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CONTINUOUS DEPENDENCE OF SOLUTIONS
OF ELLIPTIC BVPs ON PARAMETERS

Abstract. The continuous dependence of solutions for a certain class of elliptic PDE on
functional parameters is studied in this paper. The main result is as follow: the sequence
{xk}k∈N of solutions of the Dirichlet problem discussed here (corresponding to parameters
{uk}k∈N ) converges weakly to x0 (corresponding to u0) in W 1,q

0 (Ω, R), provided that
{uk}k∈N tends to u0 a.e. in Ω. Our investigation covers both sub and superlinear cases.
We apply this result to some optimal control problems.
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1. INTRODUCTION

This paper is devoted to the continuous dependence (on parameters) of solutions for
the Dirichlet problem associated with the PDE of elliptic type

{
−div (k(y)|∇x(y)|q−2∇x(y)) = Gx(y, x(y), u(y)) for a.e. y ∈ Ω,

x ∈ W 1,p
0 (Ω, R),

(1.1)

where q ≥ 2, k ∈ C1(Ω, R+), Gx denotes the derivative of G with respect to x and
functional parameters u ∈ U ⊂ Lp(Ω, Rm), m ≥ 1, p ∈ (1,∞). We also investigate
an optimal control problem governed by (1.1) with a certain integral cost functional.
We propose an approach based on the following assumptions:

(Ω) Ω is a bounded domain in Rn with a locally C 1,1 boundary;

(K) k ∈ C1(Ω, R), k0 ≥ k(y) ≥ k0 > 0 for all y ∈ Ω;
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(G1) for each u ∈ U , there exist zu, z0u ∈ W2,∞
0 (Ω, R), W2,∞

0 := W 1,∞
0 ∩ W 2,∞,

such that 0 < z0u(y) < zu(y) for a.e. y ∈ Ω and

−Gx(y, zu(y), u(y)) ≥ div(k (y) |∇z0u(y)|q−2∇z0u(y));

(G2) there exists M > 0 such that for all u ∈ U , ess sup
y∈Ω

zu(y) ≤ M ;

(G3) G : Ω×I×Rm → R, where I is some closed neighborhood of the interval [0,M ],

a. G(·, x, u) is measurable on Ω for all (x, u) ∈ I ×Rm,

b. Gx(y, ·, ·) is continuous in I ×Rm for a.a. y ∈ Ω,

c. for a.a. y ∈ Ω and all u ∈ Rm, Gx(y, ·, u) is nonnegative and increasing in I;

(G4) for all u ∈ U , 0 <

∣∣∣∣
∫
Ω

G(y, 0, u(y))dy

∣∣∣∣ < ∞;

(G5) there exits ϕ ∈ Lq′(Ω, R+) such that for a.a. y ∈ Ω and all u ∈ U ,

Gx(y,M, u(y)) ≤ ϕ(y).

In the 1990s, some papers concerning the continuous dependence of solutions for
various systems of ODE and PDE on parameters were published. In [11] the problem





d

dt
fx′(t, x, x′, u) = fx(t, x, x

′, u) for a.e. t ∈ (0, π)

x(0) = x(π) = 0

(1.2)

for f : [0, π] × Rn × Rn × Rm → R, is investigated with variational methods under
the assumptions which guarantee, the coercivity of the functional of action associa-
ted with (1.2). The author gives sufficient conditions for the existence of solutions
of (1.2) and their continuous dependence on the parameter u, when u converges
to u0 in the strong or weak -* topology in L∞. Similar problems are also wide-
ly discussed by D. Idczak in [1] and [2]. Applying the dual principle of minimal
action and generalizing the perturbation method described, e.g., in [7], [8], D. Id-
czak studies the continuous dependence on functional parameters for (1.2), also in
the non-coercive case. Next, these results are applied to infer the existence of solu-
tions for the optimal control problem with constraints (1.2) and the cost functional
F (x, u) =

∫ π

0
f0(t, x(t), x′(t), u(t))dt, which is Fréchet differentiable with respect to x

in certain Sobolev space. Similar problems are also discussed in [9], where f has the
special form f(t, x, x

′
, u) = L(t, x′)− V (t, x, u), it is concave-convex in (x, x′) and it

is not necessarily C1. These results cover both sub- and superlinear cases.
The continuous dependence of solution for PDE on parameters has been studied,

e.g., in [3–6, 11–13]. More precisely, the main result of [13] is the following: if G :

Ω×RN ×A → R satisfies the inequalities a < pG(y, x, u) ≤ 〈Gx(y, x, u), x〉, for given
constants a > 0, p > 2 and |x| sufficiently large, and some technical assumptions,
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then the strong (or weak) convergence of the sequence of parameters {uk}k∈N to u0

in Lp(Ω, Rm) implies strong convergence of the sequence {xk}k∈N of solutions for
the Dirichlet problem

△xi(y) = Gxi(y, x(y), u(y)) a.e. in Ω, xi(y) = 0 for y ∈ ∂Ω,

(corresponding to parameters {uk}k∈N to x0 (corresponding to u0) in H1
0 (Ω, R

N ).

Papers [3–6] are devoted to the hyperbolic and elliptic control systems investigated
with variational and topological methods, e.g., [5] describes the optimal control
problem governed by the elliptic system

{
△x(y) = G1

z(y, x(y)) +
〈
G2

z(y, x(y)), u(y)
〉

x(y) = v(y) on ∂Ω

with the integral cost functional

J(x, u, v) =

∫

Ω

Φ1(y, x(y),∇x(y, z), u(y, z))dy +

∫

∂Ω

Φ2(y, v(y))dµ(y),

where Ω ⊂ Rn is a bounded domain with the Lipschitze boundary, G1 : Rn×RN → R,
G2 : Rn × RN → RN , for each i = 1, 2, Gi, Gi

z, Φ
i, are Carathéodory functions

satisfying some growth conditions and Φ1(y, x, ·, ·), Φ2(y, ·) are convex. The authors
proved the existence of at least one optimal control process for the above system.
The results presented in the papers mentioned above are based on the global

assumptions made on the nonlinearity of PDE and a function which appears in the
cost functional. This paper is devoted to similar problems for PDE with only local
regularities concerning the right-hand side of the differential equation. Our approach
can be applied for sublinear and superlinear cases, which is due to the fact that we
do not impose any growth conditions on the nonlinearity of the equation. Moreover,
we need conditions concerning the behaviour of G(y, ·, u) (smoothness and convexity)
in certain interval only. It is associated with the fact that for each u ∈ U, we consider
solutions of (1.1) from a pre-specified subset of W 1,q

0 (Ω, R). The existence of such
solutions was proved in [10] (Theorem 4.1):

Theorem 1.1. Assume that:

(Q) q is even and q ≥ 2;

(Ω) Ω is a bounded domain in Rn with a locally C1,1 boundary;

(F1) there exist z, z0 ∈ W2,∞
0 (Ω, R) such that 0 < z0(y) < z(y) for a.e. y ∈ Ω and

−Fx(y, z(y)) ≥ div(k (y) |∇z0(y)|q−2∇z0(y)) (1.3)

a.e. in Ω;
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(F2) F (y, ·) is convex and C1(Ĩ , R) for a.e. y ∈ Ω, G(·, x) is measurable on Ω for all
x ∈ Ĩ, where Ĩ is some closed neighborhood Ĩ of the interval I =

[
0, ess sup

y∈Ω
z(y)

]

for a.e. y ∈ Ω;

(F3) Fx is nonnegative in Ĩ for a.e. y ∈ Ω;

(F4)
∣∣∣∣
∫
Ω

F (y, 0)dy

∣∣∣∣ < ∞. Then there exists a solution x0 ∈ Xz for

{
−div

(
k (y) |∇x(y)|q−2∇x(y)

)
= Fx(y, x(y)) for a.e. y ∈ Ω

x ∈ W 1,q
0 (Ω, R)

(1.4)

with

Xz =

{
x ∈ W 1,q

0 (Ω, R), 0 ≤ x(y) ≤ z(y) a.e. on Ω

and div(k(y)|∇x(y)|q−2∇x(y)) ∈ L∞(Ω, R)

}
. (1.5)

In [10] (Section 6) we studied the continuous dependence of solutions for (1.1) on
functional parameters in the case of G(y, x, u) = F (y, x)+ g(y, u)x with F satisfying
assumptions (F1)–(F4) and g : Ω × Rm → R being a Carathéodory function such
that Ω ∋ y → g(y, u(y)) belongs to L∞(Ω, R+) for each u ∈ U . Now we want to
expand these results and consider function G in a general form. Finally, we will apply
them to the optimal control problem

F (x, u) =

π∫

0

f̃(t, x(t), x′(t), u(t))dt → min,

f̃ : Ω × I × Rm → R, with constraints (1.1). Since we are able to work with the
solutions of (1.1) from a bounded set we can investigate the existence of optimal
solutions under assumptions weaker than in the previous papers, namely, when all
conditions associated with the behaviour of f̃(y, ·, u) concern the interval I only.

2. DEPENDENCE OF SOLUTIONS ON FUNCTIONAL PARAMETERS

Define X as follows

X =
{
x ∈ W 1,q

0 (Ω, R), 0 ≤ x(y) ≤ M a.e. on Ω

and div(k|∇x|q−2∇x) ∈ Lq′(Ω, R)
}
.
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Theorem 2.1. Assume conditions (Ω), (K), (G1)–(G5) and the pointwise conver-
gence of {um}m∈N ⊂ U to u0 ∈ U a.e. in Ω. For each m ∈ N, let xm ∈ X denote
a solution of (1.1) dependent on um, namely

−div (k(y)|∇xm(y)|q−2∇xm(y)) = Gx(y, xm(y), um(y)) for a.e. y ∈ Ω. (2.1)

Then {xm}m∈N (or its subsequence) tends weakly to x0 ∈ X in W 1,q
0 (Ω, R), where x0

is a solution of the following equation

−div (k(y)|∇x(y)|q−2∇x(y)) = Gx(y, x(y), u0(y)) for a.e. y ∈ Ω. (2.2)

Proof. We start our proof with the observation that for each m ∈ N , Theorem 4.1
from [10] yields the existence of xm ∈ Xum

such that (2.1) holds, where

Xum
=

{
x ∈ W 1,q

0 (Ω, R), 0 ≤ x(y) ≤ zum
(y) a.e. on Ω

and div (k|∇x|q−2∇x) ∈ L∞(Ω, R)
}
.

It is clear that for each m ∈ N , Xum ⊂ X (condition (G2)). Thus, by definition of
X, 0 ≤ xm(y) ≤ M a.e. y ∈ Ω and for each m ∈ N ,

∫

Ω

|∇xm(y)|qdy ≤ 1

k0

∫

Ω

〈
k(y)|∇xm(y)|q−2∇xm(y),∇xm(y)

〉
dy =

=
1

k0

∫

Ω

Gx(y, xm(y), um(y))xm(y)dy ≤ M

k0

∫

Ω

ϕ(y)dy.

Thus certain subsequence of {xm}m∈N , again denoted by {xm}m∈N , tends weakly
to x0 ∈ W 1,q

0 (Ω, R) and, consequently, xm →
m→∞

x0 in Lq(Ω, R). Let us consider

{pm}m∈N ⊂ Lq′(Ω, Rn) given by

pm(y) = k(y)|∇xm(y)|q−2∇xm(y), a.e. on Ω.

From the properties of {xm}m∈N we infer that (up to a subsequence) pm ⇀ p0 ∈
Lq′(Ω, Rn) (weakly), as m → ∞, in Lq′(Ω, Rn). Moreover, assertion (2.1) and as-
sumptions (G2) and (G5) imply the boundedness of the sequence {divpm

}m∈N in
Lq′(Ω, R). We will show that divp0 exists in the weak sense, belongs to Lq′(Ω, R)

and div pm ⇀ div p0, as m → ∞, in Lq′(Ω, Rn). To this end, we have to note that

∫

Ω

〈p0(y),∇h(y)〉 dy = lim
m→∞

∫

Ω

〈pm(y),∇h(y)〉 dy =

= − lim
m→∞

∫

Ω

div pm(y)h(y)dy = lim
m→∞

∫

Ω

Gx(y, xm(y), um(y))h(y)dy
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for any h ∈ C∞
0 (Ω, R). (The last equality holds also for all h ∈ Lq(Ω, R)). On the

other hand, the smoothness of Gx(y, ·, ·) and monotonicity of Gx(y, ·, u) for each
u ∈ U and a.a. y ∈ Ω, assumption (G5) and the facts that um(y) → u0(y) and
xm(y) → x0(y) a.e. in Ω, as m → ∞, imply the following equality

lim
m→∞

∫

Ω

Gx(y, xm(y), um(y))h(y)dy =

∫

Ω

Gx(y, x0(y), u0(y))h(y)dy

for any h ∈ Lq(Ω, R). Combining both assertions, for any h ∈ C∞
0 (Ω, R), we derive

∫

Ω

〈p0(y),∇h(y)〉 dy =

∫

Ω

Gx(y, x0(y), u0(y))h(y)dy (2.3)

and

lim
m→∞

∫

Ω

div pm(y)h(y)dy = −
∫

Ω

Gx(y, x0(y), u0(y))h(y)dy (2.4)

for each h ∈ Lq(Ω, R). (2.3), (2.4) and the Euler–Lagrange lemma lead to divpm ⇀

divp0 in Lq′(Ω, Rn), as m → ∞, and

div p0(y) = −Gx(y, x0(y), u0(y)) for a.e. y ∈ Ω. (2.5)

Moreover, there is

0 = lim
m→∞

∫

Ω

{
1

q′(k(y))
q′
q

|pm(y)|q′ + 1

q
k(y)|∇xm(y)|q − 〈pm(y),∇xm(y)〉

}
dy ≥

≥
∫

Ω

{
1

q′(k(y))
q′
q

|p0(y)|q
′
+

1

q
k(y)|∇x0(y)|q − 〈p0(y),∇x0(y)〉

}
dy

and finally,
p0(y) = k(y)|∇x0(y)|q−2∇x0(y)) for a.e. y ∈ Ω. (2.6)

Substituting (2.6) into (2.5) yields that the weak limit x0 of {xm}m∈N in W
1,q
0 (Ω, R)

belongs to X and is a solution of (2.2).

3. APPLICATION TO THE OPTIMAL CONTROL PROBLEM

In this section we derive sufficient conditions for the optimal control problem

F (x, u) =

∫

Ω

f̃(y, x(y), u(y))dy → min (3.1)

subject to

−div (k(y)|∇x(y)|q−2∇x(y)) = Gx(y, x(y), u(y)) for a.e. y ∈ Ω. (3.2)
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We look for an optimal pair (x0, u0) in the set XŨ defined as

XŨ :=
{
(x, u) ∈ W 1,q

0 (Ω, R)× Ũ , 0 ≤ x(y) ≤ M a.e. on Ω

and div(k|∇x|q−2∇x) ∈ Lq′(Ω, R) and x is a solution of 3.2

corresponding to parameter u
}
,

where Ũ := { u : Ω → A, u satisfies the Lipschitz condition with a fixed constant L},
L > 0, A is a compact subset of Rm. We assume (Ω), (K), (G1)–(G5) with U = Ũ

and the following additional conditions

(f1) f̃ : Ω × I × Rm → R is measurable with respect to the first variable for all
(x, u) ∈ I ×Rm and f̃(y, ·, ·) is continuous in I ×Rm for a.a. y ∈ Ω;

(f2) there exists α ∈ L1(Ω, R+) such that for all u ∈ Ũ and x ∈ I

|f̃(y, x, u(y))| ≤ α(y)

a.e. in Ω.

Theorem 3.1. Under the above assumptions, there exists (x0, u0) ∈ XŨ such that

F (x0, u0) = min
(x,u)∈X eU

F (x, u).

Proof. Let {(xm, um)}m∈N ⊂ XŨ be a minimizing sequence of F : XŨ → R. Since
{um}m∈N is bounded and equicontinuous in Ω, the Arzela–Ascoli theorem guarantees
the existence of a subsequence, still denoted by {um}m∈N , which converges uniformly
to u0 ∈ Ũ . Thus, by Theorem 2.1, we state that a subsequence of {xm}m∈N , again
denoted by {xm}m∈N , converges weakly to x0 ∈ X in W 1,q

0 (Ω, R), where x0 is
a solution of 3.2 corresponding to u0. Taking into account the pointwise convergence
of {(xm, um)}m∈N to (x0, u0) ∈ XŨ a.e. in Ω and assumption (f1), we obtain

f̃(y, xm(y), um(y)) →
m→∞

f̃(y, x0(y), u0(y))

a.e. in Ω and, by (f2)
|f̃(y, xm(y), um(y))| ≤ α(y)

a.e. in Ω. Therefore, the Lebesgue dominated convergence theorem yields
∫

Ω

f̃(y, xm(y), um(y))dy →
m→∞

∫

Ω

f̃(y, x0(y), u0(y))dy.

Finally,
min

(x,u)∈X eU
F (x, u) = lim inf

m→∞
F (xm, um) = F (x0, u0).
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