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ON A COMPLETE LATTICE OF RETRACTS
OF A FREE MONOID

GENERATED BY THREE ELEMENTS

Abstract. We prove that the family of retracts of a free monoid generated by three elements,
partially ordered with respect to the inclusion, is a complete lattice.
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1. INTRODUCTION

We consider a family of retracts of a free monoid partially ordered with respect to the
inclusion. It is known fact that the family is a lattice if the considerations are limited
to retracts of a free monoid A∗ generated by at most three-element alphabet A. The
paper sharpens this result a bit. Namely, it is proven that the family is a complete
lattice. The presented proofs are independent and different from the former ones
connected with the lattice property and due to T. Head [6].

If A has at least four elements then some counterexamples for the lattice property
may be constructed [6].

2. BASIC NOTIONS AND DEFINITIONS

Let A be any finite set and let A∗ denote a free monoid generated by A∗. A retraction
r : A∗ → A∗ is a morphism for which r ◦ r = r. A retract of A∗ is the image of A∗ by
a retraction.

Definition 1. A word w ∈ A∗ is called a key-word if there is at least one letter in
A that occurs exactly once in w. A letter that occurs once in a key-word w is called
a key of w. A set C ⊂ A∗ of key-words is called key-code if there exists an injection
i : C → A such that:

1) for any w ∈ C, i(w) is a key of w;
2) the letter i(w) occurs in no word of C other than w itself.
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The following characterization of retracts due to T. Head [6] is basic for our re-
search.

Theorem 2 ([6]). R ⊂ A∗ is a retract of A∗ if and only if R = C∗, where C is a
key-code.

In the sequel, we use the following notation. Let C1, C2 denote key-codes of
retracts R1, R2, respectively. The intersection of the retracts R1 ∩ R2 = C∗

1 ∩ C∗
2 is

a free submonoid of A∗. Denote by C the basis of the submonoid (minimal set of
generators). Any word in R1 ∩R2 has two factorizations, one in key-words of C1 and
the second in key-words of C2. In general, C is not a key-code [4] and this was a
reason for starting a research of semiretracts [1, 3].

Definition 3. A code C ⊂ A∗ is an infix code if for all u, v, w ∈ A∗, v ∈ C and
uvw ∈ C implies that u = w = 1.

Definition 4. A code C ⊂ A∗ is comma free if for all v ∈ C∗ , u, w ∈ A∗and
uvw ∈ C∗ implies that u, w ∈ C∗.

The theorem of Tarski and Knaster [7] is essential for our final result.

Theorem 5 (Tarski, Knaster). Let D be a complete lattice and f : D → D a
monotonic function. Then a set Fp f = {x ∈ D : f(x) = x} of all fixed points of f
forms a complete sublattice of D.

In what follows, we limit our considerations to retracts of a free monoid generated
by exactly three-element alphabet A, denoted in the sequel with A3. Let us denote by
RET A∗

3 the family of all retracts of A∗
3 partially ordered with respect to the inclusion.

3. RESULTS

Let A be a finite or infinite alphabet and let us denote by (RET A∗,⊂) the family
of all retracts of A∗ partially ordered with respect to the inclusion. Define for any
X ⊂ A∗ the family of retracts

LX = {R ⊂ A∗ : X ⊂ R, R is a retract of A∗}.

LX is not empty because A∗ ∈ LX for any X and as a subset of RET A∗ is partially
ordered too.

Lemma 6. For any alphabet A, whether finite or infinite, there exists a mapping
ρ : ℘(A∗) → ℘(A∗) which maps any subset X of A∗ into a retract RX such that
X ⊂ RX and RX is minimal.

Proof. First, we establish the fact that there exists a minimal element in (LX ,⊂) for
any X of A∗. Let us fix a descending chain of retracts {Ri}i∈I in (LX ,⊂). We claim
that there exists in LX a lower bound of the chain. For this purpose, let us consider
the intersection

⋂
I Ri. If the chain {Ri}i∈I is finite our claim is trivially true. Thus

let us assume that {Ri}i∈I is infinite and let B denote the base of the submonoid
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⋂
I Ri. First observe that for any w ∈ B there exists a retract Rk in the considered

chain such that w is an element of the key-code that generates Rk. To justify this
observation, one can take into account the fact that w has finitely many factorizations
into subwords. w is then an element of the key-code of any Rl for l ≥ k. Now let us
assume, for the contrary, that B is not a key-code. Hence there exists a word w ∈ B
such that for any a ∈ A that occurs exactly once in w there exists v ∈ B such that
the letter a occurs in v at least once. For any a such that ]aw = 1, let us fix exactly
one word v ∈ B which has the above property. Denote by Bw the set of all v chosen
in that way. Bw is non-empty and finite. Observe that there exists k ∈ I such that
Bw is included in the key-code of Ri for any i ≥ k. This contradicts the fact that Ri

is a retract for i ∈ I. Finally, B is a key-code, and from the Zorn-Kuratowski Lemma
it follows that for each X ⊂ A∗ there exists a minimal element in LX . Now define a
mapping ρ : ℘(A∗) → ℘(A∗) putting for every X ∈ ℘(A∗) ρ(X) = RX where RX is
minimal for X (Axiom of Choice). Hence the proof is finished.

Now we limit the considerations to the three-element alphabet A3. Let C be
the base (minimal set of generators) of a submonoid obtained as the intersection of
retracts R1 ∩ R2 = C∗

1 ∩ C∗
2 where R1, R2 ∈ RET A∗

3. We will analyze all possible
forms of C (according to the form of C1 and C2) and conclude that, in any case, C is
a key-code. It is not difficult to observe that among the all possibilities for C1 and C2

one case is not obvious only, and needs to be considered. Namely, for C1 = {u1, u2},
and C2 = {v1, v2}, where u1 and v1 have the same key, say a, and keys of u2 and v2

are different and equal to b and c, respectively. According to the symmetry of C1 and
C2, it is sufficient to consider the following two cases:

1) u1 = v1 = a, u2 without restrictions,
2) |u1| > 1, u2 without restrictions.

Assumptions of the first case imply that the base C of the semiretract R1 ∩R2 is
equal to {u1} or {u1, u2}. Hence, the intersection R1∩R2 is in fact a retract according
to Theorem 2.

We start to consider the second case with the following lemmas.

Lemma 7. If w = . . . uk
1 . . . ∈ C, then k = 1.

Proof. Let us assume for the contrary that k > 1. It means that between the key a
in the first (from the left) u1 and the key a in the second u1 there exists at least one
c. It implies that v2 = c and leads to the conclusion that w can be represented as a
catenation of two words in C+, which contradicts the code property of C.

Lemma 8. There is no word of the form . . . u1u
k
2u1 . . . in C for any k ≥ 0.

Proof. In view of the above lemma, we can consider the case k ≥ 1. Observe the
following property of words in C. Any word in C is expressible as catenation of
elements of C1 and elements of C2 as well. Imagine that w is expressed in two lines:
the upper line uses words from C1, lower one from C2. If u1 occurs in the upper line,
then it enforces the occurrence of v1 in the lower line. The condition |u1| > 1 enforces
the occurrence of v2 to the left or to the right of v1. If v2 is a one letter word, it is
possible to fulfil the lower line to obtain a suffix equal to u1 exactly. It also means
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that a prefix of w which ends at the first u1 is in C+, which contradicts the code
property of C and the fact that w ∈ C. If v2 is not a one letter word, the occurrence
of u2 in the upper line is enforced. While repeating the above reasoning, notice that
the process of enforcing finishes by the conclusion that w is in C. Now consider the
first and the second occurrence (from the left) of u1 in w. Based on the described
property, observe that a word x, the prefix of w which ends at the first u1, is also a
suffix of uk

2u1. The same word x composed of v’s occurs two times in the lower line at
the same positions. This implies that w can be factorized into words from C+; again
a contradiction with the code property of C.

The following result is the direct corollary of the above lemmas.

Corollary 9. If w ∈ C, then w = uk
2u1u

l
2 for some k, l ≥ 0 or w = u2.

Let us remind the following simple and easily proved fact.

Fact 10 ([1]). The base C of R1 ∩R2 is an infix code and comma free code.

The above considerations allow us to formulate

Lemma 11. Let C be the base of a semiretract R1 ∩R2. C has one of the following
forms:

{u1}, {u2}, {u1, u2}, {uk
2u1u

l
2}

where k, l ≥ 0.

Proof. The statement of the lemma follows from the preceding lemmas and Fact 10.
Notice that the property of words in C formulated and applied in Lemma 8 implies
that if uk

2u1u
l
2 is in C with k + l ≥ 1, then C = {uk

2u1u
l
2}.

We summarize the above results in the following lemma.

Lemma 12. The intersection of two retracts R1, R2 ∈ RET A∗
3 is a retract R1 ∩R2

of A∗. The cardinality of the base (key code) C of the retract R1∩R2 is at most three.

Finally we formulate a theorem containing the main result of the paper.

Theorem 13. The family RET A∗
3, partially ordered with respect to the inclusion, is

a complete lattice.

Proof. Consider the mapping ρ : ℘(A∗) → ℘(A∗) defined in Lemma 6. Let X, Y ∈
℘(A∗) be two non-empty sets, X ⊂ Y and ρ(X) = RX , ρ(Y ) = RY . There is
RY ∈ LX and X ⊂ RY . According to Lemma 12, RX ∩RY is a retract and obviously
RX ∩ RY is in LX . The inclusions X ⊂ RX ∩ RY ⊂ RX imply RX ∩ RY = RX and
finally RX ⊂ RY . Hence we come to the conclusion that the mapping ρ is monotonic.
Now from the Tarski-Knaster theorem it follows that (Fp(ρ),⊂) is a complete lattice,
where Fp(ρ) denotes the family of all fixed points of the mapping ρ, that is the family
of sets S ∈ ℘(A∗) such that ρ(S) = S. The observation that Fp(ρ) = RET A∗

3 finishes
the proof.
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