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ASYMPTOTIC PROPERTIES OF NONOSCILLATORY
SOLUTIONS OF HIGHER ORDER NEUTRAL

DIFFERENCE EQUATIONS

Abstract. In this paper we study asymptotic behavior of solutions of a higher order neutral
difference equation of the form

∆m(xn + pnxn−τ ) + f(n, xσ(n)) = hn.

We present conditions under which all nonoscillatory solutions of the above equation have
the property xn = cnm−1 + o(nm−1) for some c ∈ R.
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1. INTRODUCTION

In this paper we consider a higher order neutral type difference equation of the form

∆m(xn + pnxn−τ ) + f(n, xσ(n)) = hn, n = 1, 2, . . . (E)

where m ≥ 2, (pn), (hn) are sequences of real numbers, τ is a nonnegative integer,
(σ(n)) is a sequence of integers with σ(n) ≤ n and lim

n−→∞
σ(n) = ∞, f : N ×R −→ R.

For all k ∈ N we use the usual factorial notation

nk = n(n− 1) . . . (n− k + 1) with n0 = 1.

By a solution of equation (E) we mean a real sequence (xn) which is defined for
n ≥ min

i≥1
{i− τ, σ(i)} and which satisfies equation (E) for all n = 1, 2 . . . . A nontrivial

solution (xn) of equation (E) is said to be nonoscillatory if it is eventually positive or
eventually negative.
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Recently there has been an increasing interest in the study of the qualitative
behavior of solutions of higher order neutral difference equations, see for example [3,
4, 7–14] and the references cited therein.

The purpose of this paper is to establish conditions under which each nonoscilla-
tory solution of equation (E) has the property xn = cnm−1 +o(nm−1) for some c ∈ R.
Similar problem for non-neutral difference equations was considered in [1, 2, 5, 13].
For a less general neutral difference equations (with m = 2, pn = p, σ(n) = n and
hn ≡ 0), we refer to [6] .

2. MAIN RESULTS

In the proof of the main result we will need the following lemmas.

Lemma 1. (See [7]) Let (an) be any real sequence. Then

n−1∑
im=N0

im−1∑
im−1=N0

· · ·
i2−1∑

i1=N0

ai1 =
n−1∑

j=N0

(n− j − 1)m−1

(m− 1)!
aj .

Lemma 2. (See [6]) Let x, u : N −→ R be sequences and define

zn = xn + unxn+k, n ≥ max{0,−k},

where k is an integer. Assume that (xn) is bounded, lim
n−→∞

zn = l ∈ R and lim
n−→∞

un =
p ∈ R. Then the following statements hold:

(i) if p = −1, then l = 0;
(ii) if |p| 6= 1, then (xn) is convergent and lim

n−→∞
xn = l

1+p .

Theorem 1. Suppose that pn ≥ 0, lim
n−→∞

pn = p 6= 1 and:

(i) f(n, u) is continuous in u;
(ii) there exists a continuous function g : R+ −→ R+ and a sequence

φ : N −→ R+ such that

|f(n, u)| ≤ φng

(
|u|

nm−1

)
for n = 1, 2, . . . ,

where
∞∑

n=1

φn < ∞

and the function g is nondecreasing and

G(x) =

x∫
1

ds

g(s)
−→∞ as x −→∞; (1)



Asymptotic Properties of Nonoscillatory Solutions of Higher Order Neutral Difference Equations509

(iii)
∞∑

n=1
|hn| < ∞.

Then for every nonoscillatory solution (xn) of equation (E) there exists a real constant
c such that

lim
n−→∞

∆ixn

nm−i−1
=

c

(m− i− 1)!
, i = 0, 1, . . . ,m− 1.

Proof. Let (xn) be a nonoscillatory solution of equation (E). Then there exists an
integer n0 ≥ 1, such that xn > 0 or xn < 0 for all n ≥ n0. Set

zn = xn + pnxn−τ . (2)

Then |zn| > |xn| for n ≥ n1 = n0 + τ . It follows from (E) that

∆mzn = hn − f(n, xσ(n)).

Let us denote ∆izn1 = ci for i = 0, 1, . . . m − 1. Summing the above equation from
n1 to n− 1, we obtain

∆m−1zn = cm−1 +
n−1∑
j=n1

hj −
n−1∑
j=n1

f(j, xσ(j)). (3)

Summing again, we get

∆m−2zn = cm−1(n− n1) + cm−2 +
n−1∑
j=n1

j−1∑
i=n1

hi −
n−1∑
j=n1

j−1∑
i=n1

f(i, xσ(i)),

and after m steps, we obtain

|zn| ≤ |c0|+ |c1|n + |c2|
n2

2!
+ . . . + |cm−1|

nm−1

(m− 1)!
+

+
n−1∑

im=n1

im−1∑
im−1=n1

. . .

i2−1∑
i1=n1

|hi|+
n−1∑

im=n1

im−1∑
im−1=n1

. . .

i2−1∑
i1=n1

|f(i, xσ(i))|.

Using Lemma 1, we get

|zn| ≤
m−1∑
i=0

ni

i!
|ci|+

n−1∑
j=n1

(n− j − 1)m−1

(m− 1)!
|hi)|+

n−1∑
j=n1

(n− j − 1)m−1

(m− 1)!
|f(i, xσ(i))| ≤

≤ nm−1
m−1∑
i=0

|ci|+ nm−1
n−1∑
j=n1

|hi|+ nm−1
n−1∑
j=n1

|f(i, xσ(i))|.

Hence, by (iii), we obtain

|zn|
nm−1 ≤

m−1∑
i=0

|ci|+
n−1∑
j=n1

|hj |+
n−1∑
j=n1

|f(j, xσ(j))| ≤ A +
n−1∑
j=n1

|f(j, xσ(j))|, (4)

where A is an appropriate constant.
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By (ii) it is obvious that

|f(n, xσ(n))| ≤ φng

( |xσ(n)|
nm−1

)
≤ φng

( |zσ(n)|
nm−1

)
. (5)

Now, let us denote

bn = A +
n−1∑
j=n1

|f(j, xσ(j))|, n ≥ n1. (6)

Then, by (4) and (6)
|zn|

nm−1 ≤ bn, n ≥ n1. (7)

Let n2 ≥ n1 be large enough for σ(n) ≥ n1 if n ≥ n2. Then, since (bn) is nondecreas-
ing, by (7) we get

|zσ(n)|
nm−1 ≤

|zσ(n)|
(σ(n))m−1 ≤ bσ(n) ≤ bn, for n ≥ n2. (8)

Hence, by (5), (6), we obtain

∆bi ≤ φig

( |zσ(i))|
im−1

)
≤ φig(bi)

and therefore we get
bi+1∫
bi

ds

g(s)
≤ ∆bi

g (bi)
≤ φi.

Summing both sides of the above inequality from n2 to n− 1, we obtain

bn∫
bn2

ds

g(s)
≤

n−1∑
i=n2

φi.

In view of the definition of the function G, this implies that

G(bn) ≤ G(bn2) +
n−1∑
i=n2

φi.

From (1) and the properties of the function g, the function G−1 exists, is positive

and nondecreasing. So, we get bn ≤ G−1(G(bn2) +
n−1∑
i=n2

φi). Therefore, using (8) we

obtain
|zσ(n)|
nm−1 ≤ G−1(G(bn2) +

n−1∑
i=n2

φi) ≤ G−1(G(bn2) +
∞∑

i=n2

φi). (9)
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We put

k1 = G(bn2) +
∞∑

i=n2

φi.

Then, from (9), we get

|zσ(n)|
nm−1 ≤ G−1(k1) = k2, for every n ≥ n2.

On the other hand, by (ii) there is

n−1∑
i=n2

|f(i, xσ(i))| ≤
n−1∑
i=n2

φig

( |xσ(i)|
im−1

)
≤

n−1∑
i=n2

φig

( |zσ(i)|
im−1

)
≤

≤ g(k2)
n−1∑
i=n2

φi.

Therefore, the series
∞∑

i=1

f(i, xσ(i)) is absolutely convergent and from (3) and (iii) we

see that there exists a ∈ R, such that

lim
n−→∞

∆m−1zn = a.

Then, by Stolz Theorem, we obtain

lim
n−→∞

(m− 1)!zn

nm−1 = . . . = lim
n−→∞

∆m−2zn

n
= lim

n−→∞
∆m−1zn = a.

Hence, lim
n−→∞

zn

nm−1 = a
(m−1)! .

Now we put wn = zn

nm−1 and yn = xn

nm−1 . Then (2) implies

wn = yn + unyn−τ ,

where un = pn
(n−τ)m−1

nm−1 . Note that |yn| = |xn|
nm−1 ≤ |zn|

nm−1 ≤ k2, so (yn) is bounded.
By Lemma 2, there is

lim
n−→∞

xn

nm−1 = lim
n−→∞

yn =
c

(m− 1)!
,

where c = a
1+p . This completes the proof.

Theorem 1 improves Theorem 1 in [6].

Remark 1. If in the proof of Theorem 1 we choose cm−1 sufficiently large, then
lim

n−→∞
∆m−1zn 6= 0 and the corresponding solution (xn) of equation (E) has the prop-

erty
xn = cnm−1 + o(nm−1),

where c 6= 0.
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Theorem 1 applied to the linear equation

∆m(xn + pnxn−τ ) + anxσ(n) = 0, (E1)

where m ≥ 2, (pn) is a sequence of real numbers, pn ≥ 0, lim
n−→∞

pn = p 6= 1, τ is

a nonnegative integer, (an) is a sequences of real numbers, (σ(n)) is a sequences of
integers with σ(n) ≤ n and lim

n−→∞
σ(n) = ∞, leads to the following corollary.

Corollary 1. Assume that
∞∑

j=1

jm−1|aj | < ∞.

Then every nonoscillatory solution (xn) of equation (E1) has the asymptotic property

xn = cnm−1 + o(nm−1), (10)

where c is a real constant.

Proof. The conclusion of Corollary 1 follows from Theorem 1 with

φn = nm−1|an| and g(u) = u.

Example 1. Consider the difference equation

∆3

(
xn +

1
2
xn−1

)
+

1
4

1
2nn2 + 1

xn = 0, n ≥ 1. (11)

From Corollary 1 it follows that every nonoscillatory solution of equation (11) has
the asymptotic property (10). In particular, xn = n2 − n + 1

2n is one such solution.

Corollary 2. Consider the difference equation

∆m(xn + pnxn−k) + anxα
n = 0, 0 < α < 1 (12)

where (pn), (an) are sequences of real numbers; pn ≥ 0, lim
n−→∞

pn = p 6= 1 and τ is
nonnegative integer. If

∞∑
j=1

jα(m−1)|aj | < ∞,

then every nonoscillatory solution (xn) of equation (12) has the property
xn = cnm−1 + o(nm−1), where c is a real number.

Proof. Apply Theorem 1 with φn = nα(m−1)|an| and g(u) = uα.
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Example 2. Consider the difference equation

∆4(xn + 2xn−1)−
36n + 84
(n + 4)5

x
1
2
n = 0, n ≥ 1, (13)

All conditions of Corollary 2 are satisfied. It is easy to check that xn = 1
n is a solution

of equation (13) with the required property.

For pn ≡ 0, equation (E) takes the form

∆mxn + f(n, xσ(n)) = hn, n = 1, 2, . . . . (E2)

From the proof of Theorem 1 for the non-neutral equation (E2) we obtain following
result.

Theorem 2. Let assumptions (i),(ii), (iii) of Theorem 1 be satisfied. Then for every
solution (xn) of equation (E2) there exists a real constant c such that

lim
n−→∞

∆ixn

nm−i−1
=

c

(m− i− 1)!
, i = 0, 1, . . . ,m− 1.

Note, that Theorem 1 holds for all nonoscillatory solutions of equation (E), while
Theorem 2 is true for all solution of equation (E2).
Compare this result with Theorem 4 in [13].

Corollary 3. Let assumptions (i)–(iii) of Theorem 1 be satisfied. Then every solution
(xn) of equation (E2) has the asymptotic property

xn = cnm−1 + o(nm−1),

where c is a real constant.
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