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Horocycle Flows without Minimal Sets

By Shigenori Matsumoto

Abstract. We show that the horocycle flows of open tight hy-
perbolic surfaces do not admit minimal sets.

1. Introduction

Let {φt} be a flow of a metric space X. A subset of X is called a minimal

set of {φt} if it is closed and invariant by φt, and is minimal among them

with respect to the inclusion. If X is compact, then any flow on X admits a

minimal set. But if X is not compact, this is not always the case. The first

example of a flow without minimal set is constructed on an open surface by

T. Inaba [8]. Later various examples are piled up by many authors including

[2]. See also [12] for examples of Anzai skew products on an open annulus.

M. Kulikov [9] constructed an example of the horocycle flow of an open

hyperbolic surface with this property. This is interesting since horocycle

flows have long been studied by various mathematicians; function analysists,

topologists, dynamical people and ergodic theoretists. Moreover an example

in [9] is the first one constructed algebraically on an homogeneous space.

However the example is constructed in a specific and elaborate way. The

purpose of this paper is to show that more general Fuchsian groups also

satify this property.

Definition 1.1. A Fuchsian group Γ is called tight if it satisfies the

following conditions.

(1) Γ is purely hyperbolic.

(2) Σ = Γ \ H
2 is noncompact and admits an increasing and exausting

sequence of compact subsurfaces {Σn}n∈N with geodesic boundaries such

that there is a bound C on the length of components of ∂Σn.
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Tight Fuchsian groups are infinitely generated and of the first kind. The

main result of this notes is the following.

Theorem 1.2. If Γ is a tight Fuchsian group, the horocycle flow

{hs}s∈R on Γ \ PSL(2,R) admits no minimal sets.

Corollary 1.3. Almost all orbits of the horocycle flow of a tight Fuch-

sian group are dense.

Remark 1.4. For some tight Fuchsian groups, the horocycle flow is

ergodic, while for others it is not.

In Section 2, we explain conventions used in this paper. In Section 3, we

prepare fundamental facts about the horocyclic limit points. Section 4 is

devoted to the proof of Theorem 1.2. Finally in Section 5, we raise examples

of tight Fuchsian groups and discuss Corollary 1.3 and Remark 1.4.

2. Conventions

The right coset space PSL(2,R)/PSO(2) is identified with the upper

half plane H by sending a matrix ±
[
a b

c d

]
to a point

ai + b

ci + d
. The group

PSL(2,R) acts on H as linear fractional transformations, and is identified

with the unit tangent space T 1
H by sending M ∈ PSL(2,R) to M∗(i, �e ),

where (i, �e ) is the upward unit tangent vector at i. The canonical projection

is denoted by

π1 : PSL(2,R) = T 1
H → H.

The geodesic flow {g̃t} (resp. the horocycle flow {h̃s}) on PSL(2,R)

is given by the right multiplication of the matrices

[
et/2 0

0 e−t/2

]
(resp.

[
1 s

0 1

]
). The quotient space PSL(2,R)/〈h̃s〉 is identified with the annulus

A = (R2 \ {0})/〈±1〉, by sending M ∈ PSL(2,R) to a point M(1, 0)t ∈ A.

The canonical projection is denoted by

π2 : T 1
H = PSL(2,R) → A.
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The geodesic flow g̃t induces a flow on A, which is just the scalar multipli-

cation by et/2. The further quotient space A/R+ is equal to the circle at

infinity ∂∞H, both being defined as the right coset space of PSL(2,R) by

the subgroup of the upper triangular matrices.

For any ξ ∈ ∂∞H, the preimage of ξ by the canonical projection A →
∂∞H is denoted by A(ξ). It is a ray of A. For any point p ∈ A(ξ), H(p) =

π1(π
−1
2 (p)) is a horocycle in H tangent to ∂∞H at ξ. The open horodisk

encircled by H(p) is denoted by D(p). The signed distance from i ∈ H
2 to

the horocycle H(p) (positive if i is outside D(p) and negative if inside) is

2 log|p|, where |p| denotes the Euclidian norm of A. Thus |p| < 1 if and only

if i ∈ D(p).

Given a Fuchsian group Γ, the flows {g̃t} and {h̃s} induce flows on

Γ \ PSL(2,R), denoted by {gt} and {hs}. The right R-action {hs} on

Γ \ PSL(2,R) is Morita equivalent to the left Γ-action on A. Thus a dense

{hs}-orbit in Γ \ PSL(2,R) corresponds to a dense Γ-orbit in A. Likewise

a minimal set of the flow {hs} in Γ \ PSL(2,R) corresponds to a minimal

set for the Γ-action on A.

For any ṽ ∈ T 1
H, t 
→ π1g̃

t(ṽ) is the unit speed geodesic in H with initial

vector ṽ. Its positive endpoint in ∂∞H is denoted by ṽ(∞). If Γ is purely

hyperbolic, the quotient space Σ = Γ \ H is a hyperbolic surface, and its

unit tangent bundle T 1Σ is identified with Γ \ PSL(2,R). The canonical

projection is denoted by

π : T 1Σ → Σ.

For any v ∈ T 1Σ,

v[0,∞) = {πgt(v) | 0 ≤ t < ∞}

is the geodesic ray in Σ with innitial vector v.

3. Horocyclic Limit Points

In this section we assume that Γ is a purely hyperbolic Fuchsian group

of the first kind. As before, we denote Σ = Γ \ H. Many of the contents in

this section are taken from [13].

Definition 3.1. A geodesic ray v[0,∞) , v ∈ T 1Σ, is called a quasi-

minimizer if there is k > 0 such that d(πgt(v), π(v)) ≥ t− k for any t ≥ 0.
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See Figure 1.

Definition 3.2. A point at infinity ξ ∈ ∂∞H is called a horocyclic

limit point of Γ if any horodisk at ξ intersects the orbit Γi. Otherwise it is

called nonhorocyclic.

See Figure 2. If ξ is a horocyclic limit point, then any horodisk at ξ

intersects any orbit Γz.

Lemma 3.3. For any lift ṽ of v ∈ T 1Σ, the geodesic ray v[0,∞) in

Σ is a quasi-minimizer if and only if ξ = ṽ(∞) is a nonhorocyclic limit

point.

Fig. 1. A quasi-minimizer. It starts at a point a and after one turn goes straight to the
right. Any point πgt(v) on the curve satisfies t− d(a, πgt(v)) ≤ k for some k, where t
is the length of the curve between the two points.

Fig. 2. ξ1 is horocyclic and ξ2 is nonhorocyclic.
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Definition 3.4. For any point ξ ∈ ∂∞H, let ṽ ∈ T 1
i H be a tangent

vector at i ∈ H such that ṽ(∞) = ξ. The Busemann function Bξ : H → R

is defined for z ∈ H by

Bξ(z) = lim
t→∞

(d(z, π1g̃
t(ṽ)) − t).(3.1)

Notice that for k > 0, the set {Bξ < −k} is a horodisk at ξ which is

k-apart from i.

Proof of Lemma 3.3. One may assume that ṽ in the lemma is a unit

tangent vector at i ∈ H. Suppose that the point ξ = ṽ(∞) is a nonhorocyclic

limit point. Then there is k > 0 such that for any γ ∈ Γ, Bξ(γi) ≥ −k.

Since the limit in (3.1) is non increasing, this implies d(γi, π1g̃
t(ṽ)) ≥ t− k

for any γ ∈ Γ and t ≥ 0. On Σ = Γ \ H, we get d(π(v), πgt(v)) ≥ t − k for

any t ≥ 0. That is, v[0,∞) is a quasi-minimizer.

The converse can be shown by reversing the argument. �

Lemma 3.5. For any ξ ∈ ∂∞H and for any p ∈ A(ξ) ⊂ A, the following

conditions are equivalent.

(1) Γp is dense in A.

(2) 0 ∈ Γp.

(3) ξ is a horocyclic limit point.

Proof. (3) ⇒ (2): By (3), for any p ∈ A(ξ), there is γ ∈ Γ such

that γ−1i ∈ D(p). That is, i ∈ D(γp), namely |γp| < 1. Since p is an

arbitray point of A(ξ) and since the Γ-action on A commutes with the

scalar multiplicaton, this implies (2).

(2) ⇒ (1): For any γ ∈ Γ\{e}, let W u(γ) be the ray in A corresponding

to the eigenspace of γ associated to the eigenvalue whose absolute value is

bigger than 1. In other words,

W u(γ) = {q ∈ A | |γ−nq| → 0, n → ∞}.

Assume p satisfies (2). Then we have Γp ∩W u(γ) �= ∅. See Figure 3.

Choose q ∈ Γp ∩W u(γ). Let Γn be the fundamental group of the sub-

surface Σn in Definition 1.1. The subgroups Γn are finitely generated with
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Fig. 3. U is a partial fundamental domain for the action of γ. If Γp intersects V , it also
intersects U . The four hyperbolae can be chosen arbitrarily near the axes.

Cantor limit sets Λn and form an exausting sequence of subgroups of Γ.

Moreover ∪nΛn is dense in ∂∞H. Let An be the inverse image of Λn by

the canonical projection A → ∂∞H. We have γ ∈ Γn and q ∈ An for any

large n. By the Hedlund theorem [5], the Γn actions on An are minimal. In

particular, Γq ⊃ An. Since this holds for any large n and since ∪nAn = A,

we obtain Γq = A. On the other hand, since q ∈ Γp, we have Γp ⊃ Γq,

showing (1).

(1) ⇒ (3): For any p ∈ A(ξ), there is γ such that |γ−1p| < 1. Then

i ∈ D(γ−1p). We thus have Γi ∩D(p) �= ∅ for any horodisk D(p) at ξ. �

Lemma 3.6. There are horocyclic limit points and nonhorocyclic limit

points.

Proof. Any point in ∂∞H which is fixed by any γ ∈ Γ \ {e} is a

horocyclic limit point. To show the second statement, let Di be the Dirichlet

fundamental domain of i ∈ H. That is,

Di = {z ∈ H | d(z, i) ≤ d(z, γi), ∀γ ∈ Γ}.

Then any point ξ of Di ∩ ∂∞H is a nonhorocyclic limit point. In fact, the

horodisk {Bξ < 0} contains no point of Γi. See Figure 4. �

4. Proof of Theorem 1.2

In this section Γ is to be a tight Fuchsian group.



Horocycle Flows without Minimal Sets 667

Fig. 4. If γi is contained in {Bξ < 0}, then Di must be contained in the region above
the perpendicular bisector �. A contradiction to the definition of ξ.

Lemma 4.1. Let ξ ∈ ∂∞H be a nonhorocyclic limit point. Then there

is r > 0 such that for any p ∈ A(ξ), er/2p ∈ Γp.

This lemma implies Theorem 1.2. In fact, if X is a minimal set for the

Γ-action on A. Then X must be a proper subset of A by Lemmata 3.5 and

3.6. Choose p ∈ X and let p ∈ A(ξ). Then ξ is a nonhorocyclic limit point

by Lemma 3.5. The above lemma implies that there is r > 0 such that

X ∩ er/2X �= ∅. Since X is minimal, this implies X = er/2X, showing that

X contains 0 in its closure. This means that 0 ∈ Γp, contrary to the fact

that ξ is a nonhorocyclic limit point.

Lemma 4.1 reduces to the following lemma about the geodesic flow on

T 1Σ.

Lemma 4.2. Let ṽ be an arbitrary vector in T 1
H such that ξ = ṽ(∞)

is a nonhorocyclic limit point, and let v ∈ T 1
aΣ be the projected image of ṽ

(a ∈ Σ). Then there are sequences of vectors vn ∈ T 1
aΣ and positive numbers

rn such that vn → v, rn → r > 0 and d(gt+rn(vn), gt(v)) → 0 as t → ∞.

Let us see that Lemma 4.2 implies Lemma 4.1. The last statement

shows that grn(vn) lies on the strong stable manifold of v. Thus we have

grn(vn) = hsn(v) for some sn ∈ R. We assumed vn = g−rnhsn(v) → v.

Now the family {grn} is equiconinuous at v, because rn → r. Therefore

d(grn(v), hsn(v)) → 0. That is, hsn(v) → gr(v). Up on T 1
H = PSL(2,R),

this means that there are γn ∈ Γ such that γnh̃
sn(ṽ) → g̃r(ṽ). Let p be
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the projection of ṽ to A. Then down on A, we have γnp → er/2p, showing

Lemma 4.1.

Proof of Lemma 4.2. It is no loss of generality to assume that a ∈
Σ1, where v ∈ T 1

aΣ. In fact one can take the subsurface Σ1 in Definition

1.1 as large as we want. By the assumption on ṽ, the geodesic ray v[0,∞)

is a quasi-minimizer and thus proper. Let tn be the maximum time when

πgtn(v) hits ∂Σn. Let cn be a closed curve on ∂Σn starting and ending at

πgtn(v). We choose the direction of cn in such a way that the tangent vectors

of the curves v[0,∞) and cn form an angle ≤ π/2 at the point πgtn(v). See

Figure 5.

By Definition 1.1 (2), there are 0 < c < C such that c ≤ |cn| ≤ C for any

n. (If the boundary curve of ∂Σn is too short, we choose cn as its multiple.)

Form a concatenation βT
n of three curves πgt(v) (0 ≤ t ≤ tn), cn and πgt(v)

(tn ≤ t ≤ T ), where T is some big number. Let αT
n be the geodesic joining

a and πgT (v) in the homotopy class of βT
n . If T → ∞, this curve converges

to a geodesic ray πgt(vn) for some vn ∈ T 1
aΣ. Moreover the two geodesic

rays v[0,∞) and vn[0,∞) are asymptotic. See Figure 6. We have vn → v

by virtue of the bound C in Definition 1.1. See Figure 7.

Since v[0,∞) and vn[0,∞) are asymptotic, there is rn ∈ R such that

d(πgt(v), πgt+rn(vn)) → 0 as t → ∞.

The directions are also asymptotic, and therefore

d(gt(v), gt+rn(vn)) → 0 in T 1Σ.

Fig. 5. The curves v[0,∞) and cn.
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Fig. 6. A lift ṽ[0,∞) of the curve v[0,∞) and a lift α̃T
n of αT

n to H. For any T , the curves
α̃T
n start at the same point, say γã, and converges to α̃n. The projection of α̃n to Σ

is the curve vn[0,∞).

Fig. 7. The dotted lines are the lifts of curves vn[0,∞) which starts at the same point
ã. This shows that vn → v.

Finally we have rn ∈ (b, C], where b > 0 is defined as follows: for any point

z in a horocycle H, let [z, w] be the geodesic segment of length c/2 tangent

to H at z. Define b by b = Bξ(w) − Bξ(z). For details see Figure 8. This

shows Lemma 4.2. �

The proof of Theorem 1.2 is now complete.

5. Examples and Remarks

Let Γ be a tight Fuchsian group. The bi-invariant Haar measure of

PSL(2,R) induces a measure m on T 1Σ = Γ \ PSL(2,R) invariant both

by the geodesic and horocycle flows. The spaces ∂∞H and A are equipped
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Fig. 8. The figure depicts the case where the length of cn takes the minimal value c and
v[0,∞) intersects cn perpendicularly. The dotted circles are horocycles. Note that
the lift of vn[0,∞) intersects the lift of cn at a point above the midpoint. Thus we
have Bξ(γã) −Bξ(ã) > b.

with the standard Lebesgue measures. In what follows, all the statements

concerning the measures are to be with respect to these measures. The left

Γ action on A is Morita equivalent to the horocycle flow on T 1Σ in the

measure theoretic sense. Especially the former is ergodic if and only if the

latter is ([15], 2.2.3).

Denote by Λh the set of the horocyclic limit points. For a point z ∈ H,

denote the Dirichlet fundamental domain of z by Dz, i.e.

Dz = {w ∈ H | d(w, z) ≤ d(w, γz), ∀γ ∈ Γ}.

Let Fz = Dz ∩ ∂∞H and Ez = ΓFz. Sullivan [14] showed that Ez ∪ Λh is a

full measure set of ∂∞H (for any Fuchsian group).

Proof of Corllary 1.3. By virtue of the Sullivan theorem and

Lemma 3.5, we only need to show that Fz is a null set. Assume the contrary.

For any γ ∈ Γ \ {e}, γFz ∩Fz is at most two points, lying on the bisector of

z and γz. Let

F ′
z = Fz \

⋃
γ∈Γ\{e}

γFz,

and let B be the inverse image of F ′
z by the canonincal projection A → ∂∞H.

Then B is a partial measurable fundamental domain for the Γ action on A,

i.e. B is positive measured and B ∩ γB = ∅ for any γ ∈ Γ \ {e}. By



Horocycle Flows without Minimal Sets 671

the Morita equivalence, the horocycle flow also has a partial fundamental

domain: there is a positive measured set A ⊂ T 1Σ such that A ∩ hnA = ∅
for any n ∈ Z \ {0}. To see this, consider the inverse image π−1

2 (B) by the

canonical projection π2 : PSL(2,R) → A. Clearly the Z action h̃n restricted

to π−1
2 (B) admits a fundamental domain A. On the other hand, π−1

2 (B) can

be embedded in T 1Σ = Γ \PSL(2,R) since B ∩ γB = ∅ for any γ ∈ Γ \ {e}.
Let us show that almost all points in A has a proper horocycle orbit.

Choose an arbitrary compact set K of T 1Σ and let

an = m(A ∩ h−n(K)) = m(hn(A) ∩K).

Then we have ∑
n∈Z

an ≤ m(K) < ∞.

For any n0 ∈ N, we have

m(A ∩
⋃

|n|≥n0

h−n(K)) ≤
∑

|n|≥n0

an.

Therefore

m(A ∩
⋂

n0∈N

⋃
|n|≥n0

h−n(K)) = 0.

Since K is an arbirtrary compact set, this shows that almost all points in A

admits a proper horocyclic orbit. But a proper orbit is a minimal set. This

is against Theorem 1.2, completing the proof of Corollary 1.3. �

Let us discuss Remark 1.4 by examples.

Example 5.1. Let Γ0 be a cocompact purely hyperbolic Fuchsian group

(a surface group), and let Γ be a nontrivial normal subgroup of Γ0 of infinite

index. Then Γ is a tight Fuchsian group.

When G = Γ0/Γ is free abelian, then the horocycle flow on Γ\PSL(2,R)

is known to be ergodic [1], [10]. On the other hand, if G is nonamenable,

there is a nonconstant bounded harmonic function on the surface Σ = Γ \
H [11]. That is, there is a nonconstant bounded Γ invariant measurable

function on ∂∞H, and therefore the Γ action on ∂∞H is not ergodic. This
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implies that the Γ action on A is not ergodic. By the Morita equivalence,

the horocycle flow on Γ \ PSL(2,R) is not ergodic.

Let F be a surface foliation on a compact manifold. If F admits no

transverse invariant measures, then there is a continuous leafwise Rieman-

nian metric of curvature −1 [3]. One may ask the following question.

Question 5.2. Are generic leaves of F either compact, planar, annular

or tight?

See [4] for related topics. This is true for the Hirsch foliation [7] and Lie

G foliations. For the latter, see [6] for the idea of the proof.
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