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FURTHER PROPERTIES OF THE RATIONAL
RECURSIVE SEQUENCE =z, = ——2=1—

b+crnTn_1

Abstract. In this paper we consider the difference equation

aATn—1

Tyl = ——
b+ cxnTmn_1’

n=0,1,... (E)

with positive parameters a and ¢, negative parameter b and nonnegative initial conditions.
We investigate the asymptotic behavior of solutions of equation (E).
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1. INTRODUCTION

In this paper we consider the following rational difference equation

aTnp—1

n=0,1,... (E)

Tl =y + CTpTn_1
where b is a negative real number and a and ¢ are positive real numbers and the
initial conditions z_1, x¢ are nonnegative real numbers such that at least one of them
is positive. Eq. (E) in the case of positive b was considered in [1].We use the explicit
formula for solutions of Eq. (E) in investigating their behavior.

There has been a lot of work concerning the asymptotic behavior of solutions of
rational difference equations. Second order rational difference equations were inves-
tigated, for example, in [1-13]. This paper is motivated by the short notes [4], where
the author studied the rational difference equation

LTp—1

—l  p=0,1,....
*1+mnxn—l

Tn+1 =

387
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2. MAIN RESULTS

Letp=2%.¢g= €. Then Eq. (E) can be rewritten as

a
Tp—1

— n=0,1,.... (El)
P+ qTnTn—1

Tp+1 =

The change of variables x,, = ﬁyn reduces the above equation to

Yn—1

— = n=0,1,... (E2)
p+ YnlYn—1

Yn+1 =
where p is a negative real number, the initial conditions y_1,yo are nonnegative real
numbers such that at least one of them is positive. We will also assume yoy_1 #
% forn=1,2,..., p# —1 and yoy_1 # 1 for p = —1 (which ensures that the
denominator in Eq. (E2) is not equal to zero). Hereafter, we focus our attention on
Eq. (E2) instead of Eq. (E). Note, that the solution {y,} of Eq. (E2) with y_; =0
or yo = 0 is oscillatory. In fact, in this case there is

{yn} = {0790,07 %705 2%7 .. } or {yn}:{yfhoa %7()’ yp_21307 .. }

Obviously, if p = —1, these solutions are 4-periodic.

Here, we review some results which will be useful in our investigation of the behavior
of solutions of Eq. (E2).

Let I be some interval on the real line and let f : I x I — I be a continuous function.

Definition 1. ([8]) For every pair of initial conditions (x_1,x¢) € I x1, the difference
equation
Tnt1 = f(Tn,Tn-1), m=0,1,... (E3)
o0

has the unique solution {x,}, |, which is called a recursive sequence. An equilibrium
point of (E3) is a point a € I with f(a,a) = «; it is also called a trivial solution of

Eq. (E3).
Definition 2. ([13]) Let o be an equilibrium point of Eq.(E3):

(i) « is stable if for every e > 0 there exists 6 > 0 such that for any initial condi-
tions (x_1,20) € I X I with |z_1 — al+|zo — a| < 6, the inequality |z, — a| < €
holds form=1,2,...;

(ii) « is a local attractor if there exists v > 0 such that x,, — « holds for any initial
conditions (r_1,20) € I x I with |x_1 —a|+ |zg — ] <75

(i) « is locally asymptotically stable if it is stable and is a local attractor;
(iv) « is a repeller if there exists v > 0 such that for each (x_1,x0) € I x I with
|z_1 — a| + |zo — | < 7, there exists N such that |zy — a| > 7.

Assume « is an equilibrium point of Eq. (E3). Let r = —%a’a),
5 = 785;(7@. Then the linearized equation associated with Eq. (E3) about the

equilibrium « is
Zna1 + 720 + S2p_1 = 0. (E4)
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Theorem A ([7])(Linearized stability theorem).

(i) If |[r] < 1+ s and s < 1, then « is locally asymptotically stable.
(ii) If |r] < |1+ s| and |s| > 1 then « is a repeller.

The equilibria of Eq. (E2) are the solutions of the equation

Y

T

So, equilibrium points of Eq. (E2) are § = 0 and § = ++/1 — p. The local asymptotic
behavior of the zero equilibrium of Eq. (E2) is characterized by the following result.
Theorem 1. The following statements are true:

(i) if p € (—o0,—1), then § = 0 is locally asymptotically stable;
(ii) if p € (—1,0), then § =0 is a repeller.

Proof. For Eq. (E2), there is

Of _ Y1
ayn (p + ynyn—1)2 ’
of p

-1 P+ YnYn-1)?

Therefore, for § = 0 we get r = 0, s = —% and the linearized equation associated
with Eq. (E2) about the equilibrium § = 0 is

Zn4+l — “An—-1 = 0.
o
(i) The result follows from Theorem A(i) and the following relations
1
(s =1+ <0,

and )
s=——<1.
p

(ii) The result follows from Theorem A(ii) and the following relations

—1 1—
|r|—|1+s=—’p’=p<0
p p

and
1
—— > 1.
p

This completes the proof. O
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It is easy to see that the method use in the proof of Theorem 1 in [1] can be use
in our case too. Thus the following formula

n+1

-1 2 2i—1
HO [P** +yoy—1 kE p"]
i =0

Y177, » for n odd,

2 ) i

IT [P****+yoy—1 > p*]
Yn = i=0 k=0 (1)

27
[ P byoy—1 3 pF]
k=0

w\s

- for n even,
2i+1

H (P2 +24yoy—1 > p¥]
i=0 k=0

holds for all solutions of Eq. (E2) with positive initial conditions y_1,yo such that

Yoy—1 7 P (1 p) forn=1,2,..., p# —1 and yoy_1 # 1 for p= —1.

If all parameters and initial conditions in Eq. (E) are positive, then all solutions of
Eq. (E) are positive, too. It is not true in the case of negative b. In the next theorem
we give sufficient conditions for every solution of Eq. (E2) to be positive.

Theorem 2. Assume that p € (—1,0). Let {yn} be a solution of Eq. (E2) with
positive initial conditions y_1,yo such that yoy_1 # ppg}:f) forn = 1,2,.... If
Yoy—1 > —p then {y,} is positive.

Proof. Let {y,} be a solution of Eq. (E2). From (1), for the subsequence {y2,_1}
there follows

n— 2i—1

H [P* + yoy—1 Zop"’]

Yon—1 = Y-1,.— % .
H [P+ + yoy—1 > p¥

i=0 k=0
Obviously, for p € (—1,0),
2i—1
P +yoy-1 Yy pF >0
k=0

forall e =0,1,....
On the other hand, if yoy_1 > —p, then

X3
PP gy > >0 (2)
k=0
foralle=0,1,....
Therefore, all terms of the sequence {y2,_1} are positive. For n even the proof is
similar. O
Remark 1. Ifyoy_1 = 1 —p then from (E2) we get yp1 = [H_Zzﬁ =9y,_1. Hence

{y2n} - {y07y05y07 .. } and {y2n—1} = {y—lay—hy—la .. }
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Theorem 3. Assume that p € (—1,0). Let {yn} be a solution of Eq. (E2) with
positive initial conditions y_1,yo such that yoy_1 # PpE}jf> forn = 1,2,.... If
—p < Yyoy—1 < 1—p then the subsequence {yay, } is decreasing and subsequence {yon—1}

18 tncreasing.

Proof. Let {y,} be a solution of Eq. (E2). From (1), for the subsequence {y2,} there

follows
2i+1 2
P> 4+ yoy—1 kZ p"]
=0

=t

i=0
Yan = Yo 7271 2i+1
[P?2 +yoy—1 >° P]
=0 k=0
Thus for n > 1
noo 2 ool 241
- _Ho[p T+ Yoy kZOp ] .HO [P*2 + yoy 1 kZOp ]
n _ 1= = 1= =
Yo 241  n—1 2i o
[1[P**2 +yoy—1 20 '] I1 [P**' +yoy—1 2° ]
=0 2nk:0 1=0 k=0 (3)
P fyyg 3D pF
_ k=0
- 2n4-1
P22 4 yoy_1 > ph
k=0
Since yoy—_1 < 1 — p, there is
y0y71p2n+1 > p2n+1 _p2n+2.

Hence
2n+1

2n
yoy71( Z pk' _ Zpk) > p2n+1 _ p2n+2’
k=0 k=0

and therefore

2n 2n+1
P oy Y pF <P yoy1 D pF
k=0 k=0

From the above inequality, by (2) and (3) it follows that the subsequence {yan} is
decreasing. Similarly we prove that the subsequence {y2,_1} is increasing. This
completes the proof. O

Theorem 4. Assume that p < —2. Let {y,} be a solution of Eq. (E2) with positive
initial conditions y_1,yo € (0,1). Then the subsequences {Yan—1} and {ysn} are both
positive and decreasing, while subsequences {ysn+1} and {Ysni2} are both negative
and increasing.
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Proof. Let y_1,yo € (0,1). Then y1,y2 € (0,1) and y3,y4 € (—1,0). By induction we
can prove that {ysn—1}, {yant € (0,1) and {yan+1}, {Yani2} € (-1,0),n=0,1,....
Since, by (1),

{_pintl | _pin+3
Yant+4 (" + Yoy = )"+ Yoy 1p—P <1
- _pdn+2 —pAn+4 ’
Y (p* 2+ yoy 1 ) (00 + yoy 1 )

-p
we have
Yan+4 < Yan, Tl:(),l,...

Similarly we can see that ysn4+3 < Yan—1, a0d Yants5 > Yan+1s Yant+6 > Ydant2 fOr
n=0,1,... and the result follows. O

3. NUMERICAL RESULTS
Example 1. Lety_1 = %, yo = 1 be the initial conditions of Eq. (E2) with p = —%.

Then, by Theorem 2, the solution is positive.
Table 1 sets forth the values of y, for selected small n’s.

Table 2

n y(n) n y(n)

—1 [ 1.333333333 | 0 1

1 2 2 0.75
Table 1 3 2.4 4 | 0.6617647058
5 | 2.604255319 | 6 | 0.6262337149
n y(n) n y(n) 7 | 2700933010 | 8 | 0.6111095799
1 3 2 0.4 9 | 2.745131352 | 10 | 0.6045146869
3 | 4.285714285 | 4 | 0.3294117647 11 | 2.765024171 | 12 | 0.6016082844
5 | 4.700460829 | 6 | 0.3142081447 13 | 2773915175 | 14 | 0.6003213855
7 | 4.811495337 | 8 | 0.3105403454 15 | 2777876608 | 16 | 0.5997503824
9 | 4.839742863 | 10 | 0.3096314468 17 | 2.779639200 | 18 | 0.5994967911
27 | 4.849202586 | 28 | 0.3093292089 19 | 2.780422961 | 20 | 0.5993841209
21 | 2.780771375 | 22 | 0.5993340526
23 | 2.780926241 | 24 | 0.5993118014
25 | 2.780995074 | 26 | 0.5993019123
27 | 2.781025666 | 28 | 0.5992975172
29 | 2.781039263 | 30 | 0.5992955638

Example 2. Let p

= 1.

Thus the condition —p <

y(0)y(—1) < 1 — p holds and by Theorem 3, the subsequence {ya,} is decreasing
and subsequence {yan_1} 1s increasing.
Table 2 sets forth the values of vy, for selected small n’s.

Example 3. Let p = —11, y(—1) = 0.2, y(0) = 0.5. Then, by Theorem 4, the sub-
sequences {Ysn—1} and {ysn} are both positive and decreasing, while the subsequences
{Yan+1} and {Yany2} are both negative and increasing.
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Table 3 sets forth the values of y, for selected small n’s.

Table 3
n y(n) n y(n)
-1 0.2 0 0.5
3 0.001668183 4 0.004128759

7 1.3786645F — 5 8 3.4121976E — 5
11 1.1393922F — 7 12 2.8199980E — 7
15 9.4164646F — 10 16 2.3305769EF — 9
19 7.7822021E — 12 | 20 1.9260966F — 11
23 6.4315720E — 14 | 24 | 1.5918154F — 13
27 5.3153487E — 16 | 28 1.3155499F — 15

1 —0.018348623 2 —0.045416666
5 —0.0001516531 6 —0.000375341
9 —1.2533314E — 6 | 10 | —3.1019978FE — 6

13 —1.0358111E —8 | 14 | —2.5636346F — 8
17 | —8.5604223F — 11 | 18 | —2.1187063F — 10
21 | —=7.0747292F — 13 | 22 | —1.7509969F — 12
25 | —5.8468836F — 15 | 26 | —1.4471049F — 14
29 | —4.8321352F — 17 | 30 | —1.1959544F — 16
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