, g) is a random variable for each g ∈ Gr). The error of A in
the class Gr in the randomized setting is defined by

erandM (A,Gr) = sup
g∈Gr

(

E(eωM (A, g))2
)1/2

, (7)

and in the quantum setting by

equantM (A,Gr) = equantM (A,Gr, δ) = sup
g∈Gr

inf{α | P(eωM (A, g) > α) ≤ δ}. (8)

The number δ ∈ (0, 1/2) here denotes the failure probability. It is often assumed that
δ = 1/4. The success probability can then be increased by taking a median of the
number of repetitions of an algorithm A (see [2] for algorithms whose outputs are real
numbers and [3] when the outputs are elements of some normed space).
By the cost in the deterministic, randomized and quantum setting, we mean the

number M of subroutine calls for g used by an algorithm A. Thus, in the deter-
ministic and randomized setting, the cost is equal to the number of evaluations of g
or its partial derivatives, while in the quantum setting it is the number of quantum
queries. We will denote the cost in the respective setting by costworst(A), costrand(A)
or costquant(A).
For any ε > 0, by the ε-complexity of the problem we mean the minimal cost

sufficient to solve the problem with error no larger than ε, where the minimum is
taken over all algorithms solving the problem

comp(Gr, ε) = min
A

{cost(A) | eM (A,Gr) ≤ ε} . (9)

To denote the complexity in the deterministic, randomized or quantum settings, we
will use a suitable superscript: “worst”, “rand” or “quant”. Additionally, to denote
different types of information used in the deterministic setting, we will use indices:
“worst-st” and “worst-lin” for standard and linear information, respectively.

3. KNOWN COMPLEXITY BOUNDS

In this section we briefly recall known complexity bounds for scalar equations of
order k, as well as those for systems of the first order.
In [6], Kacewicz dealt with systems of equations of the first order of the form

z′(t) = f(z(t)), t ∈ [a, b], z(a) = η, (10)

where f : R
d → R

d and η ∈ R
d. He considered the Hölder class of functions

Fr,ρ =
{

f : R
d → R

d | f ∈ C(r)(Rd), |∂if j(y)| ≤ Di, i = 0, 1, . . . , r,

|∂rf j(y) − ∂rf j(z)| ≤ H‖y − z‖ρ, y, z ∈ R
d, j = 1, 2, . . . , d

}

, (11)

where ρ ∈ (0, 1].

Randomized and quantum algorithms for solving initial-value problems. . . 251

It was shown in [6] that the ε-complexity is

comprand(Fr,ρ, ε) = O

(

(

1

ε

)1/(r+ρ+1/2−γ)
)

(12)

and

compquant(Fr,ρ, ε) = O

(

(

1

ε

)1/(r+ρ+1−γ)
)

(13)

with an arbitrarily small positive parameter γ. (The constants in the big-O notation
depend on γ and are independent of η). These bounds are almost optimal, i.e., they
essentially match lower bounds on the complexity.
It is easy to see that the above bounds with ρ = 0 hold for the class F r, where

Fr =
{

f : R
d → R

d | f ∈ C(r)(Rd), |∂if j(y)| ≤ Di, i = 0, 1, . . . , r,

y ∈ R
d, j = 1, 2, . . . , d

}

. (14)

For systems (10) the ε-complexity in the class F r is thus equal to

comprand(Fr, ε) = O

(

(

1

ε

)1/(r+1/2−γ)
)

(15)

and

compquant(Fr, ε) = O

(

(

1

ε

)1/(r+1−γ)
)

. (16)

Although equation (1) can be transformed into system (3) of the first order, we cannot
directly use the above results for our problem, since the right-hand side function g is
unbounded.
In this paper we present such algorithms for solving problem (1) which do not

require a transformation of the equation of order k into a system of first order equa-
tions. We also ask if bounds (15) and (16) can be improved for problem (1) due to
the increased regularity of the solution. In some cases in the deterministic worst-case
setting such a speed-up dependent on k can indeed be shown. It was shown in [9]
that for standard information

compworst-st(Gr, ε) = Θ

(

(

1

ε

)1/r
)

, (17)

so that there is no dependence on k in this case. However, if we admit linear informa-
tion on right-hand side function, we can achieve a better result. The use of integral
information leads (for q = 0) to the upper bound

compworst-lin(Gr, ε) = O

(

(

1

ε

)1/(r+k)
)

. (18)

252 Maciej Goćwin, Marek Szczęsny

The complexity in this case significantly depends on k. (The constants in the “Θ”
and “O” notation depend on initial values.)
Intuitively, one may expect a speed-up dependent on k by replacing integrals

in deterministic algorithms by effective randomized or quantum approximations. In
Section 6 we show lower bounds on the complexity in both settings, which proves this
intuition to be wrong.

4. ALGORITHMS

In this section we describe algorithms using randomized or quantum computation
which solve (1) in the class Gr of right-hand side functions. Obviously, we can solve (1)
by transforming the equation of order k into a system of ordinary differential equations
of the first order, see (3), and then use the almost optimal algorithms of Kacewicz [6].
We here construct slightly different algorithms which do not require a transformation
into a first order system, but they make use of a specific form of problem (1). The
general idea and the main points of the error analysis are similar to those in [6]. The
differences result from a specific form of (1), so that the error analysis requires a
modified proof technique.
As in [6], the algorithms are defined recursively on intervals of decreasing length.

Let us denote by As([c, d], n, Y) an algorithm solving the problem
{

u(k)(x) = g
(

x, u(x), u′(x), . . . , u(q)(x)
)

, x ∈ [c, d],

u(j)(c) = yj , j = 0, 1, . . . , k − 1,
(19)

on interval [c, d] with a vector of initial conditions Y = [y0, . . . , yk−1] ∈ R
k. The

parameter s denotes here the depth of recursion, and n, known as the basic parameter,
tells us how many subintervals we consider in the interval [c, d].

We will denote the approximations computed by the algorithm As by l̂s.
The idea of the recursive algorithms is as follows:

Algorithm As([c, d], n, Y):

1. For s = 1, approximation l̂1 in A1([c, d], n, Y) is given by Taylor’s algorithm (see
equations (21), (23) below) on [c, d] with step size (d− c)/n. Consider a uniform
partition of [c, d] with points xi := c+ ih, where h := (d− c)/n and i = 0, 1, . . . , n.
Let yj0 := yj , and for given yji , let ūi be the solution of a local problem

{

ū
(k)
i (x) = g

(

x, ūi(x), ū
′
i(x), . . . , ū

(q)
i (x)

)

, x ∈ [xi, xi+1],

ū
(j)
i (xi) = yji , j = 0, 1, . . . , k − 1,

(20)

and

l̂0i (x) =

r+k−1
∑

j=0

ū
(j)
i (xi)

j!
(x− xi)

j , x ∈ [xi, xi+1], (21)

be its Taylor approximation.

Randomized and quantum algorithms for solving initial-value problems. . . 253

We define

yji+1 := l̂
0 (j)
i (xi+1). (22)

The approximation l̂1(x) is given as a continuous function on [a, b] that coincides

with l̂0i (x) on each subinterval,

l̂1(x) = l̂0i (x) for x ∈ [xi, xi+1]. (23)

Suppose that the algorithm As−1([xi, xi+1],m, Yi) is defined for any [xi, xi+1],
m and initial vector Yi. We now show how to get As([c, d], n, Y) from
As−1([xi, xi+1],m, Yi) for s ≥ 2.

2. Divide an interval [c, d] into n subintervals with the endpoints xi = c+ i(d− c)/n,
i = 0, 1, . . . , n.

3. Given Y , set Y0 = Y .
4. Set m = n2 in the randomized case and m = n in the quantum case.
5. For i = 0, . . . , n − 1, given Yi, compute an approximation l̂

s−1
i using algorithm

As−1([xi, xi+1],m, Yi) on [xi, xi+1], and then compute new initial values Yi+1 (see
equation (30) below).

6. As a result, an algorithm As([c, d], n, Y) returns an approximation l̂s given by

l̂s(x) = l̂s−1
i (x) for x ∈ [xi, xi+1) and l̂

s(d) = l̂s−1
n−1(d).

Let s = K be the index of the final algorithm. To solve problem (1), we run
the recursive algorithm with s = K for the interval [a, b] and initial vector Y =
[

u0
a, . . . , u

k−1
a

]

. From the construction, the approximation given by algorithm AK is a
piecewise polynomial function formed by the joined results of Taylor’s approximations
over subintervals of [a, b].
We now show how to compute the vector of initial values Yi+1 in Step 5 of the

algorithm As. Assume that we are given the initial vector Yi = [y0
i , . . . , y

k−1
i] and

the result l̂s−1
i of algorithm As−1([xi, xi+1],m, Yi) on [xi, xi+1], where m is defined in

Step 4. The function l̂s−1
i is an approximation of the solution ūi of the local problem

on interval [xi, xi+1] of form (20). Before providing the formula for Yi+1, we give some
properties of solutions of the local problem and some necessary definitions.
It is easy to see that for j = 0, . . . , k − 1 the solution ūi satisfies

ū
(j)
i (xi+1) =

k−1−j
∑

p=0

yj+pi

hp

p!
+

+

xi+1
∫

xi

tk−j−1
∫

xi

. . .

t1
∫

xi

g
(

t, ūi(t), ū
′
i(t), . . . , ū

(q)
i (t)

)

dt dt1 . . . dtk−j−1

(24)

254 Maciej Goćwin, Marek Szczęsny

(it is sufficient to integrate equation (20) k − j times). Integrating by parts, we may
transform the multiple integral into an integral with a weight. We get

ū
(j)
i (xi+1) =

k−1−j
∑

p=0

yj+pi

hp

p!
+

+
1

(k − 1 − j)!

xi+1
∫

xi

(xi+1 − t)
k−j−1

g
(

t, ūi(t), ū
′
i(t), . . . , ū

(q)
i (t)

)

dt.

(25)

Let us define the number l = n2s−4 in the randomized setting or l = ns−2 in the
quantum one. Take the uniform partition of [xi, xi+1] with points xi,p = xi + ph̄,
where h̄ = h/(ml) and p = 0, . . . ,ml − 1. Then

ū
(j)
i (xi+1) =

k−1−j
∑

p=0

yj+pi

hp

p!
+

+
1

(k − 1 − j)!

ml−1
∑

p=0

xi,p+1
∫

xi,p

(xi+1 − t)
k−j−1

g
(

t, ūi(t), ū
′
i(t), . . . , ū

(q)
i (t)

)

dt.

(26)

In the right-hand side of (26), we now add and subtract the integrals of functions

(xi+1 − t)
k−j−1

g
(

t, l̂s−1
i (t), . . . , l̂

s−1,(q)
i (t)

)

.

For p = 0, . . . ,ml − 1 and i = 0, . . . , n− 1, let

wi,p(t) =

r−1
∑

α=0

1

α!
g(α)

(

xi,p, l̂
s−1
i (xi,p), . . . , l̂

s−1,(q)
i (xi,p)

)

(t− xi,p)
α, (27)

be a polynomial approximating the function g
(

t, l̂s−1
i (t), . . . , l̂

s−1,(q)
i (t)

)

. Let func-

tions gji,p(θ) for j = 0, . . . , k − 1 defined on [0, 1] be given by

gji,p(θ)=

(

h− (p+ θ)h̄
)k−j−1

(

g
(

xi,p + θh̄, . . . , l̂
s−1,(q)
i (xi,p + θh̄)

)

− wi,p
(

xi,p + θh̄
)

)

hk−j−1h̄r(k − 1 − j)!
.

(28)

The notation g(α)
(

xi,p, l̂
s−1
i (xi,p), . . . , l̂

s−1,(q)
i (xi,p)

)

denotes here the α-th derivative

of function g
(

t, l̂s−1
i (t), . . . , l̂

s−1,(q)
i (t)

)

with respect to t at point t = xi,p.

Randomized and quantum algorithms for solving initial-value problems. . . 255

After few transformations we get a formula equivalent to (26)

ū
(j)
i (xi+1) =

k−1−j
∑

p=0

yj+pi

hp

p!
+

1

(k − 1 − j)!

ml−1
∑

p=0

xi,p+1
∫

xi,p

(xi+1 − t)
k−j−1

wi,p(t)dt+

+ h̄r+1hk−j−1ml
1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ+

+
1

(k − 1 − j)!

ml−1
∑

p=0

xi,p+1
∫

xi,p

(xi+1 − t)
k−j−1

(

g
(

t, ūi(t), . . . , ū
(q)
i (t)

)

−

− g
(

t, l̂s−1
i (t), . . . , l̂

s−1,(q)
i (t)

))

dt.

(29)

Neglecting the last term in (29) and approximating the mean value

1/ml
∑ml−1
p=0

∫ 1

0
gji,p(θ)dθ by (random or quantum) approximation APji (g), we get the

final formula for Yi+1 = [y0
i+1, . . . , y

k−1
i+1], given by

yji+1 =

k−1−j
∑

p=0

yj+pi

hp

p!
+

+
1

(k − 1 − j)!

ml−1
∑

p=0

xi,p+1
∫

xi,p

(xi+1 − t)
k−j−1

wi,p(t)dt+ h̄rhk−jAPji (g). (30)

This formula describes the way of getting Yi+1 in Step 5.
It remains to show the way to compute the (random or quantum) numbers APji (g),

j = 0, . . . , k − 1. To each integral

∫ 1

0

gji,p(θ)dθ, we apply the mid-point rule with N

knots uα, i.e., 1/N

N−1
∑

α=0

gji,p(uα). Next, by using optimal randomized or quantum

algorithms with repetitions, ([2, 7]), we compute the mean

1

mlN

ml−1
∑

p=0

N−1
∑

α=0

gji,p(uα) (31)

with cost equal to N2 log(1/δ1) in the randomized or N log(1/δ1) in quantum setting,
where δ1 is specified below. It follows from [7] and [2] that there exists a constant C1

(different in each setting) that gives us the approximation

max
j=0...k−1

∣

∣

∣

∣

∣

APji (g) −
1

mlN

ml−1
∑

p=0

N−1
∑

α=0

gji,p(uα)

∣

∣

∣

∣

∣

≤ C1
1

N

(

max
i,j,p

‖gji,p‖[0,1]

)β

, (32)

256 Maciej Goćwin, Marek Szczęsny

with probability at least 1 − δ1. At the right side of the inequality, the maximum is
taken over i = 0, . . . , n − 1, j = 0, . . . , k − 1 and p = 0, . . . ,ml − 1. The exponent β
may be set to 1 in the randomized setting, and to 3 in the quantum one. Parameter
N is chosen as N = n2s−1−1 in the randomized setting or N = ns−1 in the quantum
setting. The parameter δ1 depends on index K and basic parameter n of the final
algorithm AK , and is independent of s. For a given failure parameter δ, we set

δ1 = 1 − (1 − δ)1/n
2K

−1

in the randomized setting, and δ1 = 1 − (1 − δ)1/n
K

in the
quantum setting.

5. UPPER BOUNDS ON ERRORS OF THE ALGORITHMS

Upper bounds on the error of randomized and quantum algorithms defined in the
previous section are presented in the following theorem.

Theorem 5.1. Let K be the index of the final algorithm. Let αK = r(2K − 1) +
2K−1 − 1, βK = 2K − 1 in the randomized setting and αK = rK +K − 1, βK = K in
the quantum setting. Let M = M(n) be the cost of the final algorithm AK([a, b], n, Y)
(randomized or quantum) for solving problem (1). Then

erand
M(n)

(

AK ,Gr
)

= O
(

n−αK
)

, and M(n) = O
(

nβK log n
)

. (33)

For a given failure probability δ ∈ (0, 1/2)

equant
M(n)

(

AK ,Gr, δ
)

= O
(

n−αK
)

, and M(n) = O

(

nβK

(

log n+ log
1

δ

))

. (34)

The constants in big-O notations depend on the class parameters, k, a, b, K and
initial values u1

a, . . . , u
k−1
a .

Before proving Theorem 5.1, we show some auxiliary results. We start with the
following lemma showing bounds on the approximation function and initial values
obtained in the algorithm at each step. We use the following notation. For the
algorithm As([c, d], n, Y) with initial values Y = [y0, y1, . . . , yk−1], by z we mean
the maximum max

j=1,...,k−1
|yj | for k > 1 and 0 otherwise. Similarly, by zi we mean

max
j=1,...,k−1

|yji | for k > 1 and 0 for k = 1, where Yi = [y0
i , y

1
i , . . . , y

k−1
i] are initial

conditions constructed in the algorithm As. With this notation, z0 = z.

Lemma 5.2. Let [c, d] ⊂ [a, b]. Let l̂s be an approximation given by As([c, d], n, Y).
There exist: an increasing sequence of positive constants {F s} and a constant B
depending exclusively on class parameters, k, a and b, such that if Q = zed−c +
rF s

(

ed−c − 1
)

and n satisfies (d− c)Q/n < 1, then for

Qi =

{

zi s = 1,

zie
h + rF s−1

(

eh − 1
)

s > 1,
(35)

Randomized and quantum algorithms for solving initial-value problems. . . 257

there is

Qi ≤ Q, for i = 0, 1, . . . , n− 1. (36)

Moreover,

‖l̂s(j)(·)‖[c,d] ≤

{

B(1 +Q) j = 1, . . . , k − 1,

B(1 +Q+ . . .+Qj−k) j = k, . . . , r + k − 1.
(37)

The proof of this lemma is outlined in the Appendix.
Using Lemma 5.2, we now prove the following fact concerning gji,p. We show that

each function gji,p is bounded and satisfies the Lipschitz condition with a constant
independent of partition points and the length of interval.

Fact 5.3. Consider algorithm As([c, d], n, Y). Let the assumptions of Lemma 5.2
be satisfied. Then there exists a positive constant E depending exclusively on the
parameters of the class Gr, a and b (and independent of i, p, j, xi,p, y

j
i) such that

|gji,p(θ)| ≤ E(1 +Q+ . . .+Qr), θ ∈ [0, 1], (38)

|gji,p(θ1) − gji,p(θ2)| ≤ 2E(1 +Q+ . . .+Qr)|θ1 − θ2|, θ1, θ2 ∈ [0, 1]. (39)

Proof. The proof is a consequence of the definition of gji,p(θ), properties of class

Gr and solutions l̂s−1
i . Since wi,p(t) is a Taylor approximation of function

g
(

t, . . . , l̂
s−1,(q)
i (t)

)

, then

sup
θ∈[0,1]

∣

∣

∣
gji,p(θ)

∣

∣

∣
≤ sup
θ∈[0,1]

∣

∣

∣

∣

∣

(

h− (p+ θ)h̄
)k−j−1

(θh̄)r

hk−j−1h̄r(k − 1 − j)!

∣

∣

∣

∣

∣

·

· sup
t∈[xi,p,xi,p+1]

∣

∣

∣
g(r)

(

t, . . . , l̂
s−1,(q)
i (t)

)∣

∣

∣
.

The rth derivative of the function g
(

t, . . . , l̂
s−1,(q)
i (t)

)

with respect to t is a derivative

of a compound function, where the external derivatives are the partial derivatives
of g ∈ Gr (and are bounded by Dj) and the internal derivatives are the deriva-

tives of l̂s−1
i . From Lemma 5.2, (36) holds. This guarantees that the assump-

tions hQi/m < 1 for algorithms As−1([xi, xi+1],m, Yi) are fulfilled for any m, so
there exists a constant B such that for i = 0, . . . , n − 1, the derivatives of func-
tions l̂s−1

i are bounded by B(1 + Qi) or by B(1 + . . . + Qj−ki) (see 37). Because

Qi ≤ Q, we may bound supt∈[xi,p,xi,p+1]

∣

∣

∣
g(r)

(

t, . . . , l̂
s−1,(q)
i (t)

)
∣

∣

∣
by E(1 + . . . + Qr),

where E is a constant depending exclusively on class parameters, a, b and k. Since

supθ∈[0,1]

∣

∣

∣

∣

(h−(p+θ)h̄)
k−j−1

(θh̄)r

hk−j−1h̄r(k−1−j)!

∣

∣

∣

∣

≤ 1, then the statement of (38) holds true.

The proof of (39) is similar. We show the bound on the first derivative of gji,p and
use the Lagrange theorem.

258 Maciej Goćwin, Marek Szczęsny

The following theorem shows the bounds on the error, cost and on the probability
of success of the algorithm from the previous section. We use the following notation:

— cost(As, n) – the total cost of recursive algorithm As with a basic parameter n
(this cost is equal to the number of evaluations of the right-hand side function);

— Prob(As, n) – the probability of success of algorithm As for a basic parameter n;
— in the randomized setting:

C(Q) =







Qr+1 − 1

Q− 1
if Q 6= 1,

r + 1 if Q = 1,
(40)

αs = r(2s − 1) + 2s−1 − 1, (41)

βs = 2s − 1, (42)

ψs(n) =
s−1
∑

i=1

n2i−1 for s > 1; ψ1(n) = 0, (43)

— in the quantum setting:

C(Q) =











(

Qr+1 − 1

Q− 1

)3

if Q 6= 1,

(r + 1)3 if Q = 1,

(44)

αs = rs+ s− 1, (45)

βs = s, (46)

ψs(n) =
ns − n

n− 1
for s > 1; ψ1(n) = 0. (47)

The following result gives error and cost bounds for algorithm As.

Theorem 5.4. Let [c, d] ⊂ [a, b]. Let l̂s be an approximation given by As([c, d], n, Y)
and let δ1 ∈ (0, 1/2). Let Q be given as in Lemma 5.2. There exist positive constants
Cs1 , C

s
2 depending on the class parameters and a, b, k, s, such that if n satisfies

(d− c)Q/n < 1, then

q
∑

j=0

sup
x∈[c,d]

∣

∣

∣
u(j)(x) − l̂s (j)(x)

∣

∣

∣
≤ Cs1 C(Q) (d− c)r+1n−αs , (48)

with probability at least
Prob(As, n) = (1 − δ1)

ψs(n). (49)

The total cost is bounded by

cost(As, n) ≤ Cs2n
βs log 1/δ1. (50)

(In (48), by the derivative of l̂s at its discontinuity points we mean its right-hand side
derivative.)

Randomized and quantum algorithms for solving initial-value problems. . . 259

Proof. We shall use l1 vector and matrix norms. We prove the statement by induction
with respect to s.

Let s = 1. We shall need bounds on

q
∑

j=0

sup
x∈[c,d]

|u(j)(x) − l̂1 (j)(x)|, where l̂1 is a

function obtained by the Taylor algorithm approximating the solution u(x) on [c, d].
Simple modifications of the proof given in [9] do not give us a satisfactory bound.
Hence, we give a new proof here.
Let

Eji = sup
x∈[xi,xi+1]

∣

∣

∣
u(j)(x) − ū

(j)
i (x)

∣

∣

∣
, (51)

eji = u(j)(xi) − ū
(j)
i (xi) = u(j)(xi) − yji , (52)

for j = 0, 1, . . . , k − 1. As in expression (25) for ū
(j)
i (x), the jth derivative of the

solution u(x) satisfies the equation

u(j)(x) =

k−1−j
∑

p=0

u(j+p)(xi)
(x− xi)

p

p!
+

+
1

(k − 1 − j)!

x
∫

xi

(x− t)
k−1−j

g
(

t, u(t), u′(t), . . . , u(q)(t)
)

dt

in [xi, xi+1]. By subtracting ū
(j)
i (x) from u(j)(x), we obtain

u(j)(x) − ū
(j)
i (x) =

k−1−j
∑

p=0

(

u(j+p)(xi) − yj+pi

) (x− xi)
p

p!
+

+
1

(k − 1 − j)!

x
∫

xi

(x− t)
k−1−j

[

g
(

t, u(t), . . . , u(q)(t)
)

− g
(

t, ūi(t), . . . , ū
(q)
i (t)

)]

dt.

(53)

The function g satisfies the Lipschitz condition with a constant D1. Using this, and
passing in (53) to supremum over x ∈ [xi, xi+1], we get the bounds

Eji ≤

k−1−j
∑

p=0

∣

∣

∣
ej+pi

∣

∣

∣

hp

p!
+D1

hk−j

(k − j)!

q
∑

p=0

Epi , j = 0, 1, . . . , k − 1. (54)

After summing up the expressions above for j = 0, . . . , q and after some simple cal-
culation we get (for details see the proof of Theorem 5.1 in [9])

q
∑

j=0

Eji ≤

q
∑

p=0
|epi |

p
∑

j=0

hj

j! +
k−1
∑

p=q+1
|epi |

p
∑

j=p−q

hj

j!

1 −D1

q
∑

p=0

hk−p

(k−p)!

. (55)

260 Maciej Goćwin, Marek Szczęsny

Then for sufficiently small h, we arrive at the following bound

q
∑

j=0

Eji ≤ 2
k−1
∑

p=0

|epi |. (56)

We now derive a bound on

k−1
∑

p=0

|epi |. According to the definition of the algorithm, the

initial conditions yji of ūi(x) satisfy y
j
i+1 = l̂0i (xi+1) for i = 0, . . . , n− 1, and yj0 := yj ,

where yj are initial conditions of the problem. We split eji+1 into two parts

eji+1 = u(j)(xi+1) − yji+1 = u(j)(xi+1) − ū
(j)
i (xi+1) + ū

(j)
i (xi+1) − l̂

0 (j)
i (xi+1). (57)

The polynomial l̂0i is a Taylor approximation of ūi. It may be shown that there
exists a constant CT > 0 depending exclusively on class parameters, k, such that for
j = 0, . . . , k − 1

∣

∣

∣
ū

(j)
i (xi+1) − l̂

0 (j)
i (xi+1)

∣

∣

∣
≤ CT (1 +Qi + . . .+Qri)h

r+k−j . (58)

One can get this by bounding the (r + k)th derivative of function ūi (i.e., the rth

derivative of compound function g(·, ūi(·), . . . , ū
(q)
i (·))). From Lemma 5.2 there follows

that Qi ≤ Q. Hence, using the definition of C(Q), we get
∣

∣

∣
ū

(j)
i (xi+1) − l̂

0 (j)
i (xi+1)

∣

∣

∣
≤ CT C(Q)hr+k−j . (59)

Taking x = xi+1 in (53), then using (54) and (56), we get

∣

∣

∣
u(j)(xi+1) − ū

(j)
i (xi+1)

∣

∣

∣
≤

k−1−j
∑

p=0

|ej+pi |
hp

p!
+ 2D1

hk−j

(k − j)!

k−1
∑

p=0

|epi |. (60)

Using (57), the triangle inequality and the above approximations, we obtain

|eji+1| ≤

k−1−j
∑

p=0

|ej+pi |
hp

p!
+ 2D1

hk−j

(k − j)!

k−1
∑

p=0

|epi | + CT C(Q)hr+k−j , (61)

so that

|eji+1| ≤ |eji | + (2D1 + 1)h

k−1
∑

p=0

|epi | + CT C(Q)hr+k−j . (62)

It is easy to see that
∣

∣

∣
eji

∣

∣

∣
≤ P ji , j = 0, 1, . . . , k − 1, (63)

where the numbers P ji satisfy the following system of difference equations

P ji+1 = P ji + (2D1 + 1)h

k−1
∑

p=0

P pi + CT C(Q)hr+k−j , (64)

Randomized and quantum algorithms for solving initial-value problems. . . 261

with P j0 = 0 (since
∣

∣

∣
u(j)(c) − yj0

∣

∣

∣
= 0). System (64) may be written in a matrix

form as follows. Let Pi = [P 0
i , . . . , P

k−1
i]T , B = CT C(Q)hr+1[hk−1, . . . , 1]T and

A = I + (2D1 + 1)hM , where I is the identity matrix, and all elements of matrix M
are equal to 1. Then

Pi+1 = APi +B =
(

I +A+ · · · +Ai
)

B, (65)

where P0 = [0, . . . , 0]T . Hence,

‖Pi+1‖ ≤
(

1 + ‖A‖ + · · · + ‖A‖i
)

‖B‖, (66)

where for sufficiently small h, ‖B‖ ≤ 2CT C(Q)hr+1. The matrices A and M are of
size k × k, so ‖M‖ = k, and hence

‖A‖ = ‖I + (2D1 + 1)hM‖ ≤ 1 + (2D1 + 1)hk. (67)

From this, for i = 0, . . . , n− 1,

1 + ‖A‖ + · · · + ‖A‖i ≤

i
∑

p=0

(1 + (2D1 + 1)hk)
p

=

=
(1 + (2D1 + 1)hk)

i+1
− 1

(2D1 + 1)hk
≤

≤
CA(d− c)

h
,

(68)

where the constant CA depends on the class parameters and interval [a, b], and is
independent of n, i, c, d. Thus,

‖Pi+1‖ ≤ 2CTCA C(Q) (d− c)hr. (69)

Using the definition of Pi and the obtained bound, from (56) we get

q
∑

j=0

Eji ≤ 2

k−1
∑

p=0

|epi | ≤ 2‖Pi‖ ≤ 4CTCA C(Q) (d− c)hr. (70)

From the properties of Taylor’s expansion of the function ūi (see (59)), we get

q
∑

j=0

sup
x∈[xi,xi+1]

∣

∣

∣
ū

(j)
i (x) − l̂

0 (j)
i (x)

∣

∣

∣
≤ 2CT C(Q)hr+k−q. (71)

This bound, valid for a sufficiently small h, is independent of i.
We are now ready to prove the bound on

∑q
j=0 supx∈[c,d] |u

(j)(x)− l̂1 (j)(x)|, where

l̂1(x) := l̂0i (x) for x ∈ [xi, xi+1]. From the triangle inequality, the bound on
∑q
j=0E

j
i

and (71), we get (for all i and small h)

q
∑

j=0

sup
x∈[xi,xi+1]

∣

∣

∣
u(j)(x) − l̂1 (j)(x)

∣

∣

∣
≤

q
∑

j=0

Eji +

q
∑

j=0

sup
x∈[xi,xi+1]

∣

∣

∣
ū

(j)
i (x) − l̂

0 (j)
i (x)

∣

∣

∣
≤

≤ 4CTCA C(Q) (d− c)hr + 2CT C(Q)hr+k−q ≤

≤ CT C(Q) (4CA + 1)(d− c)r+1n−r.

262 Maciej Goćwin, Marek Szczęsny

Hence, the algorithm A1([c, d], n, Y) (both the randomized and quantum one) satisfies

q
∑

j=0

sup
x∈[c,d]

∣

∣

∣
u(j)(x) − l̂1(j)(x)

∣

∣

∣
≤ C1

1 C(Q) (d− c)r+1n−r, (72)

where C1
1 := (q + 1)CT (4CA + 1). This holds with certainty (Prob(A1, n) = 1). The

constant C1
1 depends on class parameters, a, b, k (and q < k). The total cost is

cost(A1, n) = C1
2n, (73)

where the constant C1
2 > 0 depends on r and k only. This ends the proof for the case

of s = 1.
Let us now assume that the statement of the theorem holds for s − 1. We recall

that xi = c + ih for h = (d − c)/n define a uniform partition of interval [c, d], l̂s

denotes the approximation of the solution on [c, d], which we get by the algorithm

As([c, d], n, Y), and l̂s−1
i (x) is the approximation of the solution on [xi, xi+1] obtained

by the algorithm As−1([xi, xi+1],m, Yi) with cost(As−1,m) and the probability of
success Prob(As−1,m). The numbers m, l and N are given in the definition of the
algorithm. Let Eji and e

j
i be defined by (51) and (52). Similarly as in the case of

s = 1, we show that (56) holds. We now derive a bound on
∑k−1
j=0 |eji |. By similar

arguments as used to show (29), we can write

u(j)(xi+1) =

k−1−j
∑

p=0

u(j+p)(xi)
hp

p!
+

1

(k − 1 − j)!

ml−1
∑

p=0

xi,p+1
∫

xi,p

(xi+1 − t)
k−j−1

wi,p(t)dt+

+ h̄r+1hk−j−1ml
1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ+

+
1

(k − 1 − j)!

xi+1
∫

xi

(xi+1 − t)
k−j−1

[

g
(

t, u(t), . . . , u(q)(t)
)

−

− g
(

t, l̂s−1
i (t), . . . , l̂

s−1,(q)
i (t)

)]

dt,

(74)

where j = 0, . . . , k − 1. After subtracting expression (30) for the initial point yji+1

and remembering that h = h̄ml, we get

u(j)(xi+1) − yji+1 =

k−1−j
∑

p=0

(

u(j+p)(xi) − yj+pi

) hp

p!
+

+
1

(k − 1 − j)!

xi+1
∫

xi

(xi+1 − t)
k−j−1

[

g
(

t, u(t), . . . , u(q)(t)
)

−

− g
(

t, ūi(t), . . . , ū
(q)
i (t)

)

+

+ g
(

t, ūi(t), . . . , ū
(q)
i (t)

)

− g
(

t, l̂s−1
i (t), . . . , l̂

s−1,(q)
i (t)

)]

dt+

+ h̄rhk−j

(

1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ − APji (g)

)

.

(75)

Randomized and quantum algorithms for solving initial-value problems. . . 263

The numbers APji (g) approximate the mean value of integrals
1
ml

∑ml−1
p=0

∫ 1

0
gji,p(θ)dθ.

The error of this approximation is a sum of two components

∣

∣

∣

1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ − APji (g)
∣

∣

∣
≤
∣

∣

∣

1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ −
1

mlN

ml−1
∑

p=0

N−1
∑

α=0

gji,p(uα)
∣

∣

∣
+

+
∣

∣

∣

1

mlN

ml−1
∑

p=0

N−1
∑

α=0

gji,p(uα) − APji (g)
∣

∣

∣
.

(76)

Bounding the error of the N point mid-point rule and using Fact 5.3 we get

∣

∣

∣

∣

∣

1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ −
1

mlN

ml−1
∑

p=0

N−1
∑

α=0

gji,p(uα)

∣

∣

∣

∣

∣

≤
2E

N
C(Q). (77)

Using (32), we get the following bound:

∣

∣

∣

∣

∣

1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ − APji (g)

∣

∣

∣

∣

∣

≤
Cc
N
C(Q), (78)

for some constant Cc dependent on class parameters, a, b, k and independent of initial
values.
Coming back to (75), to bound the first integral in (75) we use the Lipschitz

condition for g and (56). Applying bound (78), we next arrive at

|eji+1| ≤

k−1−j
∑

p=0

|ej+pi |
hp

p!
+ 2D1

hk−j

(k − j)!

k−1
∑

p=0

|epi |+

+D1
hk−j

(k − j)!

k−1
∑

j=0

sup
x∈[xi,xi+1]

∣

∣

∣
ū

(j)
i (x) − l̂

s−1,(j)
i (x)

∣

∣

∣
+ h̄rhk−j

Cc
N
C(Q).

(79)

From (79) and the inductive assumption for
∑k−1
p=0 supx∈[xi,xi+1]

∣

∣

∣
ū

(j)
i (x) − l̂

s−1,(j)
i (x)

∣

∣

∣
,

for i = 0, . . . , n− 1 and j = 0, . . . , k − 1, we get

|eji+1| ≤ |eji | + (2D1 + 1)h
k−1
∑

p=0

|epi |+

+D1
hk−j

(k − j)!
Cs−1

1 C(Qi)h
r+1m−αs−1 + h̄rhk−j

Cc C(Q)

N
.

(80)

Since the assumptions of the Lemma 5.2 hold, there is Qi ≤ Q, and hence C(Qi) ≤
C(Q). As in the case of s = 1, we define the system of difference equations with the
same matrix A

Pi+1 = APi +B, (81)

264 Maciej Goćwin, Marek Szczęsny

where B = [b0, . . . , bk−1]T with bj = D1h
k−j/(k − j)!Cs−1

1 C(Q)hr+1m−αs−1 +

h̄rhk−jCc C(Q) /N and Pi = [P 0
i , . . . , P

k−1
i]T . Then |eji | ≤ P ji .

Let us now bound the norm of vector B. We start with the randomized setting.
We remind that h̄ = h/(ml) and m = n2, l = n2s−4, N = n2s−1−1, αs = r(2s − 1) +
2s−1 − 1. Thus, there is

bj = D1
hk−j

(k − j)!
Cs−1

1 C(Q)hr+1m−αs−1 + h̄rhk−j
Cc
N
C(Q) =

= C(Q)hk−j(d− c)r
[

D1C
s−1
1

d− c

(k − j)!
n−r−1n−2(r(2s−1−1)+2s−2−1)+

+ Ccn
−r
(

n−2n−2s+4
)r

n−2s−1+1
]

=

= C(Q)hk−j(d− c)r
(

D1C
s−1
1

d− c

(k − j)!
+ Cc

)

n−r(2
s−1)−2s−1+1.

Hence, for a sufficiently small h

‖B‖ ≤ 2h(d− c)r C(Q)
(

D1C
s−1
1 (d− c) + Cc

)

n−αs . (82)

The same bound we get in the quantum setting, with m = n, l = ns−2, N = ns−1

and αs = rs+ s− 1.
In both settings, P0 = [0, . . . , 0]T , and ‖A‖ ≤ 1 + (2D1 + 1)hk. Therefore, using

(68) we get

‖Pi+1‖ ≤
(

1 + ‖A‖ + · · · + ‖A‖i
)

‖B‖ ≤

≤ CA
d− c

h
‖B‖ ≤

≤ 2CA C(Q) (d− c)r+1
(

D1C
s−1
1 (d− c) + Cc

)

n−αs .

From the inductive assumption and the bound on ‖Pi‖ above, for i = 0, . . . , n− 1, we
finally get

q
∑

j=0

sup
x∈[xi,xi+1]

∣

∣

∣
u(j)(x) − l̂s(j)(x)

∣

∣

∣
≤

q
∑

j=0

Eji +

q
∑

j=0

sup
x∈[xi,xi+1]

∣

∣

∣
ū

(j)
i (x) − l̂

s−1,(j)
i (x)

∣

∣

∣
≤

≤ 2‖Pi‖ + Cs−1
1 C(Q)hr+1m−αs−1 ≤

≤ C̃s1 C(Q) (d− c)r+1n−αs ,

where C̃s1 := 4CA
(

D1C
s−1
1 (b− a) + Cc

)

+ Cs−1
1 .

Hence

q
∑

j=0

sup
x∈[c,d]

∣

∣

∣
u(j)(x) − l̂s(j)(x)

∣

∣

∣
≤ Cs1 C(Q) (d− c)r+1n−αs , (83)

for Cs1 := (q + 1)C̃s1 .

Randomized and quantum algorithms for solving initial-value problems. . . 265

Let us now compute the total cost of the algorithm As. The cost consists of:

— the cost of computing wi,p, which is equal to Cwnml, where Cw is a positive
constant depending on r and k only;

— the cost of computing l̂s−1
i , which is equal to cost(As−1,m) · n ≤

Cs−1
2 nmβs−1(log 1/δ1); and

— the cost of computing APi(g), which is equal to N
κ log 1/δ1, where κ = 2 in the

randomized setting, and κ = 1 in the quantum setting.

The parameters m, l and N are chosen so that the exponents of n in the above
three components are the same and are equal to βs = 2s−1 in the randomized setting
or βs = s in the quantum setting. The total cost is then bounded by

cost(As, n) ≤ Cs2n
βs log 1/δ1 (84)

for

Cs2 = Cw + Cs−1
2 + 1. (85)

Bound (83) holds true with the probability of success at least

Prob(As, n) = (1 − δ1)
nProb(As−1,m)n. (86)

Simple calculations yield that Prob(As, n) = (1−δ1)
ψs(n) for ψs(n) given by (43) and

(47) in the randomized and the quantum settings, respectively. This ends the proof
of the theorem.

We now give the proof of Theorem 5.1.

Proof of Theorem 5.1. Consider the randomized setting. Let AK([a, b], n, Y) be the
final algorithm. From Theorem 5.4, for Q = zeb−a + rFK(eb−a − 1), with z =
max{|u′a|, . . . , |u

k−1
a |} for k > 1 and z = 0 for k = 1, we get

sup
x∈[a,b]

∣

∣

∣
u(x) − l̂K(x)

∣

∣

∣
≤

q
∑

j=0

sup
x∈[a,b]

∣

∣

∣
u(j)(x) − l̂K (j)(x)

∣

∣

∣
≤ CK1 C(Q) (b− a)r+1n−αK ,

(87)
with probability at least (1− δ1)

ψK(n). Let δ ∈ (0, 1/2). From the inequality ψs(n) ≤
n2s−1 it follows that to get probability of success at least 1− δ it is sufficient to take

δ1 equal to 1 − (1 − δ)1/n
2K

−1

. (For As with s < K, the parameter δ1 is fixed.)
We now pass from the probabilistic error to the error defined by (7). Since

the result of the randomized algorithm AK is random, the error eωM(n)(A
K , g) =

supx∈[a,b] |u(x) − l̂ωK(x)| is a random variable (taking a finite number of values).

This error is bounded by LC(Q)n−r(2K−1), for some deterministic positive constant
L depending on the parameter of class Gr and interval [a, b] only. To see that
such a constant exists, note that the random variable APji (g) satisfies ‖APji (g)‖ ≤

max
i,j,p

‖gji,p‖[0,1].

266 Maciej Goćwin, Marek Szczęsny

Hence, instead of (32) we can proceed with the bound

∣

∣

∣

∣

∣

1

ml

ml−1
∑

p=0

∫ 1

0

gji,p(θ)dθ − APji (g)

∣

∣

∣

∣

∣

≤ 3E C(Q), (88)

which holds with certainty.
The error of AK can be bounded by

(

erand
M(n)(A

K ,Gr)
)2

≤ L2C2(Q)n−2r(2K−1)δ + (CK1 C(Q) (b− a)r+1n−αK)2. (89)

Indeed, for every function g ∈ Gr and λ = CK1 C(Q) (b− a)r+1n−αK , there holds

E
(

eωM(n)(A
K , g)

)2

=

∫

eω
M(n)

(AK ,g)>λ

(

eωM(n)(A
K , g)

)2

dP(ω)+

+

∫

eω
M(n)

(AK ,g)≤λ

(

eωM(n)(A
K , g)

)2

dP(ω). (90)

The estimate eωM(n)(A
K , g) ≤ λ holds true with probability at least 1 − δ. For

eωM(n)(A
K , g) > λ, we use the fact that the error in the supremum norm is bounded.

Hence,

E
(

eωM(n)(A
K , g)

)2

≤
(

LC(Q)n−r(2K−1)
)2

δ + λ2. (91)

Taking δ =
(

CK1 (b− a)r+1n−2K−1+1/L
)2

, we get

erand
M(n)(A

K ,Gr) = O
(

n−αK
)

. (92)

The constant in the big-O notation depends on class parameters, a, b, k, K and initial
values u′a, . . . , u

k−1
a .

This error is achieved with the cost

M(n) = cost(AK , n) = O

(

nβK log
1

δ1

)

. (93)

Since

log

(

1

δ1

)

= O

(

log n+ log
1

δ

)

= O (log n) , (94)

then
M(n) = cost(AK , n) = O

(

nβK log n
)

, (95)

where the constant is dependent on K. The proof in the randomized setting is com-
pleted.

In the quantum setting, we take δ1 = 1 − (1 − δ)1/n
K

. The bound

equant
M(n)(A

K ,Gr, δ) = O
(

n−αK
)

(96)

Randomized and quantum algorithms for solving initial-value problems. . . 267

is then achieved with the cost

M(n) = cost(AK , n) = O

(

nβK log
1

δ1

)

= O

(

nβK (log n+ log
1

δ
)

)

. (97)

This immediately follows from Theorem 5.4 and the definition of the quantum error.
Here, the constant in the big-O notation also depends on class parameters, a, b, k, K
and initial values u′a, . . . , u

k−1
a .

We end this section with the theorem about the upper bounds on the complexity
of problem (1), which is a consequence of results presented above.

Theorem 5.5. For any γ ∈ (0, 1), there exist positive constants C1(γ), ε0(γ) (de-
pending exclusively on γ, the parameters of the class Gr, a, b and initial conditions
at point a) such that for all ε ∈ (0, ε0(γ)), the ε-complexity in the randomized and
quantum settings satisfy

comprand(Gr, ε) ≤ C1(γ)

(

1

ε

)1/(r+1/2−γ)

(98)

and for δ ∈ (0, 1/2)

compquant(Gr, ε, δ) ≤ C2(γ)

(

1

ε

)1/(r+1−γ)

log
1

δ
. (99)

Proof. We start with the randomized setting. For a fixed parameter γ, let K (the
index of the final algorithm) be equal to dlog(1/γ + 1)e. Then

βK
αK

≤ 1/(r + 1/2 − γ/2). (100)

From Theorem 5.1, the final algorithm has the cost

M(n) = cost(AK , n) = O
(

nβK log n
)

(101)

and the error
erand
M(n)

(

AK ,Gr
)

= O
(

n−αK
)

. (102)

We now ask about the minimal cost M(n) needed to achieve a given accuracy ε > 0,
erand
M(n)

(

AK ,Gr
)

≤ ε. Comparing the bounds on error and cost, we get

cost(AK , ε) = O

(

(

1

ε

)1/(r+1/2−γ/2)

log
1

ε

)

, (103)

so that for a sufficiently small ε

cost(AK , ε) = O

(

(

1

ε

)1/(r+1/2−γ)
)

. (104)

The constant in big-O notation depends on γ.

268 Maciej Goćwin, Marek Szczęsny

We now pass to the quantum setting. Let K = d2/γe. Then

βK
αK

≤ 1/(r + 1 − γ/2). (105)

The inequality equant
M(n)

(

AK ,Gr, δ
)

≤ ε leads to the following bound on cost

cost(AK , ε) = O

(

(

1

ε

)1/(r+1−γ/2)(

log
1

ε
+ log

1

δ

)

)

. (106)

For a small ε,

cost(AK , ε) = O

(

(

1

ε

)1/(r+1−γ)

log
1

δ

)

. (107)

The constants in the big-O notation depend on γ. This completes the proof in the
quantum setting.

6. LOWER COMPLEXITY BOUNDS IN THE RANDOMIZED
AND QUANTUM SETTINGS

In this section, we show lower bounds on randomized and quantum complexity of
equations of order k with the right-hand side function belonging to class Gr.

Theorem 6.1. Let r ≥ 1. For an arbitrary k, there exist positive constants C1 and
C2 depending on the class G

r and k only, such that

comprand(Gr, ε) ≥ C1

(

1

ε

)1/(r+1/2)

, (108)

and for all δ ∈ (0, 1/4)

compquant(Gr, ε, δ) ≥ compquant(Gr, ε, 1/4) ≥ C2

(

1

ε

)1/(r+1)

. (109)

Proof. We first prove the lower bound in the quantum setting. Consider the subclass
Gr1 of G

r given by functions dependent on x only:

Gr1 = {g : [a, b] → R | g ∈ C(r) ([a, b]) sup
x∈[a,b]

∣

∣g(j)(x)
∣

∣ ≤ Dj , j = 0, . . . , r}. (110)

Let A be any quantum algorithm usingM information values solving problem (1),
such that equant

M (A,Gr) ≤ ε (this yields equant
M (A,Gr1) ≤ ε). We shall prove that

M = costquant(A) ≥ (1/ε)
1/(r+1)

by showing that the solution of problem (1) with
a suitable right-hand side function leads to the solution of the integration problem.

Randomized and quantum algorithms for solving initial-value problems. . . 269

Note that for any function g ∈ Gr1 problem (1) reduces to the computation of the
k-fold integral

u(x) =
k−1
∑

j=0

uja
j!

(x− a)j +

x
∫

a

tk−1
∫

a

. . .

t1
∫

a

g (t) dt dt1 . . . dtk−1, (111)

or, equivalently, to the weighted integral

u(x) =
k−1
∑

j=0

uja
j!

(x− a)j +
1

(k − 1)!

x
∫

a

(x− t)k−1g (t) dt, (112)

where x ∈ [a, b]. Since the algorithm A gives the approximation of u(x) for any x, the

result for x = b can be used to approximate the weighted integral
∫ b

a
(b− t)k−1g (t) dt.

We now use Novak’s lower complexity bound for the integration problem, see [8]. He
established the minimal cost of an algorithm for computing the integral for functions
from a Hölder class, but the results he obtained are also valid for the class of functions
with bounded derivatives of up to r order. The minimal cost of computing the integral
with the accuracy ε in this class is Ω

(

(1/ε)1/(r+1)
)

. In our case the integrand vanishes
at b. We can however restrict ourselves to a weight function bounded away from zero,
by considering the functions g ∈ Gr1 with support [a1, b1] ⊂ (a, b) (a1 < b1, a1, b1
fixed). In this case

b
∫

a

(b− t)k−1g (t) dt =

b1
∫

a1

(b− t)k−1g (t) dt. (113)

Hence, the algorithm A allows us to approximate the right-hand side integral in
(113). We now apply Novak’s lower bound to the right-hand side of (113), and get
the desired lower bound for the initial-value problem considered.
In the randomized setting, we proceed in a similar way. The crucial point is

the lower bound for randomized integration, which is Ω
(

(1/ε)1/(r+1/2)
)

. This result
follows from Bakhvalov, see [1].

Comparing Theorem 6.1 with the bounds obtained in Theorem 5.5 we conclude
that the algorithms defined in Section 4 are almost optimal, up to an arbitrarily small
positive parameter γ in the exponent, and a logarithmic factor.

7. NUMERICAL EXPERIMENTS

In this section we present simulation results confirming the bound from Theorem 5.1
in the randomized setting. Let us recall that an optimal error of a deterministic algo-
rithm with costM is of orderM−r. Theorem 5.5 tells that randomized algorithm with
this cost yields the error of order M−(r+1/2−γ). The parameter γ can be arbitrarily
small. For all experiments we have chosen γ = 1/4 (then K = 3). Firstly, we want to

270 Maciej Goćwin, Marek Szczęsny

confirm that the error of the algorithm is independent of k (the order of the equation
considered). Secondly, we want to check if the exponent r+ 1/2− γ can be achieved.
We study the relation between cost and error of the algorithm. According to the

obtained results,

erand
M (AK ,Gr) = C

(

M−(r+1/2−γ)
)

, (114)

so that

log(1/erand
M (AK ,Gr)) = a logM + b, (115)

where a = (r + 1/2 − γ), b = − logC, and the constant C varies for the upper and
lower bound. This is a linear dependence of logarithm of inverse of the error on
logarithm of the cost. An approximation of erand

M (AK ,Gr) is computed by repeating
the algorithm a number of times, and taking the mean.
We started with simple linear right-hand sides and with different k. We consider

the following four equations on [0, 1] with initial values equal to 1, such that the
solution in each case is u(x) = exp(x):

1) u′(x) = u(x),
2) u′′(x) = u′(x),
3) u′′′(x) = u′′(x),
4) u(4)(x) = u′′′(x).

For each equation, we consider three cases, taking r equal to 1, 2 or 3. We have
performed numerical experiments for a basic parameter n = 2, 3, . . . , 8. In each case
we have calculated cost of the algorithm and the randomized error of the obtained
approximation. To confirm dependence (115), we have determined the regression line.
The results are presented in Table 1. The plots in Figure 1 show the linear

dependence of logarithm of inverse of the error on logarithm of the cost, as expected.
Due to (115), the slope of the regression line should be equal to r + 0.25. The

results presented in Table 1 are close to this value. The slope is independent of the
order k, as expected.
In the next experiments we have checked if the parameter q influences the error,

that is the slope of the regression line. We have considered the following equations:

5) u(4)(x) = u′′′(x),
6) u(4)(x) = u′′(x),
7) u(4)(x) = u′(x),
8) u(4)(x) = u(x),

with initial conditions equal to 1. We took r = 1, 2, 3 and n = 2, . . . , 8.
From the results presented in Table 2 and Figure 2, we conclude that q does not

affect the rate of convergence.
We have also made an experiment for a linear problem with non-constant coeffi-

cients:

9) u′′(x) = u(x)/x2 − u′(x)/x, u(1) = 1, u′(1) = 0, where x ∈ [1, 2].

Randomized and quantum algorithms for solving initial-value problems. . . 271

Table 1. The coefficients of regression lines
for problems 1–4 and r = 1, 2, 3

Equation k q r b a

1 1 0 1 −2.011 239 81 1.279 940

1 1 0 2 −3.193 753 09 2.261 855

1 1 0 3 −4.536 029 14 3.242 381

2 2 1 1 −1.075 061 68 1.290 987

2 2 1 2 −2.821 233 28 2.259 749

2 2 1 3 −5.226 761 93 3.233 043

3 3 2 1 −0.042 516 61 1.299 979

3 3 2 2 −1.989 264 32 2.242 745

3 3 2 3 −5.708 448 17 3.243 509

4 4 3 1 1.446 208 58 1.290 628

4 4 3 2 −0.885 133 74 2.235 348

4 4 3 3 −5.459 259 95 3.237 311

1

1

1
1

1
1

1

6 8 10 12 14 16

10
20

30
40

50

u’=u

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2
2

2

3

3

3

3

3

3

3

1

1

1
1

1
1

1

6 8 10 12 14 16

10
20

30
40

50

u’’=u’

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2

2
2

3

3

3

3

3

3

3

1

1

1
1

1
1

1

6 8 10 12 14 16 18

10
20

30
40

50

u’’’=u’’

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2
2

2

3

3

3

3

3

3

3

1

1

1
1

1
1

1

8 10 12 14 16 18

10
20

30
40

50

u’’’’=u’’’

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2

2
2

3

3

3

3

3

3

3

Fig. 1. Regression lines for problems 1–4 and r = 1, 2, 3

272 Maciej Goćwin, Marek Szczęsny

Table 2. The coefficients of regression lines
for problems 5–8 and r = 1, 2, 3

Equation k q r b a

5 4 3 1 1.446 208 58 1.290 628

5 4 3 2 −0.885 133 74 2.235 348

5 4 3 3 −5.459 259 95 3.237 311

6 4 2 1 2.018 836 57 1.276 988

6 4 2 2 −0.389 859 80 2.260 913

6 4 2 3 −3.915 468 74 3.248 108

7 4 1 1 2.018 118 77 1.282 098

7 4 1 2 0.098 357 80 2.258 445

7 4 1 3 −3.010 797 23 3.305 967

8 4 0 1 2.169 643 43 1.263 840

8 4 0 2 0.405 387 96 2.297 799

8 4 0 3 −0.744 591 91 3.245 933

1

1

1
1

1
1

1

8 10 12 14 16 18

10
20

30
40

50

u’’’’=u’’’

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2

2
2

3

3

3

3

3

3

3

1

1

1
1

1
1

1

8 10 12 14 16 18

10
20

30
40

50

u’’’’=u’’

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2

2
2

3

3

3

3

3

3

3

1

1

1
1

1
1

1

8 10 12 14 16

10
20

30
40

50

u’’’’=u’

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2
2

2

3

3

3

3

3

3

3

1

1

1
1

1
1

1

8 10 12 14 16

10
20

30
40

50

u’’’’=u

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2

2

2

2

3

3

3

3

3

3

3

Fig. 2. Regression lines for problems 5–8 and r = 1, 2, 3

Randomized and quantum algorithms for solving initial-value problems. . . 273

As previously, the results (presented in Tab. 3 and Fig. 3) confirm linear depen-
dence of logarithm of inverse of the error on logarithm of the cost. The empirically
determined slopes are close to theoretical ones.

Table 3. Regression lines for nonlinear problem 9
and r = 1, 2, 3

Equation k q r b a

9 2 1 1 −0.713 175 7 1.353 947

9 2 1 2 −3.209 809 4 2.278 356

9 2 1 3 −7.647 463 7 3.263 805

1

1

1
1

1
1

1

6 8 10 12 14 16

10
20

30
40

50

u’’=u/x −u’/x2

log(cost)

lo
g(

1/
er

ro
r)

2

2

2

2
2

2

2

3

3

3

3

3

3

3

Fig. 3. Regression lines for nonlinear problem 9 and r = 1, 2, 3

8. SUMMARY AND COMMENTS

We have studied the complexity of scalar initial-value problems of higher order. We
have considered two models of computations: randomized and quantum ones.
We presented algorithms solving problems of form (1) in both settings. These

algorithms do not require passing to the system of the first order equations. The
error analysis allowed us to establish upper complexity bounds for solving initial-value
problems of order k. We also showed almost sharp lower bounds on ε-complexity for
this problem. The bounds are independent of k, and are of the same order as in the
case of the problem of system of first order equations. Comparing the bounds obtained
with results known in the deterministic case, we see that randomized computation
gives us a speed-up by 1/2, and quantum computation by 1. We also included results
of some numerical experiments. Even for small values of n, they confirm theoretical
results.

274 Maciej Goćwin, Marek Szczęsny

APPENDIX

Sketch of the proof of Lemma 5.2. We only give main ideas of the proof. The proof is
by induction on s. Let s = 1. From the simple calculations, we infer that there exists
a constant D dependent on class parameters and k only, such that for i = 0, . . . , n−1

∣

∣

∣
ū

(j)
i (xi)

∣

∣

∣
≤

{

zi for j = 1, . . . , k − 1,

D(1 + . . .+ zj−ki) for j = k, . . . , k + r.
(116)

Hence and by the definition of yji+1, we get that for j = 1, . . . , k − 1

|yji+1| ≤ zie
h + hehD(1 + . . .+ (hzi)

r−1). (117)

Then putting ci = hzi, we obtain the following recurrence inequality

ci+1 ≤ cie
h + h2ehD(1 + . . .+ cr−1

i). (118)

Let F 1 := 3D. It can be shown that if hQ < 1 then, for i = 0, . . . , n− 1,

1. ci < 1, (119)

2. ci ≤ c0e
d−c + hehDr

(

ed−c − 1
)

. (120)

From (120), for h ≤ 1, we conclude that Qi := zi < Q, what ends the proof of the
first statement of the lemma for s = 1. In order to prove the second one, let us note
that for the approximation functions of local problems l̂0i , the following bounds hold:

‖l̂
0(j)
i (·)‖[xi,xi+1]≤



















zie
h + hk−jehD

(

1 + . . .+ (zih)
r−1
)

for j=1, . . . , k − 1

ehD
(

1 + . . .+ zj−k−1
i

+ zj−ki

(

1 + . . .+ (zih)
r+k−j−1

)

)

for j=k, . . . , k + r − 1,

(121)

with the same constant D as in (116). Due to (119), zih < 1. According to the

definition, l̂1(x) := l̂0i (x) for x ∈ [xi, xi+1]. Hence for h ≤ 1 there exists a constant B
depending on class parameters, a, b and k only such that

‖l̂1(j)(·)‖[c,d] ≤

{

B(1 +Q) j = 1, . . . , k − 1

B(1 +Q+ . . .+Qj−k) j = k, . . . , r + k − 1
, (122)

which completes the proof for s = 1.
Let us now assume that the Lemma holds for degree s − 1. We will prove it

for s. From the inductive assumption for As−1([xi, xi+1],m, Yi), for each i there
exist constants F s−1 and B such that if Qi = zie

h + rF s−1
(

eh − 1
)

and m satisfies
hQi/m < 1, then

‖l̂
s−1(j)
i (·)‖[xi,xi+1] ≤

{

B(1 +Qi) j = 1, . . . , k − 1

B(1 + . . .+Qj−ki) j = k, . . . , r + k − 1
, (123)

Randomized and quantum algorithms for solving initial-value problems. . . 275

Let us assume for the while that the assumption hQi/m < 1 holds for each i. We
now derive the bounds on eq : yji+1 defined by (30). An easy computation shows that
there exists a constant E dependent on class parameters, a, b and k only, such that

‖gji,p(·)‖[0,1] ≤ E(1 + . . .+Qri) for j = 0, . . . , k − 1, (124)

and
‖wi,p(·)‖[xi,p,xi,p+1] ≤ E

(

1 + . . .+ (Qih̄)
r
)

. (125)

The bounds hold for i = 0, . . . , n − 1, p = 0, . . . ,ml − 1. Let us recall that in the
definition of the initial values yji+1 we use some randomized or quantum procedures

giving the (random) numbers AP ji (g). From [7] and [2], we can conclude the existence
of a constant C̃ that there holds deterministically for any i and j

∣

∣

∣
AP ji (g)

∣

∣

∣
≤ C̃max

i,j,p
‖gji,p(·)‖[0,1]. (126)

Using the inductive assumption and the above bounds, we get

‖yji+1‖ ≤ zie
h + hk−j

1

(k − 1 − j)!
E
(

1 + . . .+ (Qih̄)
r−1
)

+

+ h̄hk−jC̃E (1 + . . .+Qri)

(127)

This yields the following inequality (for h̄ ≤ 1):

zi+1 ≤ zie
h + (1 + C̃)hE

(

1 + . . .+ (Qih̄)
r
)

. (128)

Putting ci = Qih̄, we get the recurrence formula

ci+1 ≤ cie
h + (1 + C̃)hh̄E (1 + . . .+ cri) . (129)

This inequality holds under the condition that the assumptions of inductive step for
s − 1 are satisfied. That means that the parameter m satisfies hQi/m < 1. Let us
put F s = 3E + F s−1. It can be shown (by an induction on i) that if hQ < 1 (see the
assumption of the Lemma), then for i = 0, 1, . . . , n− 1

1. ∀m ∈ N hQi/m < 1, (130)

2. ci+1 ≤ ci + (1 + C̄)hh̄ehE(r + 1), (131)

3. Qi ≤ Q. (132)

From (130), we infer that the statements of Lemma hold true for s − 1. Because

l̂s(x) := l̂s−1
i (x) for x ∈ [xi, xi+1), then applying (132) in (123) we obtain

‖l̂s(j)(·)‖[c,d] ≤

{

B(1 +Q) j = 1, . . . , k − 1

B(1 + . . .+Qj−k) j = k, . . . , r + k − 1
, (133)

which is our claim.

276 Maciej Goćwin, Marek Szczęsny

Acknowledgements

This research was partly supported by AGH grant No. 10.420.03. Part of calculations
was carried out at ACK–CYFRONET-AGH. The machine time on IBM BladeCenter
HS21 is financed by the Polish Ministry of Education and Science under grant No.
MNiSW/IBM BC HS21/AGH/082/2007.

REFERENCES

[1] S. Heinrich, E. Novak, Optimal summation and integration by deterministic, randomized,
and quantum algorithms, [in:] K.T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Monte
Carlo and Quasi-Monte Carlo Methods 2000, Springer Verlag, Berlin 2002, 50-62; see
also http://arxiv.org/abs/quant-ph/0105114.

[2] S. Heinrich, Quantum summation with an application to integration, J. Complexity 18
(2002), 1–50; see also http://arxiv.org/abs/quant-ph/0105116.

[3] S. Heinrich, Quantum approximation I. Embeddings of finite dimensional Lp spaces, J.
Complexity 20 (2004), 5–26; see also http://arxiv.org/abs/quant-ph/0305030.

[4] B. Kacewicz, Optimal solution of ordinary differential equations, J. Complexity 3 (1987),
451–465.

[5] B. Kacewicz, Randomized and quantum algorithms yield a speed-up

for initial-value problems, J. Complexity 20 (2004), 821–834; see also
http://arxiv.org/abs/quant-ph/0311148.

[6] B. Kacewicz, Almost optimal solution of initial-value problems by random-
ized and quantum algorithms, J. Complexity 22 (2006), 676–690; see also
http://arxiv.org/abs/quant-ph/0510045.

[7] P. Mathé, Random approximation of finite sums, Institute for Applied Analysis and
Stochastics, Berlin, Preprint 11, 1992.

[8] E. Novak, Quantum complexity of integration, J. Complexity 17 (2001), 2–16; see also
http://arxiv.org/abs/quant-ph/0008124.

[9] M. Szczęsny, Complexity of initial-value problems for ordinary differential equations of
order k, J. Complexity 22 (2006), 821–834.

Maciej Goćwin
gocwin@uci.agh.edu.pl

AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland

Marek Szczęsny
szczesny@uci.agh.edu.pl

Randomized and quantum algorithms for solving initial-value problems. . . 277

AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland

Received: July 4, 2007.
Revised: March 17, 2008.
Accepted: April 11, 2008.

