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OF SECOND-ORDER PARTIAL DIFFERENTIAL
EQUATIONS

Abstract. This paper deals with a finite difference method for a wide class of weakly
coupled nonlinear second-order partial differential systems with initial condition and weakly
coupled nonlinear implicit boundary conditions. One part of each system is of the parabolic
type (degenerated parabolic equations) and the other of the elliptic type (equations with a
parameter) in a cube in R**™. A suitable finite difference scheme is constructed. It is proved
that the scheme has a unique solution, and the numerical method is consistent, convergent
and stable. The error estimate is given. Moreover, by the method, the differential problem
has at most one classical solution. The proof is based on the Banach fixed-point theorem,
the maximum principle for difference functional systems of the parabolic type and some new
difference inequalities. It is a new technique of studying the mixed-type systems. Examples
of physical applications and numerical experiments are presented.
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1. INTRODUCTION

The aim of the paper is to give a finite difference method of approximate solving of
systems of weakly coupled strongly nonlinear second-order partial differential equa-
tions with initial condition and different boundary conditions, in particular weakly
coupled nonlinear implicit conditions. One part of each system is of the parabolic
type (degenerated parabolic equations) and the other of the elliptic type (equations
with a parameter) in Q := [0,T] x (0,6)" C R*". The nonlinearity in the systems
is admitted with respect to second derivatives. It is a novelty for such mixed-type
systems. The existing study of the problem is devoted to parabolic-elliptic systems
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with different, linear or nonlinear, boundary conditions, but our conditions include
most of them.

The general weakly coupled nonlinear systems of the parabolic type or the elliptic
type have been treated by numerous authors, and various methods have been proposed
for the study of different aspects of the problem, such as the uniqueness of the classical
solution, differential inequalities, difference inequalities and a finite difference method
for the computation of an approximate solution (cf. [7,10-12, 15, 16, 25,26]). The
paper is motivated by the question whether these classical results can be transferred
from single-type systems to systems of mixed types. Numerical methods for general
weakly coupled functional differential systems of the first-order have, for instance,
been considered by D. Jaruszewska-Walczak and Z. Kamont [6].

There are a lot of well-known mathematical models describing physical phenome-
na by means of parabolic-elliptic systems with different initial-boundary conditions.
Weakly coupled system (3.1) realizes the process of incompressible fluid flow in a
porous medium [1-3]. P. Segall [20] used it for computing poroelastic stress changes
due to fluid extraction. System (3.1) supports a description of the process of heat
exchange with flow of a substance when temperature changes are small — modifica-
tions of the very important Navier-Stokes system. Parabolic-elliptic systems similar
to (3.1) are also used in medicine, in the theory of chemotaxis (the Keller-Segal
model) [21]. The mentioned systems occur in certain problems of astrophysics (the
evolutional version of Chandrasekhar’s model), hydromechanics (statistics of whirls
in Euler’s equations) and statistical mechanics (the Vlasov-Poisson-Boltzmann equa-
tion) [4,8,14]. R.C. MacCamy and M. Suri [9] use them to describe rotary currents
in electrodynamics. The parabolic-elliptic systems arise in a groundwater flow prob-
lem [5], a model of evolution of water waves (the Davey-Stewartson systems) [28] and
in the theory of magnetism (the Myrzakulov equations) [13]. Another example is the
Poisson-Schrodinger nonstationary system in the theory of semiconductors.

Such systems also have numerous various applications. Unfortunately though,
they have been less examined than systems of the parabolic, elliptic or hyperbolic
types. It is mainly caused by their specific mixed structure.

In the present paper, we construct a finite difference scheme for nonlinear differ-
ential system (3.1) with nonlinear implicit initial-boundary value conditions (3.2). It
is proved that, under suitable assumptions on functions and steps of a mesh, differ-
ence scheme (4.1) has a unique solution — the algorithm of its numerical solving is
included, moreover, the method is consistent, convergent and stable (stability follows
immediately from the convergence). The error estimate of the approximate solution
is given. Proof is based on the Banach fixed-point theorem, the maximum principle
for difference functional systems of the parabolic type formulated by M. Malec [10]
and some new difference inequalities. At the end of the paper, we present a numerical
example.

The assumptions generally concern the Lipschitz continuous of reaction and
boundary functions, the quasi-monotone property of the reaction functions and the
domination of the main diagonal in some symmetric matrices. They are typical of
such investigations of single-type systems (cf. [7,10-12]).

It follows, from the convergence of the numerical method, that the problem con-
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sidered has at most one classical solution. Theorems on the existence and uniqueness
of such solutions for some special parabolic-elliptic systems are given for example
in [4,8,14] and [19].

We add that a finite difference method for parabolic-elliptic systems has been
studied among others by M.S. Mock [14], Z.Z. Sun [22,23] and L. Sapa [17], but
in a case of quasi-linear systems of a special form only, without mixed derivatives.
L. Sapa [18] has considered a finite difference method for a general class of such
systems but with the Dirichlet condition only. Unfortunately, these more classical
difference methods and techniques of proof cannot be adapted to strongly nonlinear
systems with different, in particular implicit, boundary conditions. A quite simple
example given by (6.1), (6.2) illustrates this fact well.

2. NOTATION AND DEFINITIONS

2.1. SETS AND SPACES OF FUNCTIONS
Denote by R"™ the FEuclidean space and define the following sets
E:=(0,0)" CR", Q:=[0,T] x E, (2.1)

where 0 < § < 400 and 0 < T < +o0.
Define also the sets

E:=[0,0", Q:=[0,T]xE. (2.2)

Let
I':=[0,7T] x OF (2.3)

be the side surface of the cube €, where OF is the boundary of E. In I" we distinguish
the subset

T:=(0,T] x OF (2.4)

and the families of subsets of the form
L= {(t,I)EF: zi:(mfl)(S},
T i= {(t,x)ef: xi:(m—l)é}

form=1,2andi=1,...,n, wheret € R, z = (z1,...,z,) € R™.
Next, denote by

115:{17'“’(]}7 12::{(14_17"'71)}7 Ii=15LUl (25)

the sets of indices, where p and ¢, ¢ < p, are given natural numbers.
Moreover, define the sets

A:ZQXRPXRnXan,
©:=TxR’xR, ©:=I[xRIxR, (2.6)
Omi :=TLmi x R? x R, Omi =i x RIx R
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form=1,2,7=1,...,n, and the sets

A; = Q x R? x R?" x R2"",
_ _ 2.7)
O1mi := Imi x R?? x R?, O1mi := ' x R? x R?

form=1,2,i=1,...,n.
Qu;  dup 9%y
8t ’ Brﬂ afrj.’Ei,’

lel, i,j=1,...,n,are continuous on A C Q will be called regular on A. We briefly
write u € Creq(A4, RP). We define the space Cyeq(A, R?) in the same way.
The set

B (ﬁ) = {Z = (Zl)le]l

A continuous mapping u = (u;)ier : A — RP whose derivatives

2: Q= R, sup |z (t,z)| < +oo, I € 11} (2.8)
(t,z)eQ

is the set of functions bounded on .
For a fixed t € [0,T],

12010 = { sup e 1.0/} (29)

! zER

stands for a semi-norm in the space B(f2), where z = (2;)1e1, € B(Q).

2.2. DIFFERENTIAL OPERATORS

Let D; := E and let D; := B%i’ Dy = Bz 2, for i,7 = 1,....,n. Put D, :=
(Dy,...,D,) and D? := (Dy1,..., D1, ... Dnh .oy Dpn). The operator of the first
derivative in the internal normal to the boundary T (see (2.3)) is denoted by D,,.

Let ©imi : 6, — R forl € I, and Uimi : Omi — R for 1 € Iz (see (2.6)) be
arbitrarily given functions, where m = 1,2, ¢ = 1,...,n, and let ¢; := (@un;) for
lely, Y := (¢lmz) for [ € I5. _

Suppose that functions f = (fi)ier : A — RP, ¢ = (¢1)ier, : © — R? and
= (V1)ier, : © — RP™7 are given. For such the functions, we define the differential
operators

F reg(Q Rp) i Rq, F= (-FZ)ZGIU
G: QRP) - RPY, G=(G ,
Creg( ) (Giier, (2.10)
) reg(F Rq - Rq7 o = ((I)l)leha
v 7eg(F Rp) - Rpi(]? U= (\Ijl)leh’

with the following components

Fl U (t l‘) Dtul(t .’17) fl(tax7u(ta$)7Da:ul<t7x)aD:%ul(tvx)) for 1 € 11,

[u]
Gilu)(t,x) := fi(t,z,u(t,x), Dyu(t, x), D2u(t, z)) for 1 e Iy, (2.11)
D [ul(t,x) := i (t, z,u(t,x), Dyu(t,x)) for lel;,
U, u)(t, ) = (¢, z,ult, ), Dyu(t, x)) for 1€ Is.
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2.3. DISCRETIZATION

Define a mesh on the set Q (see (2.2)) in the following way. Let N; and N, N > 2,
be some natural numbers and put

T )
k:= N h:= N (2.12)
We will call the set of discrete points
Spn = { (@, a7, .. am) € Uit = pk, 2l =m;h, i=1,...,n}, (2.13)
where p =0,1,..., Ny and m; =0,1,..., N for ¢ = 1,...,n, the uniform rectangular

mesh on Q with the time step k and spatial step h. Elements of Sy, are called
knot points or briefly knots. For simplicity of notation, we write ™ instead of
(th, 2" o) € Skp, where M = (p,m) € ZY" and m = (my,...,m,) € Z"; Z
is the set of integer numbers.

There exists a one-to-one correspondence between the mesh Sy, and the set of
multi-indices

Z:={MeZ'"™: 0<p<N;,0<m<N,i=1,...,n} (2.14)

if steps k, h are fixed. Accordingly in the further part of the paper a knot 2™ € Sy,
is identified with a suitable multi-index M € Z.

We assume that the set Z is well ordered (the order is arbitrary) for any steps k
and h.

In Z we distinguish the following subsets

Zy={M=(pum)eZ: 0<m; <N, i=1,...,n},
Zpn={MeZ,: 0<m;<N-1,i=1,...,n},
Zyp={MeZ,: 1<m;<N,i=1,...,n},

Z) =21 N Zya, 02y =2, \ Z,,

(2.15)

for 4 =0,1,...,N;. Note that Z, is the set of multi-indices of all knots of the mesh
Skh, ZS is the set of multi-indices of knots of the mesh belonging to Q2 and 9Z,, is the
set of multi-indices of knots of the mesh belonging to T, for any p € {0,1,..., N1}.

We define recurrently the sets Z,1; and Z,,9; for p =0,1,...,Ny,i=1,...,n, as
follows

Z#n::{MeaZ#: m1:0}, Zﬂgliz{M€azﬁl mlzN},

i—1
Zyi={M €0Z,: m; =0}\ ( U (Zuk U Zuzk)>7
2 (2.16)
i—1
ZHQZ‘ = {M S 8ZM Lomy = N}\ ( U (Z/J,lktUZ/J,Qk)>7
k=1
where = 0,1,..., N1, i =2,...,n. It is evident that the above sets form a decom-

position of the boundary 07, 1 =0,1,..., Ny, into separable sets.
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We also define the contiguity S(I, M) as a set of multi-indices T' € Z, T # M,
such that knots 27" € Sy, are used to approximate derivatives D u;(x™), D2y (z™M)
and D,u;(zM) in [—th equations of systems (3.1) and (3.2), respectively.

2.4. SPACES OF MESH FUNCTIONS, DIFFERENCE AND STEP OPERATORS

A mesh function it is any function a : B 3 M — a™ € R, where B is any subset
of Z. We denote the space of all such functions by F(B,R) and call it the space of
mesh functions. The spaces of a system of such functions are denoted similarly by:
F(B,RP), F(B,R?), F(B,RP79).
In the space of mesh functions F(B,RP), B C Z, we introduce the mazimum
norm
la]] ;== max {max |alM’} ) (2.17)
lel | MeB
where a = (a;)ie; € F(B,RP), a;: B> M — a} € R for | € I. We define norms in
F(B,R?%) and F(B,RP~?) in the same manner.
We will call the functions

Ny Ny
U 2Za>sM—im)ez U Ze>M——iM) ez,
n=0 n=0
Ni—1
U ZuoM—+Mmez,
pn=0
where
Z(M) = (p,ml, ey Myi—1, My + 1,mi+1, e ,mn),
—i(M) == (u,ma, . ymi—1,my — Lmipq, ..o my),

M = (u+1,m)

for i =1,...,n, the shift functions (cf. [10-12]).
Denote by aM—, aM?, aMi=, ¢ M¢ oM and oM%Y the difference quotients
defined by
Ny-1
My for M € U Zy,
n=0

M- 1(a+M

Ny
GMi_ %(aiw) —a” My for Mel ) 20,
#=0 (2.18)
) 1 . o
(LM17 = E(al(M) — a]\/I) for M € U Z,uliv
pn=0
N1
(aM — q—H (M) for M € U Zy2i,
=0

—Ms7



A finite difference method for nonlinear parabolic-elliptic systems. .. 265

QM = (@) D) D) IO M I ),
gt M . %(_az‘w) — @I M) i) =i (M) 9 M giG(M) | q=i(=5(M))
2h

Ny
for M € | ZS, i,7 =1,...,n, on the space F(Z,R). These operators will be used
pn=0
to approximate derivatives in equations (3.1) and boundary conditions (3.2).
For any system of mesh functions a = (a;)icr € (Z, RP), we introduce a notation

aM = (a;w)le] € R?, aM = (af\l)lejl € RY, (2.19)
where M € Z.
Let MI M1 M
a = (a‘l yeeey @y n)v (2 20)
alMH = (alMH7 ... ,alMl", o ,alM"l, ... 7alM”")

Ny
forl € I and M € | Zg be vectors whose coeflicients are the difference quotients
pn=0

given by (2.18), where aiMij has to be chosen equal either to anij or to anij7
depending on what is specified further, in assumption Fg of Section 3.
Define the discrete operators
S%: F(Z,RP) — F(Zy,RY),
S':F(Z,RP) — F(Z\ (23, U0Zy) ,RY), S':=(S)er. (2.21)
S?: F(Z,RP) — F(Z,RP™9), S% = (S))ier,
by putting
SOaM . — GM —y(xM) for M € Zy, (2.22)
Ni—1
a’™ = @M, aM M aMT) for M e | zy,
=0
M ~i(M) ,Mi— for M o 7
SlaM — (plli(x ,a 7a’l ) or GML:JI nlis (223)
. N1
@lgi(xMﬁ—i(M),al_M’) for M € U1 Zy2i
p=
(i=1,...,n)
for I € I; and
Ny
fil@™, oM, gl aMIT) for M EMLZJO zy,
M M , Mi w
. 11— .
oM .=} Y@@ e for M€ U Zui (2.24)
Ny
1/112i(x]”1,aM,anz) for M e UO Zu2is
s
(i=1,...,n)
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for I € Is; a = (a))1e; € F(Z,RP). The function ug = (ug)ier, : E — RY appears in
(3.2).
Finally, define the step operator S : F(Z,R%) — B(Q), S = (S;)ie1, by the formula

Sifal(t,z) == xm(t,z)a) for (t,x) €Q, L€y, (2.25)
MeZ

where a = (a;)i1er, € F(Z,R?) and

1 for (t,z) € Ju,

Xaa (b @) := { 0 for (t,z) € Q\ Jur, (2.26)

Ju={(t,z)€Q: pk<t<(p+1k, mh<z;<(mi+1h,i=1,...,n}
(2.27)
We briefly write S[a] = a.

Remark 2.1. The step operator given by (2.25)—(2.27) has been used extensively
in [10,11] and [12] to study systems of difference functional inequalities and to ap-
prozimate the functional term in systems of differential functional equations. In this
paper it is used in the construction of some difference functional inequalities in a proof
of the convergence of the finite difference method for systems of differential equations,
without a functional term, which are a key-step in our proof. It is a new application
of the above step operator.

3. DIFFERENTIAL PROBLEM

Let functions f = (fi)ier : A — R, ¢ = (¢1)ier, : © — R, ¢ = (h)ier, : © — RP7
be the functions given in Section 2.2 and let uy = (ug)ier, : £ — RY (the initial
function) be given. We consider a system of weakly coupled nonlinear differential

equations of the form

(3.1)

u(0,2) = uo(x) for z€F,
Qu)(t,z) =0 for (t,z)eT, (3.2)
Ulu)(t,z) =0  for (t,x) €T,

where @ := (w)ier, -
We need the following assumptions on the functions f, ¢, 1 and regularity of a
solution u of (3.1), (3.2).
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.

Fy.

Fs.

Fy.

Assumption F':
There exist bounded functions «ys, B, v : A1 = R, l,se I, 4,j=1,...,n
such that for any two points (¢, z,y, z,w), (t,z,7,Z, W) € A,

fl(t7x7yazaw) - fl(taxayvzaw) :Z als(P)(yS - ?s)+ Z ﬁlz(P)(ZZ *Ei)+

el =t (3.3)
+ ) i (P)(wi — i)
i,j=1

for i € I, where P = (t,2,9,7, 2,Z,w, W) € A; (see (2.6), (2.7)).

The matrices (Vii5(P))i,j=1,..,n are symmetric for all indices | € I and points
P € Aq; and for (1,1,7) fixed, v;;(P) > 0 for all P € Ay or ;;(P) < 0 for all
Pe A

There exist constants L1, Lo, Ny, Gy, g1 > 0, L, H; > 0and K; < 0,1 € I,
i=1,...,n, such that the functions oys, By, Vs, l,s €1, 4,5 =1,...,n, fulfil in
A7 the following conditions

ais >0 for I,s €I, | # s, (3.4)
> a <L for 1 eI, (3.5)
selq
ay+Y Jag] < —N, for 1 €Iy, (3.6)
s€ly
S for 1€ I, (3.7)
lags| < Ly for [ € I; and s € I, (3.8)
|Oéls| < Lo for € Iy and s € Il, (39)
|ﬁl7,| < Hli for 1 e Ig, (310)
Yiii — Z |35 >0 for [ € Iy, (3.11)
i=1
i ‘
gii < Vi *Z V151 for [ € I, (3.12)
J=1
i < G 7 for €Ly, i=1,...,n. (3.13)

There exist bounded functions dpmis, Pimi - élmi - R, l,s € I, m = 1,2,
i=1,...,n, such that for any two points (¢, z,y, z), (t,z,79,Z) € Oy,

@lmi(taxayv ) @lmz t x y7 Zélmzs ys) +plmz(P)(Z _E) (314)
sel

forlel;,m=1,2andi=1,...,n, where P = (t,2,y,7,2,%Z) € O1mi (see (2.6),
(2.7)).

. There exist bounded functions 6&pmis, Pimi @ O1mi — R, L€ Iz, s €I, m=1,2,

i=1,...,n, such that for any two points (¢, y,z), (t,2,79,Z) € Oy,

wlmi(t7xayv ) wlmz t x yv Z(Slmzs @s) +plmz(P)(z _E) (315)
sel

forlel, m=1,2andi=1,...,n, where P = (,2,9,7,2,Z) € O1mi-
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Fg. There exist constants G, Ij; > 0, Ry > 0 and Sp < 0,1 € I, m = 1,2,
i =1,...,n, such that the functions é;mis, pimi, l,s € I, m =1,2,i=1,...,n,
fulfil in ©1,,; and O,,;, respectively, the following conditions

(=1)"™61mis <0 for I,s€ i, | #s, (3.16)
5lmil + Z |5lmis‘ S _Ilmi for [ € -[2, (317)
er
355512 Stmi < O1mil for [ € I, (318)
[Otmis| < Lo for leland sel;, (3.19)
G<(=1)"pjrs > Oimis  for 1€, (3.20)
sel
Plmi >1 for [ e Il; (321)
0< (=)™ pyni < Ryi  for 1€ Iy, (3.22)
where Ly is given in F3, m=1,2,1=1,...,n.

Fr. A function u € Crey (2, RP) is a regular solution of differential problem (3.1), (3.2).
Fg. The difference quotients aim] have the form

Mij

. _{alM“’, if i=j or <0,
Mij _

. 3.23
alJrM”, if i#j and ;>0 (3:23)

N
for 1€ 1,i,j=1,...,nand M eJ 29 (see (2.20), (2.18)).
0

=

Remark 3.1. Assumptions Fy, Fy and Fs are equivalent to the Lipschitz condition,
but they are more useful in the other assumptions. Moreover, if the reaction functions
fi and the boundary functions ;, Y, are differentiable, then the bounded functions in
these assumptions may be equal, by the mean value theorem, to their suitable deriva-
tives.

Remark 3.2. If assumptions Fy and F3 (see (3.11), (3.12)) on the strong domination
of the main diagonal in the symmetric matrices (Viij(P))i j=1,...n forl € I and P €
Ay are satisfied, then differential system (3.1) is of the parabolic-elliptic type (the
degenerated parabolic-elliptic system with a parameter t) in the class of functions
u € Creg(,RP). This follows from the fact that the matrices (Yi;j(P))i j=1,..n are
positive defined and from the definition of ellipticity of the functions f; in [24], p. 132
(see also [7] and [27], p. 182).

4. DIFFERENCE PROBLEM

We give a definition of the difference scheme which will be applied to approximate a
solution of differential problem (3.1), (3.2).
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Definition 4.1. A difference scheme for differential problem (3.1), (3.2) is the system
of algebraic equations

§0a =,
Sta =, (4.1)
§2a =,

where a € F(Z,RP) (see (2.21)-(2.24)).

In the further part of the paper, we use the following assumptions on steps k£ and
h of the mesh Sgy,.
Assumption K:

K. The time step k and spatial step h are such that

- n 1
h™! (%u‘ -3 |’Ylij|) = 518l 20, (4.2)
=1
a7
1+ koy — 2kh ™2 Z Vs > 0 (4.3)
i=1

forl € I;,i=1,...,n and for all points belonging to A; (see (2.7), (3.3)).
K5. The step h fulfils the inequalities
Plimi + (_1>m_1h6lmil 2 0 (44)

forl € I, m=1,2,i=1,...,n and for all points in the sets élmi; m=1,2,
i=1,...,n, respectively (see (2.7), (3.14)).
K3. The inequalities 1
hilgli - §Hli >0, (4.5)

lelri=1,...,n, hold, where g;; and Hy; are the constants defined in F3 (see
(3.10), (3.12)).

Remark 4.1. If Assumption F holds, then there exists a sequence of steps k, h which
fulfil Assumption K and (k,h) — (0,0).

5. THEORETICAL STUDY OF THE SCHEME

5.1. EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF THE DIFFERENCE SCHEME

Suppose that Assumption F' holds and let A, = (A;)ier € F(Z,,RP) be arbitrary
for 4 = 0,1,...,N1. Define N; + 1 of the difference operators F* : F(Z,,R?) —
F(Z,,,RP=9), Fi' = (F")e,, = 0,1,..., Ny, by setting

M M . MI _ MII 0
filz™, 0™, 0", 0" ) for M€ Z)),

prAuM ] (zM,a™,a"")  for M € Zy, (5.1)
! Y12 (xM,aM7anZ) for M € Z,;, ’
(i=1,...,n),

where a := A% and a := (aM);cr € RP (see (2.19)).
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Let k; = ki(h) > 0, | € I, be arbitrary real numbers such that

-1
k< <min {Nl, nrliln2 {Iimi} }) , (5.2)

n —1
ky < <2h2 > G- Kl> , (5.3)
ki < (W™ Ripns — Stni) (5.4)

forlelo,m=1,2,i=1,...,n, where Ny, I;jni, Gis, Ki, Rimi, Simi are the constants
given in assumptions F3 and Fs. Denote by M®-OW+D"x@=)(N+1)" the set of
(p—q@)(N+1)"x (p—q) (IN+1)™ nonsingular real matrices and define the matrices
C = Clkgir,--- kp) = (C(LM)(S,T))(LM)EIQXZM e ME-)WAD"x(=a)(N+1)" =) —

(s, T)EIx X ZY

0,1,..., Ny, in the following way

cany (s, = ki0i 6 (5.5)

for I,s € Iy, M\,\T € Z,, p = 0,1,..., N1, where §7 and 01, are the Dirac delta
functions. B

Next, we define the discrete operators ®*“Ve : F(Z,,RP~9) — F(Z,,RP9),
PHCVi — (q)fcv") , w=0,1,..., Ny, associated with the discrete operators F'*

lels
and matrices C, by the formula

(I"LLC‘N/“A“' = A,u, + CF'U‘A}Lv (56)

where A, = (Au)ier, € F(Z,, RP™), A 1= (‘ZnAu)? ‘7# = (Vul)leh € F(Z,,R7) is
an arbitrary parameter.

Lemma 5.1. If Assumption F holds, then for any spatial step h of the mesh Sk and
p — q numbers ky = ki(h) > 0, 1 € Iz, given by inequalities (5.2)—(5.4),

H € (0,1), (5.7)
where
H=H(kgy1,...,kp) =max< 1 —kmin< NV, min {I;;} (5.8)
lels m=1,2

i=1,...,n

and Ny, Ijmi are the numbers defined by (3.6), (3.17).

Proof. Dependence (5.7) is a consequence of definition (5.8), inequality (5.2) and the
fact that the numbers Ny, I;,,; and k; are positive. O
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Lemma 5.2. If Assumptions F and K are satisfied, then for a fized p € {0,1,..., N1}
and a parameter V,, = (Vu)ier, € F(Z,,RY) the inequality

H (I)HC‘ZL Ap _ (bl‘cvu B

< H|A, - Byl (5.9)

is true for all A, = (Au)ier,, By = (Bu)ier, € F(Z,,RP~7), where OHCVe qre the
operators given by (5.6) and H is the constant in (5.7).

Proof. Fix p€{0,1,..., N1} and a parameter ‘7u € F(Z,,R?).

Put A, = (V,,A,), B, := (V,,B,) for arbitrary mesh functions A,, B, €
F(Z,,Rr19).
For simplicity of notation, let

R, = A, - B, (5.10)
D, 1= oHCVudn _ pnCViBi (5.11)

Then, from definitions (5.5), (5.6), (5.10) and (5.11), it follows that

dM =M g k(B FFBMY for 1€ I, M e 2, (5.12)
where rlM = R%, d{VI = D%.
We now define real numbers C%’T = C%’T(PZM ) depending on points PM, [ € I,

sel, MeZ,, TeS({I,M)U{M} (see Section 2.3), as follows: if M € Zg, then

n n
oy — 2h~2 Z Yiii + h—2 Z |’ylij| for T=M, s=1,
i=1 ig=1

i

aps for T=M, s#1,

M,T
C 5' = n .
1, [ 21 Iviiil | + %(_1)%” for T = (=1)i(M), s =1,
T
Ih72yy| for T = (=1)%i((=1)e(l,i,5)j(M)), s =1, i # j,
(v=1,2, i,5=1,...,n),
(5.13)
where
oo =10 di=5 or o <0,

ell,i.j) = { 1, if i#j and 4 >0, (5.14)
PlM = (xM,aM,bM,al]‘/”,bl]V”,af\/”I,bf\/”I) €EApIEMEeZ, i,m=1,2,i=1,...,n,
then

Stmir + (=D)™h " pp for T =M, s=1,
¢ s =94 Omis for T=M, s#lI, (5.15)
(_1)m+1h_1plmi for T = (—1)m+1i(M), s = l,
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where PM = (xM,aM,bM,afm_,bfm_) € ©11; for M € Z,; and PM =
(a:M,aM7bM,ani7bei) € Oqg; for M € Z,,5;. In this definition: oy, = als(PlM)7
Bii = Bi(PM), viig = Yiii (PM), Simis = Simis(PM)s pmi = pimi(PM).

Further, by virtue of assumptions Fy, Fy, Fy, Fj, definitions (5.1), (2.18),
(2.19)—(3.23) and (5.13), (5.15), we get

A, M uB, M M,M; M M M,M M M,T T
Fyoem —F 7§ c (v — vy )Jrg s Ts + g a, o (5.16)

l,s
s€l s€ly TeS(1,M)

for 1 € I, and M € Z,,, where vM := VM,

ns
(5.16) and (5.12) imply
4 = (1+ kzc%’M)mM + ki ( Z cf\é’Mr;VI—&- Z c%’TrlT> (5.17)
se;éllz TeS(l,M)
s

forl € I and M € Z,.
To prove the statement of the lemma, we take 7 € Iy and A € Z,, such that

42| = 1D, (5.18)

We consider two cases:

a) Ae Z),

b) A€ Z,n; for some m € {1,2} and i € {1,...,n}.

In case a), from definition (5.13) of the coefficients cl]z’T, according to assumptions
(3.7), (3.13) and inequality (5.3), we conclude that

L+ ke =1+k, (aTT 2072 oy h Ty 'V'rij> >
i=1

ij=1
i#J (5.19)
>1+k, (KT —2n72 )" Gﬂ) > 0.
i=1
Moreover, assumptions (3.10), (3.12) and (4.5) give
hil Yrii — . ‘7Tij| + 1(_1)11/67'1' Z hilgTi - }HT’L' Z 0 (520)
= 2 2

Jj#i
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for v = 1,2. Applying formulas (5.13), (5.14), (5.17), (5.18), the above inequalities,
assumption (3.6) and definition (5.8), we can write

1Dl < |1 —|—]€ch);“‘ +]<;T<

s€ly
sHET

sels
SET

i=1

n 2

DD NI Sy

i=1lv=1

n 2
+ %h_2 > %z‘j|>

i,j=1v=1
i3]

< (1= ke N)|Ry |l < HIR, |-

Yo e+

= 1+k7<cﬁf+z |cﬁgA|+ Z

[R,ull =

||RMH =

S e )

TeS(r,A)

=)

1Ryl =

TeS(1,A)

= |1+ kT <a7‘r - 2h_2 Z Yrii + h_2 Z "Y‘I’lj‘ + Z |a75| +

ij=1 s€l,

i SHET

n
(%u— > el > +
i=lv=1 Jj=1
J#i
1+ k&, (CV7—7—+ Z |a‘rs|> ||RH|| <
s€ly
SHET

In case b), using definition (5.15) of the coefficients c%’T, assumptions (3.18),

(3.22) and inequality (5.4) gives

1+ kTC:";—A =1+ kT((STmiT + (_1)mh71p7mi) 2
> 1+ kT(ST’I’I’Li -

As a consequence of (5.15), (5.17), (5.18), (5.21), assumptions (3.17), (3.22) and
definition (5.8), the following estimate is true

[1Dul

A

|1+ k2 +kT<

sely
SHET

s€ly
SHET

= |14k, <5‘rmi‘r+ Z |5TMiS‘

sely
sHET

Thus the proof is finished.

= |1+k, (c;“;:br S e+

Yol +

=1+ kT <6Tmi'r + (_l)mh_lmei+ Z ‘67'mis| + (_1)m+1h_1p7mi>
L s€ls

)

[Ryll =

> )

TeS(r,A)

S s ) 1Ryl —
TeS(1,A)
|Rull =
SET
IRl < (1= kr L) |Rull < H||R, -
]
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Theorem 5.1. If the assumptions of Lemma 5.2 hold and
Qi € C (émi) for lel, m=1,2, i=1,...,n, (5.22)

then difference scheme (4.1) has the unique solution in the space F (Z,RP).

Proof. To prove Theorem 5.1, first, using Algorithm 1 formulated below, we construct
a solution of difference scheme (4.1) and then show that it is unique.
Algorithm 1.

Step 1. Put p:= 0 and a = ug (a™) for l € I, M € Z.
Step 2. If p > 0, then solve the system of ¢[(N + 1)" — (N — 1)"] algebraic equations

Plii (CCMyzii(M%afW*)‘: 0 for M€ Z,u,
Qi2i (M, @71 g7 MY =0 for M € Zya;, (5.23)
(lel,i=1,...,n)

in ¢[(N +1)" — (N —1)"] unknowns a}*, l € I, M € 8Z,.
Step 3. Solve the system of (p — q)(N + 1)™ algebraic equations

fi (:cM,aM,af”“,alMH) =0 for MGZS,
Mi—
14 (J:M,aM,al ! ) = for M € Z,;,

, 5.24
Prgi (™, aM a7 M) = for M € Z,9, (5:24)
(l €l i= 1,...,n)
in (p—¢q)(N +1)" unknowns a, l € I, M € Zy.
Step 4. Tf = Nj, then FINISH.
Step 5. 5. Solve the system of ¢(IN — 1)™ algebraic equations
af\/F =i (xM,aM,awa,alMH) for M e Zg, lely (5.25)

in ¢(N — 1)™ unknowns a;rM, lelh, M e Zﬂ. Then put g := 4+ 1 and go
to Step 2.

We start to construct the desired solution v € F(Z,RP) of (4.1).

Put p:= 0 and a}¥ := ug (zM), 1 € [1, M € Zy, in Step 1 of Algorithm 1.

Then we omit Step 2, because p = 0, and go to Step 3. We wish to find a solution
Vo = (Vor)ier, € F(Zy,RP79) of (5.24) for p = 0. Put

Vo = Voier, € F(Zo,RY), V! :=aM (5.26)

forl € I, and M € Zj. Tt is easily seen that system of equations (5.24) is equivalent
to the equation
FO%0 — (5.27)

for u = 0, where the operator FV is defined by (5.1), Ag := (1707140) € F(Zy,RP),
Vo is the parameter given by (5.26), and Ay € F(Zy, RP79) is any mesh function.
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Then non-singularity of the matrix C in (5.5) implies that (5.27) is equivalent to an
equation of the form

POV = 4, (5.28)

(see (5.6)). By Lemmas 5.2 and 5.1 and the Banach fixed-point theorem, it follows
that the last equation has the unique solution V{. This is also the unique solution of
(5.24) for p = 0.

Next we go to Step 5, taking a} := V}! for | € I, M € Zy, because u =0 < N;
and step 4 is omitted. As system of equations (5.25) for u = 0 is the explicit difference
scheme, we compute numbers an for l € Iy, M € Z) uniquely. Put p:=1 and go
to Step 2.

By consideration of assumptions (3.21), (5.22) and the implicit function theorem,
in Step 2, in F(0Z1,RY) there is exactly one solution of system (5.23) for u = 1.

Then we set the parameter

‘71 = (‘71l)l611 S F(Zl, Rq), ‘7111\4 = (lljw (529)
forl € I and M € Z;, where the numbers a{w are computed above, and go to Step 3.
The procedure is repeated until © = Ny in Step 4.
Thus, the system of mesh functions

V= (VM,VM)M:O,.le (5.30)

is the solution of difference scheme (4.1), where V,, and ‘7,“ w=20,1,..., Ny, are
uniquely determined as above with use of Algorithm 1.

Suppose now that difference scheme (4.1) has another solution w. From the form of
(4.1), there exists po € {0, 1, ..., N1} such that system of equations (5.23) for yu = po,
o > 0, or system of equations (5.24) for u = po has at least two different solutions
in F(0Z,,,R?) or F(Z,,,RP™?), respectively. But we have proved, constructing v in
(5.30), that each of these systems has exactly one solution for each p. This gives a
contradiction.

This completes the proof of Theorem 5.1. O

5.2. CONVERGENCE OF THE DIFFERENCE METHOD

In this part we deal with the convergence of the method considered. The error estimate
of the approximate solution of differential problem (3.1), (3.2) will be given. To this
end, we first formulate and prove some lemmas and prove that the difference method
is consistent.

Lemma 5.3. Fiz p € {0,1,...,N1}. Let real functions c;\’i’M and C%’T, l € Iy,
sel, MeZ, TeS(,M), defined in arbitrary domains and a mesh function D,, €
F(Z,,RP9) be given. Suppose that a mesh function R, = (R,, R,) € F(Z,,R9) x

F(Z,,RP~7) is a solution of the system of algebraic equations

M,M M M,M M MT T _ M
Z cl,s Ts + Z Cl,s Ts + Z cl,l Ty = dl (531)
s€ly s€lz TeS(,M)
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forl € I, M € Z,, where dlM = DIJY[ rM R%, = Rfl, and let indices
T=1(p) € I, A= A(u) € Z, fulfil the condition
2] = Ryl - (5.32)

If, moreover,

(1) there exz'sts a constant X = A(p) > 0 such that in the domains of the coefficients

A and 2T, s €1y, T € S(r, A), the inequality
e = | 2 fendtl+ 30 fenS ] =X (5:33)
s€l TeS(t,A)
sAET
holds,

(2) there exists a constant L = L(u) > 0 such that in the domains of the coefficients

cﬁgA, s € I, the estimate

22 <L (5.34)
s true,

then

S (Idi‘l LIy m) | 55

sely

1R < X7 (104l + oL |[By]). (5.36)

Proof. Fix u € {0,1,...,N;1} and note that inequality (5.36) is a consequence of
relation (5.35).
Applying assumption (5.33) to system (5.31), it is easy to verify that

dA 2 CAAA — AA A_|_§ CAAA E 671_4’,7_717,77: >
sel; S§I2 TeS(T,A)
AA 44,4 AT.T
> et - | T e > ar|s
sel TeS(r,A) (5.37)
SFET
AA AT A
- (i 3 )| s
s€lz TeS(r,A)
SAT
3 |..A
> 3.
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The formula (5.37) and assumption (5.34) lead to

|r;4|§)\ dA ZCAAAg (dﬂ—l—Z}c ||r )
sel; sel;
Ty ).
sl
giving (5.35) and concluding the proof. O

Lemma 5.4. If the assumptions of Lemma 5.2 are satisfied, then for a fized p €
{0,1,..., N1} and all mesh functions A, = (A,, A,), By = (By,B,) € F(Z,,R?)
x F(Z,, RP=1),

14 = Bl < A [[F#4% = FrPe|| 4 qLo || A, - B ). (5.38)
where
-1
A= (mm {Nl, HllIl {Ilmv}}) ) (5.39)
lels 1

F* are the operators given by (5.1), Lo is the constant in assumptions Fs, Fg and
Ny, I are the numbers defined by (3.6), (3.17).

Proof. Fix p € {0,1,...,N;} and let A, = (ZM,AM)7 B, = (EuaBu)
€ F(Z,,R%) x F(Z,,RP~%) be arbitrary mesh functions.
Put
R,LL = A# — BN” RN’ = A# - Bl“ Rp, = (R,LHRM)? (540)
D, := F#Au — piBu, (5.41)

Now, reasoning similarly as in the proof of Lemma 5.2, we can write

1A, M pBLM _ MM, M MMM M,T T
F, - F E . + E c E T (5.42)
sely sels TeS(,M)

for l € I and M € Z,, (see (5.16)), where C%’M, C%T are the numbers defined for
A, B, analogously as in (5.13), (5.15), and rM := R%, rl =R

Therefore, it is obvious that the mesh function R, in (5.40) is a solution of a
system of algebraic equations of the form

ST MMMy D MMM SN MTLT g (5.43)

sel s€ly TeS(1,M)

forl € I, and M € Z,,, where dM := DM This system is of the type (5.31) in Lemma
5.3.
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We show that if the indices 7 € Iy and A € Z, are defined as in (5.32), then the
assumptions of Lemma 5.3 are satisfied for

A=A L:=L,. (5.44)

Indeed, estimate (5.34) follows from definition (5.44), and formulas (3.9) in as-
sumption F3 and (3.19) in assumption Fg.
Next, to prove inequality (5.33) we consider two cases:
a) Ae Zy,

b) A € Z,m; for some m € {1,2} and i € {1,...,n}.

In case a), addition of assumptions (3.6), (3.10), (3.12), (4.5), formula (5.20), defini-
tions (5.13), (5.44) and relation (5.39) yields

- (Sletts 3 ) -

s€lr TeS(r,A)
SHET
= aTT_2h 2ZIVT’LZ+h_ Z |’YT1,J| Z |a78‘_
5,j=1 s€ly
i#]j SHET
n 2 n 1 1 n 2
—h! ZZ h! <%n‘ - Z |'7-rij|> + 5(—1)”@1' - ih_Q Z Z |Vriz| =
i=lv=1 j=1 i,j=1v=1
J#i i#]
= |Qrr — h™ 2 Z |7Tt]| 2h 2 Z <’7ﬂz Z |’y‘rzj|> ‘
i,j=1
i#] 3751
72|a79‘72h 22 (’an Z|’Yﬂj|) —h? Z vrijl =
s€lz i,7=1
s#r i i#j

-, +h™ 2 Z h/ﬂ]‘ + 2h™ 2 Z (’Y’ru Z |77'zj|>

7,7=1

i#£] J;ﬁz
n
SISEDS (7 Zw) H S gl =
s€ly i,j=1
SET J#i i7#]
e = Y lan 2 N 2 %

s€ly
SHET
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In case b), from assumptions (3.17) and (3.22), definitions (5.15) and (5.44) and
relation (5.39), we get

- (Tt X ) -

sE€ly Tes(r,A)
sET
= ’6TmiT + (_1)mh_1prmi| - Z |5Tmis‘ - |(_1)m+1h_1p7'mi =
se€ly
SFET
= —0rmir — (_l)mhilprmi_ Z |6Tmis| - (_1)m+1h71p7mi =
s€ls
s#T
= _5Tmi'r_ Z |5'rmis| > I'rmi > A
s€ls
sAT
Owing to a) and b), the statement of this lemma is a result of Lemma 5.3. O

Definition 5.1. We say that a sequence of difference schemes of form (4.1) approz-

imates differential problem (3.1), (3.2) on its regular solution u € Cyreq(2,RP) or
briefly that difference method (4.1) is consistent if

|’|

where U € F(Z,RP) are the restrictions of u to the meshes Skp,.

lim maX{HSOUH,HSw
(k,h)—(0,0)

s} =0,

Theorem 5.2. If Assumption F holds, then difference method (4.1) is consistent in
the sense of Definition 5.1.

Proof. The consistence of difference method (4.1) follows immediately from the reg-
ularity of u and continuity of the mappings f;, @im; and ¥,; with respect to y, z, w
in suitable sets (see Fy, Fy, F5). O

We now go to the main problem of the paper, the problem of the convergence of
difference method (4.1).

Let U € F(Z,RP) be the restriction of the regular solution u € Ci.,(Q2, R?) of
differential problem (3.1), (3.2) (see assumption Fy) to the mesh Sip, i.e. UM :=
w(xM) for I € I, and let v € F(Z,RP) be the solution of difference scheme (4.1) (see
Theorem 5.1).

Definition 5.2. Difference method (4.1) is uniformly convergent if

lim ||r]| =0,
(k,h)—(0,0)

where r :=U —v € F(Z,RP) is the error of this method.

Let U, = (ﬁ#,U#) € F(Z,,R?) x F(Z,,RP~?) be the restriction of U to the
intersection Z,, of Z, n=0,1,..., Ny.
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Next, we define the mesh functions e* € F(Z,, R?~?) by the formula
e M for 1Ly, M€ Z,, p=0,1,..., Ny, (5.45)
where F'* are the operators in (5.1).
Lemma 5.5. If the assumptions of Theorem 5.1 hold, then

[ < A (el + aL2 || ) (5.46)

forl e Iy, M € Z,, n = 0,1,..., N1, where r is the error of the method, ﬁu €
F(Z,,R9), R% = 1M forl € I, e" are the functions defined by (5.45), \ is the
constant in (5.39) and Lo the constant in assumption Fs.

Proof. Fix p € {0,1,...,N;} and define V,, = (V,,,V,,) € F(Z,,R%) x F(Z,, RP79)

as the restriction of v to Z,,.
Since

18 Vv
FEYw R “:5”,

we have by Lemma 5.4

10 = Vil < Al + aLa || Rl

),

and therefore inequality (5.46). O

Further, we put
K :=q(p—q)L1 L2, (5.47)

where the constants L, Lo arise in Assumption F' and A is given by (5.39), and
Ni—1 Ny

introduce the mesh functions n € F( U Zg,Rq) and 7,,; € F( U Zumi,Rq>,
pn=0 p=1

m=1,2,i=1,...,n, defined by

nl]\/l = UlMi - fl (va UMa UlMIa lMII) )
™ = o (xM’ i, UIMZ;) 7 (5.48)

T]éwzl = Q12 (zMa Uﬁi(hj)a Ul_Mi>

for [ € I and M belonging to suitable sets.
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Moreover, we define the real valued functions e, ey, &, &,, &, €* for m = 1,2,
w=0,1,..., N1, depending on steps k and h, by setting

e(k, h) = |Inll,

m(k,h) = Jmax [7mill
g(k,h) = max {em(k,h)},
e (5.49)
Eu(k, h) :=e(k,h) + (p — ) LA [[e"]],

g(k,h) == max  {E,(k,h)},

pn=0,1,...,Ny
g(k,h
e (k, h) == E(k,h)+(L+K)E(C; )

(see (5.48), (3.8), (5.39), (5.45), (3.4), (3.5), (5.47) and (3.20)).
Making use of the above functions, we define the mesh function y € F(Z,R) as
follows

T AL AR+ KO =1y + SG for M € Z,
g = (1= nG) (AL R+ KNP =1+ ) hz(e, ) (5:50)
for M e€0Z,.

We will apply it to estimate the error of the difference method.

Remark 5.1. Suppose that the assumptions of Theorem 5.1 are fulfilled. Then there
holds

1—-hG >0, (5.51)
y > 0. (5.52)

Proof. Observe that assumptions (3.20), (3.16), (3.21) and (4.4) yield

1_hG21+( m 1hplmlzélmzs:

sely
= 1 + (_l)m_lhp;niiélmil +( ’m lhplmz Z §lmzs -
sely
s#l
forlel;, m=1,2and i =1,...,n, which gives (5.52). O

As a consequence of the above lemmas, definitions and remark we obtain the
following conclusion.

Theorem 5.3. Let the assumptions of Theorem 5.1 hold. Then
(i) || <yM for lel, MeZ, (5.53)
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(ii) ’rlM‘ < M(||e]| + qLay™) for 1€, M€ Z,, p=0,1,...,Ny, (5.54)

(iii) difference method (4.1) is convergent in the sense od Definition 5.2,
where r is the error of the method (see (5.50), (5.45), (5.39), (3.9), (3.19)).

Proof. Note that

eTLHE) _q g(k, h)

* for M € Z. .
T (k) + +65(k, h) for M e (5.55)

yo =
Then, it is obvious that the convergence of (4.1) follows immediately from (5.55),
the estimates in (i), (ii) and the consistence of the method (see Theorem 5.2).
From Lemma 5.5 and statement (i), statement (ii) follows. Therefore, it remains
to show (i).
We use the maximum principle (the monotonicity theorem) of [10] to the following
system of difference functional inequalities of the parabolic type

M7 <8k, )Y o [P D Bl ™ D> g M K x| [ (1K), (5.56)

sely i=1 i,j=1
yMT =k )Y asy™+ D Buy™ > wiy™ I + Kyl (uk) (5.57)
sely =1 1,7=1

Ni—1
forlel, M€ U Zy) (see (2.9), (2.15), (2.18), (5.47), (5.49) and assumption F});

pn=0
r| <y™ for lel, M e Z; (5.58)
M > 2k, Wi — ot D Gis i (5.59)
sely
yM < —a(k i — pii Y Oy (5.60)
sely
Ny
forleh, Mely Zu,,t=1,...,n; and
pn=1
‘rl‘i g(k h pl21 pl21 Z 61215 ‘; (561)
sely
y M > E(k, W) — pipt D Oizisy M (5.62)
sely

Ny

fort € I, M €U Zuu, i = 1,...,n (see (2.16), (2.18), (5.49) and assump-
pn=1

tions Fy, F5). Note that [ry|™™, |r|™", |r|MY Mi—

, | and |r|”™" are the
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suitable difference quotients for the mesh functions |r;| € F(Z,R*), || =

|rM], and |r| = S[r|] where |r| := (Jri|)ier, (see (2.25)—(2.27)). Moreover,
as = ais(PM), Bu = Bu(PM), viij = ij(PM), Otmis = Otmis(PM), pimi =
pimi(PM), where PM = (M UM oM UgMI oM MIT oMITY € Ay in (5.56),

(5.57); PM = (M, Ui i) gMi= o Mizy e 9y, in (5.59), (5.60); PM =
(2M, U1 i) r=Mi oy =Miy ¢ @y in (5.61), (5.62).

Inequality (5.58) is clear.

Next, we fix l € [, p € {0,1,...,N; — 1}, M € Zg and prove inequalities (5.56),
(5.57).

Observe that definitions (5.48), (4.1), (2.19), (2.20), (3.23) and assumptions F},
F lead to

PM= = M g gy (M UM UM UMITY - f (M oM M gMITY =
- i\ Mij (5.63)
=M+ Y (Pt Bu(PM)r Y (B
sel i=1 i,j=1

After having grouped the suitable expressions in (5.63), in view of assumptions K7,
Fy, F3 and definition (5.49), we get the estimate

|r M| < ke(k, h) + (1 + ko — 2kh™2 ) W) M+ kD> g M|+
i=1 sely

s#l
n [ n 1 )
_ _ i(M
+khNY A 1(%‘1‘— > |71z'j|> + 5P ! )‘ +
i=1 L j=1 |
i
- n [ B n 1 7] »
+kht Z h! (’Wii— Z |’)’lz‘j|> - 5,311' T (M)’ + (5.64)
=1 L ];1 i
FE]
1 - ie(lyirg)j —i(—e(l,i,5)j
+ kb7 Y gl <2|7"zM| [P0 | mitoet ,J>J(M>>‘>+
z,i];l
+k Z |ays| ‘réw ,
sely
where
- —1, it MU =M
G(Z,Z,]) = { 1, if ,rlll\/IU _ 7"ll+Mij
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fori,j=1,...,n,1# j (see (2.18), (3.23)). Hence, from Lemma 5.5 and assumption
F3, there follows

| M < e(k,h)+ Z ags [r] + Z Bui o™ + Z iy M +
i=1

seh i,j=1 (5.65)
+ (= LA (I + gl || R )
where R := rM. Combining the fact
| B = 11 11 (5.66)

(see (2.17), (2.9)) and formulas (5.65), (5.47), (5.49), we obtain inequality (5.56).
We now prove inequality (5.57). For simplicity, we introduce a notation

wo._ 5*(k7h) w_ g(k@h)
=T {I1+k(L+K)"—-1}+ o (5.67)
Note that if A € 07, then
yt —yM = (1 - hG)z" + hg(k,h) — 2V =
& (k,h) p Ekh)
hGe*(k, h) u
Ti kK {I+k(L+K)*-1}<0
Therefore, by (5.54), (5.67), (5.68) and Remark 5.1, there holds
[yl (k) = 2" (5.69)
and
yM = % (7 = 2) =
e*(k,h) +1
=—" 1+ kL+K)"" -[1+k(L+K)]"}=
W 1) AR BOPT = [ k(L ) 570)
_ Skh) ’ -
Y M+ k(L+K))'1+kL+K)—1] =

= &*(k,h) [1 + k(L + K)*.

Then observe that

& (k, 1) [1+ k(D4 K = (if’;) (kLK) —1} + 5“2“) (L+K)z |
5.71
g(k,h)

S (LK) + 2" (k, h).
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By (5.70), (5.71), (5.49), (5.67) and (5.69), we can write
g(k,h)

]

(., h)

M= — ML+ K)— L+ K)+&k,h L+K)=
y (L + K) o L+ E)+Ekh) + =~ (L +K) (5.72)
=&(k, h) + Ly™ + K|ly||(uk).
Note that (5.68) and assumption K; imply
Zﬂlini‘f' Z Yy < 0. (5.73)
i=1 ij=1

A proof of this inequality is similar to that in [12] and is omitted. The above two
relations and assumption F3 give (5.57).

To verify inequalities (5.59), (5.60), we fix [ € I, i € {1,...,n}, p € {1,..., Ny}
and M € Z,1;.

From (5.48), (4.1), (2.19), (2.18) and assumption Fy, it is obvious that

M = eni (xM’ﬁi(M)’ UlMi_> — Qi (mM,’ﬁi(M)7vzm_) —

= Suasrt™ 4 i =

sel
j i 5.74
:Z S11isme ™) + W iy (TZ(M) - TlM) = (5.74)
sely
=" bt + h = onary ™ — L.
sely
After having grouped the expressions, these equalities are equivalent to
prirtt =h > Gt 4 (hépa + pini) M — gl (5.75)
sely
sA£L

Use of assumptions Fg, Ko and definition (5.49) imply

pui || < h Z diis

ri(M)‘ + (p11i + hdar) ‘T;(M)‘ + he(k, h),

S

sel
sl
(puss + howaa) [ri ™| = puas [ = 1 > Guais [riD| = hz(h, ),
sel;
s#£L
pui || ™ = =2k, h) =Y s Té(M)"

sely

and hence immediately (5.59).
Next, we examine (5.60). It is clear that the difference quotient ™~ can be
written in the equivalent form

M- — Gy M) —&(k, h), if _z’(M) €z,
0, if i(M)edz,.

(5.76)
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Since, if i(M) € 0Z,,, then Gy*™) —Z(k,h) > 0 (see (5.50), (5.49) and Remark 5.1),
by (5.76) we get ‘ ‘
yMi= < Gy'™) —z(k, h). (5.77)

Application of assumption Fgz and Remark 5.1 gives the estimate

Gy'™ —2(k, h) < =2k, W)pigs — Py Y Sy ™
sely
and by (5.77), inequality (5.60).
Inequalities (5.61) and (5.62) are proven in the same manner.

The application of the maximum principle in [10] to system of inequalities
(5.56)—(5.62) concludes the proof of Theorem 5.3. O

6. NUMERICAL RESULTS

To illustrate a little the class of problems which can be treated with our method we
consider a system of differential equations of the form

Dyuy (t, ) = arctg(D2uy (t, ) + uz(t, 2) + g1(t, v), (6.1)
D2uy(t,x) + cos (u1(t,z)) — uz(t, z) = ga(t, ) ’
for (¢t,2) €[0,1] x (0, 1), with the initial-boundary conditions
u1(0, ) = sin, x € [0,1],
D,y (¢,0) — up(t,0) = cost — sint, t e (0,1],
Dyui(t,1) +ui(t,1) =cos(t+ 1) +sin(t+1), t¢e(0,1], (6.2)
ug(t,0) —uy(t,0) = cost —sint, te0,1],
ug(t,1) —ui(t,1) = cos(t+ 1) —sin (t + 1), t € [0,1],

where g1 (t,x) := arctg(sin (t + z)), g2(t,x) := cos(sin (t + x)) — 2cos (t + z). It is
obvious that problem (6.1), (6.2) is a special case of (3.1), (3.2) withn =1, 6 =1,
T=1,E=(0,1) and Q = [0,1] x (0,1). Moreover, Assumption F' and assumption
(5.22) are fulfilled.

Observe that the analytical solution of (6.1), (6.2) is given explicitly by u;(¢,2) =
sin (t 4+ x), ua(t, ) = cos (t + x). It will be compared with numerical results.

Difference scheme (4.1) corresponding to the above differential problem has the
form

aM = sin 2™, w=0, m € [0, NJ,

a{wj\; = arctg a; M+ ad! + gy (M), we0,N —1], me[l,N —1],
az MM 4 cosal — ad! = go(xM), w € [0, Nq], m e [1,N —1],
A a}(M) = costh — sintH, wE [1, Ny], m =0, (6.3)
ay M+ afl(M) =cos (t" + 1) +sin (t* + 1), p € [1, V1], m =N,

adf —aM = costt — sinth, w € [0, Nq], m =0,

adf —aM = cos (t* + 1) —sin (* + 1), w € [0, Nq], m =N,

where M = (u,m) € Z? (see Section 2).
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Let Ny = 10* and N = 0.5-10%. Then k = 10~* and h = 2- 1072, Assumption
K holds for such the steps. Therefore, by Theorem 5.1, scheme (6.3) has exactly
one solution v = (v1,v2) € F(Z,R?) and, by Theorem 5.3, the numerical method is
convergent.

Let r = (r1,72) € F(Z,R?) be the error of difference method (6.3), where 71 :=
Up —v1, 1o i= Uy — vg, UM := uy (™), UM := uy(zM). Moreover, let ¢! &2 be

max? max
1 2 : :
the largest and €;,.0ns Eoean Mean value of the errors |1, |ra|, respectively, at the
moment t#.

Table 1. Table of errors of the difference method

tu 6'}”@1’ egnecm agrmx 8$nean

0.1 6.03-102 | 1.70-10723 | 6.03-1073 | 2.68-1073
0.2 798-1072 | 3.13-107% | 7.98-1073 | 3.95-1073
0.3 9.41-1073 | 4.58-1073 | 9.41-1073 | 5.19-103
0.4 | 1.06-102 | 6.06-10"3 | 1.06-10"2 | 6.43-10~3
0.5 | 1.17-1072 | 7.56-1073 | 1.17-1072 | 7.68-1073
0.6 | 1.28-102 | 9.09-1073 | 1.28-10"2 | 8.92-1073
0.7]139-1072 | 1.06-10"2 | 1.39-1072 | 1.01-1072
0.8 1.49-1072|1.22-1072 | 1.49-1072 | 1.13- 102
0.9 | 1.58-1072 | 1.38-102 | 1.58-1072 | 1.26- 102
1.0 | 1.67-1072 | 1.54-1072 | 1.67-1072 | 1.38-1072

The table of errors (Tab. 1) is typical of difference methods. The computation
was performed on a PC computer.
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