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FURTHER PROPERTIES OF THE RATIONAL
RECURSIVE SEQUENCE xn+1 = axn−1

b+cxnxn−1

Abstract. In this paper we consider the difference equation

xn+1 =
axn−1

b + cxnxn−1
, n = 0, 1, . . . (E)

with positive parameters a and c, negative parameter b and nonnegative initial conditions.
We investigate the asymptotic behavior of solutions of equation (E).
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1. INTRODUCTION

In this paper we consider the following rational difference equation

xn+1 =
axn−1

b + cxnxn−1
, n = 0, 1, . . . (E)

where b is a negative real number and a and c are positive real numbers and the
initial conditions x−1, x0 are nonnegative real numbers such that at least one of them
is positive. Eq. (E) in the case of positive b was considered in [1].We use the explicit
formula for solutions of Eq. (E) in investigating their behavior.

There has been a lot of work concerning the asymptotic behavior of solutions of
rational difference equations. Second order rational difference equations were inves-
tigated, for example, in [1–13]. This paper is motivated by the short notes [4], where
the author studied the rational difference equation

xn+1 =
xn−1

−1 + xnxn−1
, n = 0, 1, . . . .
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2. MAIN RESULTS

Let p = b
a , q = c

a . Then Eq. (E) can be rewritten as

xn+1 =
xn−1

p + qxnxn−1
, n = 0, 1, . . . . (E1)

The change of variables xn = 1√
q yn reduces the above equation to

yn+1 =
yn−1

p + ynyn−1
, n = 0, 1, . . . (E2)

where p is a negative real number, the initial conditions y−1, y0 are nonnegative real
numbers such that at least one of them is positive. We will also assume y0y−1 6=
pn(1−p)

pn−1 for n = 1, 2, . . ., p 6= −1 and y0y−1 6= 1 for p = −1 (which ensures that the
denominator in Eq. (E2) is not equal to zero). Hereafter, we focus our attention on
Eq. (E2) instead of Eq. (E). Note, that the solution {yn} of Eq. (E2) with y−1 = 0
or y0 = 0 is oscillatory. In fact, in this case there is

{yn} =
{

0, y0, 0, y0
p , 0, y0

p2 , . . .
}

or {yn}=
{

y−1, 0, y−1
p , 0, y−1

p2 , 0, . . .
}

.

Obviously, if p = −1, these solutions are 4-periodic.
Here, we review some results which will be useful in our investigation of the behavior
of solutions of Eq. (E2).
Let I be some interval on the real line and let f : I × I → I be a continuous function.

Definition 1. ([8]) For every pair of initial conditions (x−1, x0) ∈ I×I, the difference
equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (E3)

has the unique solution {xn}∞n=−1, which is called a recursive sequence. An equilibrium
point of (E3) is a point α ∈ I with f(α, α) = α; it is also called a trivial solution of
Eq. (E3).

Definition 2. ([13]) Let α be an equilibrium point of Eq.(E3):

(i) α is stable if for every ε > 0 there exists δ > 0 such that for any initial condi-
tions (x−1, x0) ∈ I×I with |x−1 − α|+ |x0 − α| < δ, the inequality |xn − α| < ε
holds for n = 1, 2, . . .;

(ii) α is a local attractor if there exists γ > 0 such that xn → α holds for any initial
conditions (x−1, x0) ∈ I × I with |x−1 − α|+ |x0 − α| < γ;

(iii) α is locally asymptotically stable if it is stable and is a local attractor;
(iv) α is a repeller if there exists γ > 0 such that for each (x−1, x0) ∈ I × I with

|x−1 − α|+ |x0 − α| < γ, there exists N such that |xN − α| ≥ γ.

Assume α is an equilibrium point of Eq. (E3). Let r = −∂f(α,α)
∂xn

,

s = −∂f(α,α)
∂xn−1

. Then the linearized equation associated with Eq. (E3) about the
equilibrium α is

zn+1 + rzn + szn−1 = 0. (E4)
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Theorem A ([7])(Linearized stability theorem).

(i) If |r| < 1 + s and s < 1, then α is locally asymptotically stable.
(ii) If |r| < |1 + s| and |s| > 1 then α is a repeller.

The equilibria of Eq. (E2) are the solutions of the equation

ȳ =
ȳ

p + ȳ2
.

So, equilibrium points of Eq. (E2) are ȳ = 0 and ȳ = ±
√

1− p. The local asymptotic
behavior of the zero equilibrium of Eq. (E2) is characterized by the following result.

Theorem 1. The following statements are true:

(i) if p ∈ (−∞,−1), then ȳ = 0 is locally asymptotically stable;
(ii) if p ∈ (−1, 0), then ȳ = 0 is a repeller.

Proof. For Eq. (E2), there is

∂f

∂yn
= −

y2
n−1

(p + ynyn−1)2
,

∂f

∂yn−1
=

p

(p + ynyn−1)2
.

Therefore, for ȳ = 0 we get r = 0, s = − 1
p and the linearized equation associated

with Eq. (E2) about the equilibrium ȳ = 0 is

zn+1 −
1
p
zn−1 = 0.

(i) The result follows from Theorem A(i) and the following relations

|r| − (1 + s) = −1 +
1
p

< 0,

and
s = −1

p
< 1.

(ii) The result follows from Theorem A(ii) and the following relations

|r| − |1 + s| = −
∣∣∣∣p− 1

p

∣∣∣∣ =
1− p

p
< 0

and
−1

p
> 1.

This completes the proof.
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It is easy to see that the method use in the proof of Theorem 1 in [1] can be use
in our case too. Thus the following formula

yn =



y−1

n+1
2 −1Q
i=0

[p2i+y0y−1

2i−1P
k=0

pk]

n+1
2 −1Q
i=0

[p2i+1+y0y−1

2iP
k=0

pk]

for n odd,

y0

n
2 −1Q
i=0

[p2i+1+y0y−1

2iP
k=0

pk]

n
2 −1Q
i=0

[p2i+2+y0y−1

2i+1P
k=0

pk]

for n even,

(1)

holds for all solutions of Eq. (E2) with positive initial conditions y−1, y0 such that
y0y−1 6= pn(1−p)

pn−1 for n = 1, 2, . . ., p 6= −1 and y0y−1 6= 1 for p = −1.
If all parameters and initial conditions in Eq. (E) are positive, then all solutions of
Eq. (E) are positive, too. It is not true in the case of negative b. In the next theorem
we give sufficient conditions for every solution of Eq. (E2) to be positive.

Theorem 2. Assume that p ∈ (−1, 0). Let {yn} be a solution of Eq. (E2) with
positive initial conditions y−1, y0 such that y0y−1 6= pn(1−p)

pn−1 for n = 1, 2, . . .. If
y0y−1 > −p then {yn} is positive.

Proof. Let {yn} be a solution of Eq. (E2). From (1), for the subsequence {y2n−1}
there follows

y2n−1 = y−1

n−1∏
i=0

[p2i + y0y−1

2i−1∑
k=0

pk]

n−1∏
i=0

[p2i+1 + y0y−1

2i∑
k=0

pk]
.

Obviously, for p ∈ (−1, 0),

p2i + y0y−1

2i−1∑
k=0

pk > 0

for all i = 0, 1, . . ..
On the other hand, if y0y−1 > −p, then

p2i+1 + y0y−1

2i∑
k=0

pk > 0 (2)

for all i = 0, 1, . . ..
Therefore, all terms of the sequence {y2n−1} are positive. For n even the proof is
similar.

Remark 1. If y0y−1 = 1− p then from (E2) we get yn+1 = yn−1
p+ynyn−1

= yn−1. Hence
{y2n} = {y0, y0, y0, . . .} and {y2n−1} = {y−1, y−1, y−1, . . .}.
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Theorem 3. Assume that p ∈ (−1, 0). Let {yn} be a solution of Eq. (E2) with
positive initial conditions y−1, y0 such that y0y−1 6= pn(1−p)

pn−1 for n = 1, 2, . . .. If
−p < y0y−1 < 1−p then the subsequence {y2n} is decreasing and subsequence {y2n−1}
is increasing.

Proof. Let {yn} be a solution of Eq. (E2). From (1), for the subsequence {y2n} there
follows

y2n = y0

n−1∏
i=0

[p2i+1 + y0y−1

2i∑
k=0

pk]

n−1∏
i=0

[p2i+2 + y0y−1

2i+1∑
k=0

pk]
.

Thus for n ≥ 1

y2n+2

y2n
=

n∏
i=0

[p2i+1 + y0y−1

2i∑
k=0

pk]
n−1∏
i=0

[p2i+2 + y0y−1

2i+1∑
k=0

pk]

n∏
i=0

[p2i+2 + y0y−1

2i+1∑
k=0

pk]
n−1∏
i=0

[p2i+1 + y0y−1

2i∑
k=0

pk]
=

=
p2n+1 + y0y−1

2n∑
k=0

pk

p2n+2 + y0y−1

2n+1∑
k=0

pk

.

(3)

Since y0y−1 < 1− p, there is

y0y−1p
2n+1 > p2n+1 − p2n+2.

Hence

y0y−1(
2n+1∑
k=0

pk −
2n∑

k=0

pk) > p2n+1 − p2n+2,

and therefore

p2n+1 + y0y−1

2n∑
k=0

pk < p2n+2 + y0y−1

2n+1∑
k=0

pk.

From the above inequality, by (2) and (3) it follows that the subsequence {y2n} is
decreasing. Similarly we prove that the subsequence {y2n−1} is increasing. This
completes the proof.

Theorem 4. Assume that p ≤ −2. Let {yn} be a solution of Eq. (E2) with positive
initial conditions y−1, y0 ∈ (0, 1). Then the subsequences {y4n−1} and {y4n} are both
positive and decreasing, while subsequences {y4n+1} and {y4n+2} are both negative
and increasing.
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Proof. Let y−1, y0 ∈ (0, 1). Then y1, y2 ∈ (0, 1) and y3, y4 ∈ (−1, 0). By induction we
can prove that {y4n−1}, {y4n} ∈ (0, 1) and {y4n+1}, {y4n+2} ∈ (−1, 0), n = 0, 1, . . ..
Since, by (1),

y4n+4

y4n
=

(p4n+1 + y0y−1
1−p4n+1

1−p )(p4n+3 + y0y−1
1−p4n+3

1−p )

(p4n+2 + y0y−1
1−p4n+2

1−p )(p4n+4 + y0y−1
1−p4n+4

1−p )
< 1,

we have
y4n+4 < y4n, n = 0, 1, . . .

Similarly we can see that y4n+3 < y4n−1, and y4n+5 > y4n+1, y4n+6 > y4n+2 for
n = 0, 1, . . . and the result follows.

3. NUMERICAL RESULTS

Example 1. Let y−1 = 3
4 , y0 = 1 be the initial conditions of Eq. (E2) with p = − 1

2 .
Then, by Theorem 2, the solution is positive.

Table 1 sets forth the values of yn for selected small n’s.

Table 1

n y(n) n y(n)
1 3 2 0.4
3 4.285714285 4 0.3294117647
5 4.700460829 6 0.3142081447
7 4.811495337 8 0.3105403454
9 4.839742863 10 0.3096314468
27 4.849202586 28 0.3093292089

Table 2

n y(n) n y(n)

−1 1.333333333 0 1

1 2 2 0.75

3 2.4 4 0.6617647058

5 2.604255319 6 0.6262337149

7 2.700933010 8 0.6111095799

9 2.745131352 10 0.6045146869

11 2.765024171 12 0.6016082844

13 2.773915175 14 0.6003213855

15 2.777876608 16 0.5997503824

17 2.779639200 18 0.5994967911

19 2.780422961 20 0.5993841209

21 2.780771375 22 0.5993340526

23 2.780926241 24 0.5993118014

25 2.780995074 26 0.5993019123

27 2.781025666 28 0.5992975172

29 2.781039263 30 0.5992955638

Example 2. Let p = −2/3, y(−1) = 4/3, y(0) = 1. Thus the condition −p <
y(0)y(−1) < 1 − p holds and by Theorem 3, the subsequence {y2n} is decreasing
and subsequence {y2n−1} is increasing.
Table 2 sets forth the values of yn for selected small n’s.

Example 3. Let p = −11, y(−1) = 0.2, y(0) = 0.5. Then, by Theorem 4, the sub-
sequences {y4n−1} and {y4n} are both positive and decreasing, while the subsequences
{y4n+1} and {y4n+2} are both negative and increasing.
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Table 3 sets forth the values of yn for selected small n’s.

Table 3

n y(n) n y(n)

−1 0.2 0 0.5

3 0.001668183 4 0.004128759

7 1.3786645E − 5 8 3.4121976E − 5

11 1.1393922E − 7 12 2.8199980E − 7

15 9.4164646E − 10 16 2.3305769E − 9

19 7.7822021E − 12 20 1.9260966E − 11

23 6.4315720E − 14 24 1.5918154E − 13

27 5.3153487E − 16 28 1.3155499E − 15

1 −0.018348623 2 −0.045416666

5 −0.0001516531 6 −0.000375341

9 −1.2533314E − 6 10 −3.1019978E − 6

13 −1.0358111E − 8 14 −2.5636346E − 8

17 −8.5604223E − 11 18 −2.1187063E − 10

21 −7.0747292E − 13 22 −1.7509969E − 12

25 −5.8468836E − 15 26 −1.4471049E − 14

29 −4.8321352E − 17 30 −1.1959544E − 16
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Ma lgorzata Migda
mmigda@math.put.poznan.pl
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