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FOR LINEAR DIFFERENTIAL-DIFFERENCE

EQUATIONS

Abstract. In this paper we establish sufficient conditions for the existence of an asymptotic
integral manifold of solutions of a linear system of differential-difference equations with
a small parameter. This integral manifold is described by a linear system of differential
equations without deviating argument.

Keywords: system with deviating argument, integral manifold of solutions, fundamental
matrix, exponential dichotomy.

Mathematics Subject Classification: 34K06.

1. INTRODUCTION AND PRELIMINARIES

The theory of linear differential equations with deviating argument is well established.
There are numerous important papers on the subject. One of the classical works here
is [2]. For a recent account of the theory, we refer the reader to [1] and the references
given there.

We consider the linear system of differential equations with deviating argument

dX(t)
dt

= A(t)X(t) + µ
n∑

k=1

(Ak(t)X(t + τk(t)) + Bk(t)Y (t + τk(t)))

dY (t)
dt

= B(t)Y (t) + µ
n∑

k=1

(Ck(t)X(t + τk(t)) + Dk(t)Y (t + τk(t))),

(1)

where t ≥ 0, µ is a small parameter, dimX(t) = p, dimY (t) = q,

|τk(t)| ≤ τ (k = 1, . . . , n; t ≥ 0). (2)
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We assume that the matrices in System (1) are bounded:

‖A(t)‖ ≤ α0,
n∑

k=1

‖Ak(t)‖ ≤ α,

n∑
k=1

‖Bk(t)‖ ≤ α,
n∑

k=1

‖Ck(t)‖ ≤ α,
n∑

k=1

‖Dk(t)‖ ≤ α,

(3)

If the parameter µ = 0, System (1) decouples into two independent subsystems. Let
the system

dX(t)
dt

= A(t)X(t)

have a fundamental matrix of solutions P (t, s) normalized at t = s and satisfy the
condition

‖P (t, s)‖ ≤ c1e
ε|t−s| (c1 ≥ 1, ε > 0) (4)

Let the system
dY (t)

dt
= B(t)X(t)

have a fundamental matrix of solutions Q(t, s) normalized at t = s and satisfy the
condition

‖Q(t, s)‖ ≤ c2e
λ|t−s| (c2 ≥ 1, λ > ε) (5)

Thus, for µ = 0, System (1) possesses an exponential dichotomy with an exponent σ,
where −λ < σ < −ε (see [3]).
We will construct an integral manifold of solutions of System (1) in the form of ( [3,4])

dX(t)
dt

= H(t, µ)X(t), Y (t) = K(t, µ)X(t). (6)

Let a fundamental matrix of solutions of System (6) be denoted by N(t, s, µ), it follows
that

X(t) = N(t, s, µ)X(s). (7)

From this we obtain

X(t + τk(t)) = N(t + τk(t), t.µ)X(t),
Y (t + τk(t)) = K(t + τk(t), µ)N(t + τk(t), t, µ)X(t).

(8)

If the solutions of System (6) satisfy (1), then

H(t, µ) = A(t) + µ

n∑
k=1

(Ak(t)N(t + τk(t), t, µ)+

+ Bk(t)K(t + τk(t), µ)N(t + τk(t), t, µ))

(9)
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∂K(t, µ)
∂t

+ K(t, µ)(A(t) + µ
n∑

k=1

(Ak(t)N(t + τk(t), t, µ)+

+ Bk(t)K(t + τk(t), µ)N(t + τk(t), t, µ))) =

= B(t)K(t, µ) + µ
n∑

k=1

(Ck(t)N(t + τk(t), t, µ)+

+ Dk(t)K(t + τk(t), µ)N(t + τk(t), t, µ)).

(10)

We now proceed to considering the auxiliary matrix differential equation

∂K(t, µ)
∂t

= B(t)K(t, µ)−K(t, µ)A(t) + F (t), (11)

where ‖F (t)‖ ≤ b for t ≥ 0. It is easy to check that the matrix

K(t, µ) =
∫ t

0

Q(t, s)F (t)P (s, t)ds (12)

is a solution of (11). In addition, under conditions (4) and (5), we obtain

‖K(t, µ)‖ = c1c2

∫ t

0

e−λ(t−s)sup ‖F (t)‖ eε(t−s) ≤ c1c2

λ− ε
sup ‖F (t)‖ , t ≥ 0. (13)

Application of (11) and (12) enables us to write System (10) in the form

K(t, µ) = µ

∫ t

0

Q(t, s)
n∑

k=1

(Ck(s) + Dk(s)K(s + τk(s), µ)−

−K(s, µ)Ak(s)−K(s, µ)Bk(s)K(s + τk(s), µ))N(s + τk(s), t, µ)P (s, t)ds.

(14)

Our purpose here is to give a proof that an integral manifold of solutions of System
(1) exists in form (6).

2. SUCCESSIVE APPROXIMATIONS

System (9),(14) of matrix equations defines the matrices H(t, µ), K(t, µ) and it
can be solved by the method of successive approximations. We start this process by
letting H0(t, µ) = 0, K0(t, µ) = 0 and

Hj+1(t, µ) = A(t) + µ

n∑
k=1

(Ak(t)Nj(t + τk(t), t, µ)+

+ Bk(t)Kj(t + τk(t), µ)Nj(t + τk(t), t, µ)),

Kj+1(t, µ) = µ

∫ t

0

Q(t, s)
n∑

k=1

(Ck(s) + Dk(s)Kj(s + τk(s), µ)−

−Kj(s, µ)Ak(s)−Kj(s, µ)Bk(s)Kj(s + τk(s), µ))×
×Nj(s + τk(s), t, µ)P (s, t)ds,

(15)

for j=0,1,2,. . .
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Let Nj(t, s, µ) be a fundamental matrix of solutions of the system

dX(t)
dt

= Hj(t, µ)X(t) (j = 0, 1, 2, . . .). (16)

Supposing that the inequalities

‖Hj(t, µ)‖ ≤ hj , ‖Kj(t, µ)‖ ≤ kj ,

take place, we find the estimates

‖Nj(t, s, µ)‖ ≤ ehj |t−s|, ‖Nj(t + τk(t), t, µ)‖ ≤ eτhj .

And owing to System (15) it follows that

hj+1 ≤ α0 + |µ|α(1 + kj)eτhj ,

kj+1 ≤ |µ|αβ(1 + kj)2eτhj ,
(17)

where
β ≡ c1c2

λ− ε
.

In order for the sequences {hj} and {kj} to be bounded from below, i.e.

hj ≥ h > 0, kj ≥ k > 0, j = 0, 1, 2, . . .

it is necessary and sufficient that the system of nonlinear equations

α0 + |µ|α(1 + k)eτh = h, |µ|αβ(1 + k)2eτh = k (18)

has a positive solution.
We need to find the largest value µ = µ0 for which System (18) has multiple solutions.
In this connection h and k achieve the maximum. We obtain

µ0 =
2(τ +

√
τ2 + 4β2

α(τ + 2β +
√

τ2 + 4β2
exp

{
−τ(α +

2

τ + 2β +
√

τ2 + 4β2
)

}
(19)

h = α0 +
k

β(1 + k)
, k =

2β

τ +
√

τ2 + 4β2
.

It follows that for |µ| ≤ µ0 the sequences of matrices Hj(t, µ) and Kj(t, µ)
(j=0,1,2,. . . ) are well defined and bounded in norm for t ≥ 0.

3. CONVERGENCE

Let us turn to prove that the sequences of matrices Hj(t, µ) and Kj(t, µ) (j =
0, 1, 2, . . .) converge uniformly in t, for t ≥ 0.
Let us introduce the notation

‖Hj(t, µ)−Hj−1(t, µ)‖ ≤ uj , ‖Kj(t, µ)−Kj−1(t, µ)‖ ≤ vj (j = 1, 2, 3, . . .).
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Then from System (15), for µ = µ0 there follows:

uj+1 ≤ `(1 + k)τuj + lvj ,

vj+1 ≤ `βτ(1 + k)2uj + 2`β(1 + k)vj ,
(20)

where
` ≡ 1

2β(1 + k) + τ
.

The matrix of coefficients of the expression on the right hand side of (20)

R(µ) =
(

`τ(1 + k) `
`βτ(1 + k)2 2`β

)
has the largest eigenvalue (in terms of the absolute value)

ρmax =
(2β + τ +

√
τ2 + 4β2)2

2(2β +
√

τ2 + 4β2)(τ +
√

τ2 + 4β2)
≡ 1.

For |µ| < µ0, the absolute values of eigenvalues of the matrix R(µ) are less than 1
and, therefore, the terms of the series

H(t, µ) =
∞∑

j=0

(Hj+1(t, µ)−Hj(t, µ)) , (21)

K(t, µ) =
∞∑

j=0

(Kj+1(t, µ)−Kj(t, µ)) . (22)

are bounded from above by the terms of the decreasing geometric progression. It
follows that series (21) and (22) converge uniformly for |µ| ≤ µ1 < µ0.

We can now formulate our main results.

Theorem 3.1. Let System (1) of differential-difference equations be dichotomic for
µ = 0 and t ≥ 0, caused by inequalities (4) and (5). If conditions (2) and (3) hold,
then System (1) has an integral manifold of form (6), where the matrices H and K
depend analytically on µ, provided |µ| < µ0, where µ0 is given by (19).

The construction of integral manifolds in form (6) for systems of differential- dif-
ference equations can be used in the investigation of qualitative properties of this
systems.

Example 3.2. For the delay system

dx(t)
dt

= µ cos tx(t) + µay(t− τ),

dy(t)
dt

= −y(t) + µbx(t− τ),
(23)



470 Klara R. Janglajew, Kim G. Valeev

we are interested in the construction of an integral manifold of solutions in form (6)

dx(t)
dt

= h(t, µ)x(t), y(t) = k(t, µ)x(t).

The functions k and h are defined by the system

h(t, µ) = µ cos t + µak(t− τ, µ) exp
∫ t−τ

t

h(r, µ)dr,

k(t, µ) = µ

∫ t

0

(e−(t−s)(b− k(s, µ)) cos s− (24)

−ak(s, µ)k(s− τ, µ)) exp
∫ s−τ

s

h(r, µ)dr)ds.

Solving System (24) by the method of successive approximations, we find

h(t, µ) = µ cos t + µ2ab + O(µ3).

The zero solution of the differential equation

dx(t)
dt

= (µ cos t + µ2ab + O(µ3))x(t)

and also the zero solution of System (23) are asymptotically stable for a sufficiently
small values of µ > 0 and ab < 0, and unstable if ab > 0.
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