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Existence of Solutions to the Heat Convection
Equations in a Time-dependent Domain

with Mixed Boundary Conditions

By Tujin KiM* and Daomin CAo0T

Abstract. In this paper we are concerned with the initial bound-
ary value problems of the heat convection equations in a time-de-
pendent domain with mixed boundary conditions involving the total
pressure of fluid. We obtain the existence of a weak solution to the
problem. By a transformation of unknown functions and a penalty
method we connect the problem to an elliptic operator equation for
functions defined in the time-dependent domain. Owing to the trans-
formation we do not need to assume that the given data are small
enough. This method is also valid for the Navier-Stokes equations
with the nonstandard boundary conditions.

1. Introduction

There are vast literatures for the initial boundary or periodic problems of
the Navier-Stokes equations in time-dependent domains and various meth-
ods have been used for those problems.

Using a diffeomorphism conserving volumes, many researchers transform
the time-dependent domains into the time-independent domains and the
systems into perturbed one in time-independent domains (cf. [4]~[7], [11],
[18], [24], [30], [31], [36] and references therein).

There are also some papers that transform the systems to the differen-
tial inclusions with subdifferential operators on expanded spatial domains
which include the time-dependent domains. For example, in [29] the original
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equation is reduced to an abstract equation in an appropriate Hilbert space,
which can be regarded as a perturbed equation of an equation generated by
a time dependent subdifferential operator. Then the desired solutions are
constructed by the successive approximation method.

Penalty methods are also used for these problems. In [12] a kind of
penalty method was introduced by which the problem is reduced to one
in a time-independent domain. As a kind of penalty method, the elliptic
regularization was used to study the Navier-Stokes equations in regions with
moving boundaries(cf. [22], [23], [33]~[35]).

Except [11] which dealt with Neumann type boundary condition, all pa-
pers mentioned above dealt with initial boundary value or periodic problems
with Dirichlet boundary conditions. In [26] 2-D time periodic Navier-Stokes
equations in a time-dependent domain conserving volume with a slip bound-
ary condition was studied, where the equation of rotation was used.

On the other hand, in [32] the Navier-Stokes problem in a time-depen-
dent domain with a mixed boundary condition is considered. In [32] the
part of boundary for homogeneous Dirichlet condition is cylindrical and the
boundary condition on the other part of boundary is such a special one
that guarantees the existence of a solution to the elliptic operator equation
obtained by the penalty method.

The Stokes and the Navier-Stokes equations in time-dependent domains
with boundary conditions involving the pressure were studied in [20] by
the elliptic regularization. But, the Navier-Stokes equations in a domain
decreasing along the time was studied under homogeneous boundary con-
dition for the velocity of fluid, which means that a, b, ¢ =0 in (2.1) bellow
(see Theorem 4.1 in [20]). To avoid a monotone contraction condition on
the time-variation of the domain used in [20], a similar (really more simple)
problem was studied in [3]. It was assumed that boundary values must be
small enough and every connected component of surface for the pressure
boundary condition is included in one of the coordinates planes.

Initial boundary value or periodic problems of the heat convection equa-
tions in time-dependent domains were also studied (cf. [15], [17] and ref-
erences therein). However, there seems to be less literature devoted to the
heat convection equations on time-dependent domains.

In [27], [28] the initial boundary value and periodic problems of the heat
convection equations in time-dependent domains with Dirichlet boundary
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condition were studied by the penalty method used in [12](weak solutions)
and the differential inclusions with a subdifferential operators on an ex-
panded spatial domain which includes time-dependent domains (strong solu-
tions). And [21] dealt with heat convection equations in time-dependent do-
mains with homogeneous Dirichlet boundary condition by a penalty method
similar to [12]. Also, in [15]~[17] initial boundary value and periodic prob-
lems of the heat convection equations in time-dependent domains with
Dirichlet boundary condition were studied by the differential inclusions with
time dependent subdifferential operators.

In the case of time-independent domains the initial boundary value
and periodic problems of the heat convection equations with homogeneous
Dirichlet boundary condition for the velocity of fluid and mixture of non-
homogeneous Dirichlet and Neumann conditions for the temperature was
studied (cf. [25]).

In this paper we are concerned with the existence of weak solutions to
the initial boundary value problems of the heat convection equations in a
time-dependent domain with nonstandard boundary conditions involving
the total pressure (Bernoulli’s pressure) of fluid. In our case time-variation
of the domain is similar to one in [20], but more general because in our
case on some subsegments of finite time interval the domain is expanded.
Unlike [3] we do not assume that boundary values must be small enough.
For the temperature function we are concerned with mixed boundary con-
ditions which may include inhomogeneous Dirichlet, Neumann and Robin
conditions together. Due to such nonstandard boundary conditions it is
difficult to reduce the problem to one in time-independent domains. Even
though, in the case of time-independent domains, a lateral subsurface for
one type of boundary condition may vary with respect to the time variable
t, and so it is difficult to reduce the problem with boundary conditions on
cylindrical surfaces expressed by products of parts of boundary of a spatial
domain and time interval.

To obtain the existence of solutions, by changes of unknown functions
and a penalty method we connect the problem to an elliptic operator equa-
tion for functions defined on the time-dependent domain. Using such a
transformation of unknown functions, we get coercivity of the operator in
the penalty problem without assuming that the given data are small enough
and the sign of coefficient in Robin boundary condition for the temperature
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is positive.

This paper consists of 5 sections. In Section 2 notation, the problem,
the definition of weak solution and the main result(Theorem 2.2) are stated.
In Section 3 changes of unknown functions are considered. Thus, we come
to the new problem 3.1 equivalent to the original one. In Section 4 we study
an auxiliary penalized problem obtained by the elliptic regularization. In
Section 5 by showing mainly the precompactness of solutions to the auxiliary
problem, we prove the main result. The piece monotone condition of domain
along the time was used only for the proof of the precompactness of solutions
to the auxiliary problem.

Let us end this section by a remark that all arguments in this paper
are valid for the Navier-Stokes equations with the nonstandard boundary
conditions.

A practical model of our mathematical problem is a pump with a to-
and-fro moving piston under consideration of heat exchange.

2. Problem and Main Result

Let Q(t) be bounded connected domains of R', | = 2,3, with Lipschitz
boundary, Q = Uje o) t) x {t}, 0 < T < o0, [0,T] = Ui_[ti, tis1], ti <
tivt, Qi = Ure(t, ,00) O X At} B = Use(o,r) 90F) x {t}, ¥, X, 33 be
open subsets of ¥ such that ¥; UXs U X3 = 3 and %;(t) = X; N Q(t). Let
n(z,t) be unit outward normal on 9Q(t) for fixed t, ¢; = (0,0,1) for | =3
and ¢; = (0,1) for I = 2.

We consider the following initial boundary value problem of the Boussi-
nesq approximation of heat convection

% —vAv + (v, V)v+ Vp + p(x,t)0e; = fi,
dive =0,

00

E—Ae—l—v-v&:fz,

1
(2'1) v |E1: a(a;,t), vXn |22: b(l‘,t) X 1, (p+ 5’1)‘2) ’22:]90(1',15),

v-n|n,=c(z,t), (VXx0v)Xn|g, =@,

v(0) = v, 6(0) = b,

\
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where v denotes the velocity, p pressure and 0 temperature. We will use the
following notations. If X is a Banach space, then X = X!. Let H'(Q) =
W1 (Q), and so HY(Q) = Hl(Q)l. An inner product in the space La(Q) or
L»(Q) is denoted by (-,-)q; and (-, -)y means the duality product between
a space defined on Y and its dual space. Also, (-,-)r, is an inner product
in the Lo(T;) and (-, -)r, means the duality product between H%(Fl) and
H_%(I‘i). The inner product between a and b in R' is denoted by a - b.
For functions of (z,t), the operators A, div and V are with respect to the
spatial variable x. Let |v|?2(t) = [ |v|*dz and HUH?)(,:) = [ |Vu|*dz for
Qt 0
v e HY QL)) or v e HY(Q()).
For function v defined on @ define a(v) by

o)~ ([ " loliag dt)%

whenever the integral make sense. Let

AQ)={veC*Q):divv=0, v|s,=0, vxn|g,=0, v-nl|g,=0},
H(Q) = {the completion of A(Q) in L2(Q)},

V(Q) = {the completion of A(Q) under the norm a(v)},

W(Q) = {the completion of A(Q) in the space H(Q)},

H(Q(s)) = {v € La(Q(s)) : dive = 0}.

Let

D(Q) = {y:y € C*(Q), ylsouz, = 0},
X (Q) = {the completion of D(Q) under the norm a(y)},
Y (Q) = {the completion of D(Q) in the space H(Q)}.

Note that due to 1) in Assumption 2.2 bellow, a(v) is a norm, respectively,

in A(Q) and D(Q).

For the domain ) and its boundary we assume the followings.

ASSUMPTION 2.1 (cf. (A1) in [20]). O(t) is Lipschitz continuous for
0<t<T.
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ASSUMPTION 2.2 (cf. (A2)in[20]). 1)%N%; =0, i #j, 4,5 =1,2,3;
Yi(t) #0 YVt € (0,T) and Xo(t) UXs(t) #0 Vt € (0,T).
2) There exists a domain Q C R' with Lipschitz boundary such that Q(t) C Q
for every t € [0,T] and (X2 UX3) N (02 x (0,T)) = X9 U 3.
3) For every subinterval (t;,ti+1) of [0,T] = Uf:o[ti» ti+1] one of the follow-
ing two conditions is satisfied:

(3a)
Q(s) CQt), wQE)\Qs)) <w(s—t) fort;<t<s<tiy

or

(3b)
Q) cQ>s) pQs)\ Q1) <w(s—t) fort;<t<s<tiy,

where p(c) denotes the measure of set o and the function w: Rt — RT is
such that w(h) — 0 as h — 0.
4) If (x,t) € X1, then

in the case (3a): (z,5) €Y1 or (z,8) ¢ Q fort; <t <s<ti,
in the case (3b): (x,8) € X1 or (1,8) ¢ Q fort; < s <t <ti1.

5) Fori=2,3

Yi(s) CXi(t) fort; <t <s<tiy1 in the case of (3a),
Yi(t) C Xi(s) fort; <t <s<tiy1 in the case of (3b).

6) There exists a constant ko > 0 such that

1 1 T T
(5 + Hk(xat)HLoo(Zl))/ p*do < 1/ IVl dt+k0/ o1&y dt
o 0 0

Vp € Y(Q).

REMARK 2.1. For any ¢ € (0,7) there exists ko(t) such that

1 1
(5 + k(@ )| Lo (m1)) / p*do < ZHVPH?z(t) +ko()lploy VpEY(Q)

21(¢)
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(cf. Theorem 1.6.6 in [8] or (1), p. 258 in [10]). In the case of (3a) if
k(x,t) > 0, then 6) is not necessary (see (4.9)).

REMARK 2.2. If we assume Yo(t) N X3(t) = 0 as [9], then 5) of As-
sumption 2.2 follows from 2)-4) of Assumption 2.2.

AsSsuMPTION 2.3 (cf. (A3) in [20]). There ezists c; > 0 such that for
every v € V(Q) and t € (0,T)

IV x 0, 1) B> eallv( Bl o)

REMARK 2.3. Under $5(¢) N $3(¢t) = @ and 1) in Assumption 2.2, for
the case of 3-D domain with 9Q € C! or convex polyhedron the inequality
in Assumption 2.3 with ¢;(¢) depending on ¢ holds (cf. Proposition 1.1 in
[2] or Lemma 1.4 in [9]). For domains with 9Q € C? without assuming
32N 33 = ) the assertion above is valid(cf. Lemma 2 in [14]). When %3 = 0)
for some 3-D domains with 9Q € C%! also the assertion above is valid(cf.
A2 in [9]).

For the given data we assume the followings.

AsSsSUMPTION 2.4. (cf. (1.8) in [20]). There exists a function U €
H'(Q) N L (Q) such that
divU(-,t) =0, Uly, = a(z,t), U x n|y, =b(x,t) xn, U - n|n, = c(x,t).

ASSUMPTION 2.5. 1) There ezists a function G(Q) € H'(Q) N Loo(Q)
such that Gls,uxn, = d(x,t).
2) vo — U(z,0) € H(Q(0)), 0y — G(x,0) € La(€2(0)),
3) [1 € La(Q), f2 € L2(Q),
4) po(,t) € La(0, T; H1/2(3a(t))), ¢ € Lo(0,T; H-/2(5(1))),
5) k(x,t) € Loo(21), pu(x,t) € Loo(Q) and e(x,t) € Lo(0,T; H-Y2(24(1))).

Let r(x,t) be unit outward normal on the boundary ¥ and (r,t) be the
angle between 7 and the positive direction of t-axis. For v € C?(Q), u €
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A(Q) in view of (2.1) we have

(2.2) / O dzdt = (o, T), ule, T))agr) — (vo, ulz; 0))ag)

—/v@da@dt
o O

where the fact that fzguzg vucos(r,t)do = 0 by 2) of Assumption 2.2 was
used.
Using the facts that

—Av = rot rot v — grad(divv),

(rotv,u) — (v,rotu) = —(v X n,u)gq,
for v € {v:v € C>®(Q),dive =0}, p€ HY(Q) and u € A(Q), we get

—v(Av,u)g = v(rotv,rot u)g — v(rot v x n,u)s,us,
= v(rotv,rotu)g — v(rotv x n,u)s, — v(rotv x n,u)x,
= v(rotv,rot u)g — v(rotv X n, u)s,,
(Vp,u) =<p,u-n>s, .

Thus, taking

1
(v, V)v =rotv x v + 5grad|v\2

into account, under the boundary condition of (2.1) we have
T
@3) [ (-vAo+ @ 9)0+ T wag di
0
T 1
= / (—vAv +rotv X v+ §g1rad|v|2 + Vp, u)qq) dt
0
= v(rotv,rotu)g — v(rotv x n,u)s,
T
+ [ otwx v uag de+ (oo, 0) - )
0
Similarly, when 6 € C%(Q), y € D(Q), in view of (2.1) we have

@) [ Ghydadt = (0. 7). 105 Tar) = Bo.u(r Oy

+/ Oy cos(r, t) da—/ 8yd dt,
31
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(2.5) / (A0 +v-VO)ydxdt = / (VO -Vy+v-Vy)dxdt
Q Q

+/ k(x,t)0y do —/ e(z,t)y do.
El E1
Thus, in view of (2.2)-(2.5), we introduce the following definition.

DEFINITION 2.1. A function (v, ) is called a solution to (2.1) if (v, )
satisfies the following

v—UeV(Q), 6—GeX(Q);

T
_/Qvg—qzdxdt—/QG%dxdt—i—l//o (rot v, rot u)qy) dt

T T
+/ (rot v X v, u)o) dt+/ (u(z, t)0er, u)aq) di
0 0

+ / (VO -Vy+v-Voy)dedt + / [0y cos(r,t) + k(z,t)0y] do
Q X

T T T
—v /0 (0, )y o dlt /0 (o, £),u - sy oyt + /0 (ery)s, o) dt

+ (vo, u(z,0))o(0) + (6o, y(x,0))a(0) +/ f1Ud96dt+/ foy ddt
Q Q

Vu € A(Q), Yy € D(Q) with (u(z,T) =0, y(z,T) = 0).

Now let us state the main result of this paper.

THEOREM 2.2. Under Assumptions 2.1~2.5, there exists a solution
(v,0) to problem (2.1) and

ess sup|| (v, 0) || L, )+ < ¢
te(0,T)

REMARK 2.4. Since fOT<p0(x,t),u M), dr = f0T<p0(a:,t) + c(t),u -
n)s,) dr  Yu € A(Q), p is determined up to a constant with respect to z.
1
Since H2(X;(t)) = HZ(Si(t)) (cf. Theorem 11.1, ch. 1 in [19]),
(¢, u)siy 1) and (po(w,t),u - n)s, () make sense.
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3. Changes of Unknown Functions

Having in mind Assumption 2.4 and 1) of Assumption 2.5 and putting
v=204+U, 8 =0+ G, from Definition 2.1 we get

(3.1) 2€V(Q), § € X(Q);
_Ou -y T
_/Qvadxdt—/QHa da:dt—i—l//o (rot 0, ot u)qy) dt
T T
+/ (rot & X 0, u)o dt+/ (rot & X U +rot U X 0, u)q ) di
0 0

T
—l—/ (p(z, t)0er, u)aq dt+/ V6 - Vydzdt
0 Q
+/(6-V§+U~V§+6-VG‘)ydmdt
Q

+ /El[éy cos(r,t) + k(z, t)0y] do

T
= QU%da:dt—{—/QG%dwdt—y/o (rot U, rot u)q ) dt

T T
—/0 (rot U x U, u)qu) dt—/o ((m, t)Gep, u)oy dt

—/VG-Vydxdt—/ (U-VGQ)ydzdt
Q Q

T
—/ [Gy cos(r,t) + k(x,t)Gy] do + V/ (@, u) sy (p) dl
1 0

T T
_/0 <p0(x>t)7u'n>22(t) dt+/0 <€7y>21(t) dt
+ (vo, u(z, 0))ao) + (bo, y(, 0))ao) +/ frudzdt + / foy dzxdt
Q Q
Vu € AQ), Yy € D(Q) with u(z,T) =0, y(z,T) = 0.

In (3.1) let us make again changes of the unknown functions by w =
0,7 = M9, where k; is a constants to be determined in Theorem 4.1
later. Then we have

—/ @@dxdt:—/ e—’ﬁtw@ dmdt:—/ w@dagdt—kl/ wi dzdt,
o Ot Q ot o Ot Q

eklt
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—/ gy dacdt——/ et 9V g — —/ ) dacdt—kl/ Ty dxdt,

/ 02 gt = / Uekite=ht I g - / Ue"“t(% + k1a) dzdt,
o Ot Q ot Q ot

/ ¢ gt = / Getrtem1t Y gy — / Ge’“t(@ + k19) dadt,
o Ot 0 ot 0 ot
T
/ (0-VG)ydzdt = —/ (div (9y), G dt = —/ 0 - VyG dzdt
Q 0 Q

:—/ w - VG dedt,
Q

k kit

where @ = e Fity, 5= e Fily.
Substituting these in (3.1), we know that the problem to find a solution
to (2.1) in the sense of Definition 2.1 is equivalent to the following problem.

Problem 3.1. Find (w,7) € V(Q) x X(Q) such that
~ ~ T
(3.2) —/Qw% dxdt—/QT% dmdt—f—y/o (rot w,rot @)y dt
T
+/ e M1l (rot w x w, U)o dt
0
T
+/ (rot w x U 410t U X w, @)y dt
0
T
+/ (/.L(x,t)'rel,a)g(t) dt—l—/ V1 - Vydzdt
0 Q
+ / (e_kltw -V +U- VT) ydzdt
Q
T
- /Qw - VG dadt — kl/o [(w, @) + (T, )] dt
+/ [T cos(r, t) + k(z, )77 do
1

_ o0 3 O 3
— 4 k@) dadt 4 ki) dxdt
/QU(at'f‘ 1) da +/QG(8t+ 1Y) dx

T T
— y/ (rot U, rot W) dt — / (rot U x U, U)q dt
0 0
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T
—/ (u(x,t)Gey, War dt—/ VG - Vijdxdt
0 Q

_ / (U-VG) gdzdt — / (G cos(r, t) + k(x,t)GY] do
Q 1
T

T T
+Z//O <§57a>23(t) dt_A <ﬁ0(x7t)?ﬂ'n>22(t) dt+A <€7g>21(t) dt

+ (vo, u(z,0))a() + (60, y(z,0))a() +/ flﬂdlidt+/ fag dadt
Qi Q
Vi € AQ), Vij € D(Q) with @(z,T) = 0, §(z,T) = 0,
where 5 = eF1ty for any 7.

Therefore, for proof of Theorem 2.2 it is enough to prove that the exis-
tence of a solution (w,7) to Problem 3.1 and

(3.3) ess sup||(w, 7) |, )+ < ¢
te(0,T")

To this end, first in the next section we will consider an auxiliary problem
by the elliptic regularization.

4. Auxiliary Problem

Let W(Q;) and Y (Q;) be, respectively, restrictions of W(Q) and Y (Q)
on @;; and let X1; be the subsurface on (¢;,t;4+1) of ¥;.

Let m be positive integers and wy, € H(Q(t;)), 7, € La(Q2(t;)). Our
main purpose in this section is to find functions w™ € W(Q;), 7™ € Y (Q;)
satisfying the following

1 ow™ m\ Ou Lor™ )\ Oy
(4.1) /QZ.(E_at —um) 2 dmdt+/@i (- — ") 5 dadt

tit1
+v / (rot w™, rot u) o) dt
t;

tit1 ot
+/ (ef Yrotw™ x w™
t;

+rotw™ x U +rot U xwm,u>ﬂ()dt
t
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tit1
+/ (p(z, 1) e, u)aq dt+/ (V™. Vy) dzdt
t;

+ / (e Fityw™ . Vr™y + U - Vr™y) dxdt

i

tit1
— / (w™ - Vy)G dzdt — kq / (W™, u)q) dt

tit1 .
— k1 / (™, y)Q(t) dt + / [cos(r, t) + k(x,t)|Ty do
t; X1
+ (W™ (1), utivn)) o) + (77 (i), Y(tiv1)) o)
_ /0u ~ 0y
- /Qi U(E + k1u> dedt + /Qi G(a + k1y> drdt
tit1 _ tit1 _
- 1// (rot U, rot u)q ) dt — / (rot U x U, u)qq dt
t; t;

tit1 _ _
- / (u(w, t)Geg, u)oe dt — / VG - Vydzdt

t; Qi

— / (U . VG) y dxdt — / [cos(r, t) + k(x, )]Gy do
i 314

tit1 tiv1
+V/ (@, u)s500) dt—/ (Po(z,t),u - n)sy ) dt
t t

tit1
+ / <€7 y>21(t) dt + (wtia U($, tZ))Q(t.L) =+ (Ttiv y(wv tz))ﬂ(tl)
t;
+ flu dxdt + fzy dxdt

Qi Q;
Yu € W(Q;), Yy € Y(Q;).

For (4.1) we have the following result on the existence and uniqueness
of a solution.

THEOREM 4.1. Under Assumptions 2.1~2.5, for some ki, which is

taken for (4.13), independent of m and i, there exists a unique solution
to problem (4.1).

PROOF. Define an operator A,,; from W(Q;) x Y (Q;) into its dual
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space by

1 0z 0u 1 9p dy
4. . e _ _
(4.2) <Amz(z,p), (u,y)> /C;z m Ot Ot drdt + 0, ™M ot Ot dxdt

o ti+1
— /QZ 28_1: dzxdt — /QZ p% dzdt + y/ti (rot 2, ot u) ) dt

tit1
+/ (efkltrotzxz+r0tz><U+r0tU><z,u)Q()dt
t; t

tit1
+ [ e typer g d
t;

+ / (Vp-Vy+e Mz . Voy+U-Vpy+ z- VyG) dzdt
Qi

tig1 tir1
— ki / (z,u)qq dt — k1 / (P Y)aq) dt
ti t;

+ / [y cos(r, t) + k(x,t)py] do
Y14

+ (2(tir1), utivn)) o) + (0(tir1), y(tiv1)) o)
V(Z,,O), (u7 y) € W(Qz) X Y(Ql)?

where (-, -) means the duality product between W (Q;) x Y (Q;) and its dual
space.
And also define an element L; € W(Q;)* x Y(Q;)* by

43 (Latwy) = [ O +kwdedi+ [ GG

kyy) drdt
o o, Cle Thw)de

ti+1 _ ti+1 _
— u/ (rot U, rot u)q dt — / (rot U x U, u)qq) dt
ti t;
tit1 _ _
_ / (M({E’ t)Gel, U)Q(t) dt — / VG - Vy dxdt

t; Qz

— / (U . VG) y dxdt — / [cos(r, t) + k(x, )]Gy do
i 314

tit1 tir1
+ V/ (@, u) sy () dl —/ (Po(z,1),u - n)syyp) dt

t; t;
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tit1
+ [ s dt+ (e t)a + (s y(e 6oy
t;
+ | fiudzdt+ | foydadt
Qi Qi
V(u,y) € W(Qi) x Y(Qi).
Now, let us consider the existence of a solution to the following problem
(44) Ami(wm, Tm) = Li;
which is equivalent to the existence of a solution to the auxiliary problem

(4.1).
For all (z,p) € W(Q;) x Y (Q;), we have

(45) <Ami(za IO)’ (Za p))
2
:/i% dxdt—l—/i@
QM ot Qi

m | Ot
dp Bt 2
- — dxdt t dt
/Qiﬂat T +V/ti [rot 2[5

tit1
4 / (rot 2 x U +rot U x z + pu(, t)per, 2)gq dt
t;

2 0z
dxdt — / z— dxdt
Qs ot

+ / (|Vp|2 +e Mty . Vpp+U-Vpp+z- VpG) dxdt

Qi
- kzl/ (|2* + [p|?) dxdt + / [cos(r; t) + k(x,1)]|p|* do
Qi IRP

+ ‘Z(II}, t74+1) ‘é(tprl) + ’p($7 t’H'l) ’?I(ti+1)’

where (rot z x z,z) = 0 was used.
Integrating by parts we get

0z 1
(4.6) o, gy dwdt = o (‘Z('vti)%(ti) - ’Z('vti+1)|?2(ti+1)>

for z € W(Qi),

where the definition of W(Q;) and the fact that fZQUZ::, 22 cos(r,t)do = 0
by 2) of Assumption 2.2 were used.



546 Tujin KM and Daomin CAO

In the same way using the definition of Y (Q;), we get

dp
1 2 2
=3 <|p('ati)|ﬂ(ti) = o tir) [t —A

for p € Y(Qi).
On the other hand, we have

|p|? cos(r, t) da)

17

(z-Vp,plow) = /2 (H)USs(t) z-np*do — (div (2p), P)aw) = —(2 - Vo, p)aw:
2(t)Ux3

and so (2 - Vp, p)g) = 0. Therefore,

(4.8) / e M1tz . Vppdadt = 0.

i

By (4.6)~(4.8), from (4.5) we have
(4'9) <Ami(zap)a (Z,p))

1 2 1
:/ 1|9z dmdt+/ %
Q; M Q

2 tit1 9
tiv1 tit1
+/ (rot z x U, 2)q 4y dt +/ (1(z, t)per, 2)a dt
t; t;

ot

+/ |Vp|2dxdt+/ (U-Vpp+2z-VpG) dadt
Q; i

k3

—kl/ (12* + |p]?) dmdt—i—/
Qi

1 2 2
+ 5 (@)l + o, ),

1 R
[5 cos(r,t) + k(x, t)} \p|? do

1%

+|Z(m7ti+1)’?2(ti+1) + \P(ﬂf,tiﬂ)\?z(tm))
V(z,p) € W(Qi) X Y(Qi),

where (rot U x z,z) = 0 was used.
By Assumption 2.3

T T
(4.10) /0 ot 23 dt2c1/0 I3 dt, e > 0.
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By Young’s inequality, Assumption 2.4 and 1) of Assumption 2.5

tit1
(4.11) / (rot z x U, z) gy dt'
t;
ti+1 ti+1
vcy
< I [ el en [ e
Also, we get
tit1
(4.12) / (1(z, t)per, 2) o) dt + / (U-Vpp+ z-VpQ) dmdt‘
t; i

1 [ti+1 5 tit1 5 tit1 5
<5 | 1t [ o dte [ el ar

i i 123
Having in mind 6) of Assumption 2.2 and taking —k; large enough in (4.9)
independently of m and 4, from (4.9)~(4.12) we have, therefore

(4.13) (Ami(2,p); (2,p)) 2 c5 (HZH%V(Qi) + ||p||§/(Qi)) )
des > 0, V(z,p) € W(Q;) X Y(Qy),

where c5 depends on m.
Now, let us prove that

(4.14)  if (zx, px) — (2, p) weakly in W(Q;) x Y (Q;) as k — oo, then
<Ami(zk7 pk)v (u’ y)) - <Ami(z7 p)7 (uv y)>
V(u,y) € W(Q:) x Y(Qi).

In the same way as Lemma 3.2 in [20] we can prove that

tit1 tit1
(415) \/t‘ e—klt (I'Ot 2k X 2k, U’)Q(t) d‘[j — /t e_klt (I‘Ot z Xz, U)Q(t) dt
Vu € W(Q;) as k — oc.

Similarly to Lemma 3.2 in [20], we can prove that

(4.16) / e Mtz Vppy dadt

i

— e Mty Vpydedt Yy e Y(Q;) as k — .
Qi
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Indeed,

(4.17) / e Mz Vory dedt — / e Mty Vpydadt
i Qi

= / e Ml (2, — 2) - Vppy dzdt + / e Mty N (pr — p)y ddt.
By the imbedding of H'(Q;) in L4(Q;) we have e ¥’zy € Ly(Q;), and so
the second integral in the right-hand side of (4.17) converges to zero when
k — oo. Let us consider the first integral in the right-hand side of (4.17).
For any ¢ > 0 we can choose y. € D(Q;) such that ||y —yelly(g,) <¢e. Then,

(4.18) / e M (2 — 2) - Vppy dadt

= / e_]“t(z/rc — 2) - Vpgye dxdt

%

+ / e MM (2 — 2) - Vpr(y — ye) dadt.
Since z, — z strongly in Lo(Q;) as k — oo,

(4.19) '/ e Mt (2 — 2) - Vprye dxdt’

< Cllzk = 2l|lLy @I VerllLo @ 19ell o (00
< Cllzk — 2llLy @) I VokllLa@o Y=l pi@i) — 0 as k — .

Also, since z — z and py, are bounded, respectively, in W(Q;) and Y (Q;),
we have

(4.20) / e Mz — 2) - Vor(y — y2) dadt

< Cllzk = 2l @I VorllLaolly — vell a@n
< Cllzk — zllwqnllerlly @lly = velly g, < Ce.

From (4.18)-(4.20), we know that the first integral in the right-hand side of
(4.17) goes to zero when k — oo, and so we get (4.16).

It is easy to check that other terms in (A, (2k, px), (u,y)) converse when
k — oco. This fact together with (4.15), (4.16) implies (4.14).
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By (4.13) and (4.14), there exists a solution to (4.4) (cf. Theorem 1.2,
ch. IV in [13]), and therefore (4.1) has a solution. O

THEOREM 4.2. If (w™ € W(Q;), 7™ € Y(Q;)) are solutions to prob-
lem (4.1) with the ki being chosen under Assumptions 2.2~2.5, then

1 m 1 0™
(4.21) —ai@d dt + —i@da}dtﬂO as m — oo

V(u,y) € W(Qi) x Y(Qi))

and there emzsts a subsequence {(w®,7%)} and {( Bz, tigr), 7™ (2, ti01))}
such tha’t( ) k) - ( ) and( ($7t2+1)a (.I t1+1)) - ( 7,+1(I)’
Teisn (7)) weakly, respectwely, in V(Q;) x X(Q;) and H(Q(tiy1)) X
Lo(Qti+1)) as k — oo.
PrOOF. By (4.4), (4.9)~(4.12), we have
1 [ow™|? 1 |arm|?
(4.22) / e LR / L0 gaat
tit1 1
vcy
2 (I 1) g + 17 ()R
9 s 1) 1Q(t;) » Y1) 1Q(t;)
+ W™ (@, ti1) [y, ) |Tm($vti+1)‘?2(ti+1))
< (L, (w™, ™)) .
On the other hand,
(4.23) / U— da:dt—l—/ G— dxdt
= (U, 0™, tix1)) o) + (G 7™ (@, tiv1) i)
— (U w™ (@, ti))oq,) — (G, 7™ (@, ti) ),
+ Grmcos(r:t)da—/ 8—medxdt—/ %dexdt
Y1 Qi ot i ot

V(w™, ™) € W(Qi) X Y(Q),

where 2) of Assumption 2.2 was used.
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Taking (4.23) into account in (4.3) and applying Young’s inequality to
the right-hand side of (4.22), we have

1
(4.24) / ou™ dmdt+ / —
Qi ot QM

vcy

tit1

4 meH%—Il(Q(t)) dt

t;

arm|?

dzdt
ot |

1 - Vo .
+§/Qi V7 dadt + (Iw (@, t3)[Gyger) + 17 (x,ti)%(ti))
1
+ 1 (]wm(m, ti+1)|?)(tz‘+l) + ‘Tm(fb'ati—l—l)’?z(tiJrl)) <e,

where ¢ is independent of (m,4) and depends on @, (z,t),é(x,t), ¥o, 0o,

f1, f2 and k;. )
Using fQ L|dur ? dudt + Jo, L9227 dwdt < ¢, we can claim that

4.25 — O pdt+ | — P dzdt — 0
(4.25) o, m 0t ot or or T TR AmTeS

V(u,y) € W(Qi) x Y (Qi)).

1 Jw™ Jdu / 1 0™ dy

Indeed, by Hoélder’s inequality

1 ow™ Ou 1 07™ Oy
‘ om0t ot T | e adwdt‘

gﬁ[/@‘%agt)ddt/’ ‘d:pdt
([ || e [ (50" asar)]

which shows (4.25). By virtue of (4.24), the sets {(w™(Q;), 7™ (Q:))} and
{(w™(Q(ti+1)), 7™(Q2ti+1)))} are bounded, respectively, in the spaces
V(Q;) x X(Q;) and H(Q(t;+1)) X La(Q(ti+1)), and we come to the second
conclusion. [J

5. Proof of Theorem 2.2

In this section, we will give proof of Theorem 2.2. To do this, we need
the following result.
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LeMMA 5.1, If (w™ € W(Qi), 7™ € Y(Qi)) are solutions to problem
(4.1) under Assumption 2.2~2.5, then {w™} and {T™} are precompact, re-
spectively, in Lo(Q;) and Lo(Q;) for any fized i.

We postpone the proof of Lemma 5.1 and give the proof of Theorem 2.2
first.

PROOF OF THEOREM 2.2. Let {(w*(Qo), 7%(Qp))} is the sequence de-
fined on Qp guaranteed by Theorem 4.2 with (wg, 79) = (vo, 6p). Using
(wy,, T1,) guaranteed in Theorem 4.2 we get {(w*(Q1), 7%(Q1))} on Q1 and
step by step we can get such sequences on all @);, i = 0 ~ §. By Lemma
5.1, we can choose its subsequence {(w*(Q;), 7%(Q;))}, which is expressed
with the same index for simplicity, such that (w*(Q;), 7%(Q;)) — (w, 7) €

V(Qi) x X(Q;) strongly in Lo(Q;) x La(Q:).
First, let us prove that

ti+1
(5.1) / e~ ht (rot w” x wk, u) dt
t Q(t)

' tit1
— / e M1 (rotw x w, Way dt
t;
Vu € A(Q;) as k — oo.

We can write

tit1
(5.2) / ekt (rot w” x wk,u) dt
t; Q(t)
tit1 k
—/ e Mt (rot w x W, u)gp dt
t;
tit1
= / ekt <rot w x (w* —w), u> dt
Q(t)
tit1
+/ e it (rot (wh — w) x w,u) dt.
t; Q(t)
Since rot w* is bounded in Lo (Qy), wF — w in L2(Q;) and u € Lo, the
first integral in the right hand side of (5.2) converges to zero as k — oc.
Meanwhile, since e ¥twu € Ly(Q;) and wp — w weakly in V(Q;), the

second integral in the right-hand side of (5.2) converges to zero either. Thus,
(5.1) follows.
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Using

/ e Mtk . Vrky dedt — / e Ml - Vry dadt

= / e Rtk —w) . Vrky dedt + / e Mty . V(7% — 1)y dadt,

2 2

in the same way as above we can prove

(5.3) / e Ftyk . vrky dedt — e Mty . Vry dedt
i Qi
Yy € D(Q;) as k — oo.

It is easy to verify the convergence of other terms in (4.1) when k — oc.
Passing to the limit as k¥ — oo in (4.1) with & instead of m and adding the
results for 7, by Theorem 4.2, (5.1), (5.3) we have (3.2). The estimate (3.3)
can be obtained in the same way as proof of (4.2) in [20]. O

Now, we turn to the proof of Lemma 5.1

Proor OF LEMMA 5.1. We will follow the method in [20] and [32],
to prove Lemma 5.1. For simplicity, we will not distinguish constants in
estimate; and t;, t;4+1 and @Q; are, respectively, expressed by 0, T and Q.
Thus, w(z,t;), w(z, tit1), 7(z,t;), 7(x,tir1) are, respectively, expressed by
w(z,0), w(z,T), 7(x,0), 7(z,T).

Putting w™(z,t) = 0 on (2 x (=T7,2T)) \ Q, let us make w™(z,t) an
extension of w™, where  is the domain in 2) of Assumption 2.2. Then, by
Assumption 2.2, w™(z,t) € HY(Q x (0,7)).

Also, there exists a bounded linear extension operator from H'(Q) to
H'(Q2x(0,T)). Therefore, making 7™(x,t) € H'(Q2x (0,T)) such an exten-
sion of 7 (z,t) onto  x (0,7 and putting 7" (z,t) = 0 on Q x (=71,0) and
Q x (T,2T) we make 7™ (x,t) an extension of 7 (z,t) onto Q x (=T,2T).

Thus, by virtue of (4.24) we get

1 ey
(5.4) / 1 |oa™
ax(,) m | Ot

@™ (z,0)lg < ¢, [0™(z, Tl <,

2 T
dudt < c, / la™ |2 dt < c,
0
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1 (oT™
5.5 / — | —
(5:5) Qx(0,T) ot

7" (x,0)|q <¢, |[T™(x,T)|q <c.

2 T
dudt < c, / 1713 dt < e,
0

First, let us consider the case (3a) in Assumption 2.2.
For 0 <h < T let

1 t+h 1 t
wp(z,t) = —/ w™(x,s)ds, T (x,t) = _E/ 7" (x, 8) ds.
t t—h

Then, by Assumption 2.2 wj|g € W(Q), 77""|q € Y (Q). Also we have that

owp'(z,t) 1, m
T_E(w (z,t+h) — 0™ (1)),

aTm(l’,t) . 1 —m —-m
T D o () — Tt~ R).

Taking (4.23) into account and replacing (u,y) by (w}|q, 71"|g) in (4.1),
we have

(5.6) /Q %awma;(:,t)% (@™ (2, ¢ + h) — @™ (z, 8)] dwdt

—/ W™ L [t 4 h) — @™ (@, )] dadt
Q

h
1om1 .. .
- QEWE[T (x,t) — 7" (z,t — h)] dzdt
1
+/Tm._[i-m(xjt)—’i_'m(m,t—h)] dzdt
0 h

T
+I// (rot w™, ot wp" )y dt
0

T
—{—/ (e‘kltrot w" x w™ +rotw™ x U
0

+rotU x w™, whm) dt
Q(t)
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T

+/o (u(z, )™ e, wi ) o dt
+ / (Vr™ . Vot 4 e Rily™ . v rmem

Q

+U -Vt +w™ - VG1") dedt
T T
- k:1/ (W™, wi" o) dt — k‘l/ (7", 7" ) dt
0 0

+ / [cos(r, t) + k(x, t)]7™ 7™ do + (w™(T), wy' (T))ar)

P

+ (7"(T), 7" (T) ) o)
= (U7 wzn(xv T))Q(T) + (G7 Tgn(xv T))Q(T) - (Uv ,whm(x’ 0))9(0)

— (G, 7"(x, 0))a(0) +/ Gt cos(r,t) do — / 8—Uw,T dzxdt
o g Ot

8G m rr,,,m ~_m
— | wm)tdxdt + k1 [ Uwy dedt + ki [ G dadt

Q Ot Q Q

T - T -
— 1// (rot U, rot w?)g(t) dt — / (rot U x U, w}f‘)g(t) dt

0 0

T
—/ (u(z, t)Ger, wi o) dt—/ VG - V7" dvdt
0 Q

—/ (U-VG) 77 dadt —/ [cos(r,t) + k(z,t)|Gi" do
Q 1

T T
e /0 (@ ) o) d — /0 (Fos " - n)ssy o dit
T
+ /0 (& Ty o i+ (w2, 0), Wl (0))go)

+ (7(2,0), 7(0))o0) +/ frwp! dxdt+/ for* dxdt.
Q Q

Assuming w(z,t) € CY(Q x [0,T]), we estimate

2
dxdt.

1 1 )
h=-_ / [, + h) (e, 1)
Qx(0,T)
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Applying Holder’s inequality, we have

1 t+h
(5.7 I = ’/ w(z, s ds‘ dwdt
m Jax(0,T—h)

1 1 t o 2
+ — w(x, T) + / —w(z,s)ds| dxdt
m QX(T hT) h,2 [ ( ) T 88 ( ) :|

1 1 t+h
- —/ ‘M‘ ds dz dt+——\w( T3
m Jaxo.r-n M Je

VAN

12 2
+——/ / ‘ (x s)‘ ds - h dwdt
m h? Qx(T—h,T) 35

11
—— (T - 2w (z, T)|?
e h)/ﬂxm}a xt)‘ dedt + 2|(z, T))%

+2h/QX(07T) ‘%w(m,t)rdxdt}

11 9 _ 2 . 2
< —— — .
- [(T + h) /Qx(o n ’&w(x,t)‘ dxdt + 2]w(a;,T)|Q}

IN

Since CH(Q x [0,T)) is dense in HY(Q x (0,T)), by (4.24), (5.4) and (5.7)
for any @™ € H'(Q x (0,7)) we have

(5.8) {%/QX(QT) ‘% [@™(z,t) — 0™ (x,t — h } dxdt}

By Hélder’s inequality, from (4.24) and (5.8) we get

D=

S

(5.9) ’ / ! aw %[wm(x,t)—wm(a:,t—h)] d:pdt‘
( / —1 | dt)%
/ ’h @™ (2, — h)] ‘dedtf

Also, for 7(z,t) € C*(Q x [0,T]) estimating

2
L=1 (2.8) — 7.t — B | dudt,

Qx(0,T) ‘h
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we have
(5.10) I <~ 1{(T+h)/ ‘ @ t)‘ dwdt + 2|7(z, 0)[2 }
. 2> 7 —T T
hm Qx(0,T) “

Since C1(Q x [0, 7)) is dense in H(Q x (0,T)), by (4.24), (5.5) and (5.10)
for any 7™ € H'(Q x (0,T)) we have

(5.11) {%/QX(OT)‘%[TM(QCJ)TM(x,th)]‘ dxdt} 7

Thus, by Holder’s inequality, from (4.24) and (5.11) we have

1 aTm1

(5.12) ‘/ O (@, 1) — 7w )] d:r:dt’

< (f,l i )’

x <l/@’% 7@, t) — 7™ (x,t — h)] ‘2dxdt>%

m
<
N
Using (5.4), we have

T
(5.13) ‘1//0 (rotwm,rothn)g(t)dt‘

T 1 t+h
Sc/ w™ H—/ w™(x, s dsH
; |w™ [l h o

Sc/ w™||q —‘/ w™(x, 5)||6 s ds dtSc h.

; [[w™| Ol [@™ (, 5)[6y(s) /
Now, let us estimate fOT (e*kltrot w™ X wm,whm)ﬂ(t) dt.

Since

t+h t+h ) 3
/t 0™ || £ 0s)) ds < ﬁ(/t ™17 ey )

< eVRll@™13, 0 )
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by Hoélder’s inequality and (5.4),

(5.14) ‘/ rot w™ x w™ wh>Q()dt’
t

c t+h
: / [rrotw% N aagoy [ 0™ zagog ds]

e s

In the same way, we get

IN

| /\

T
(615) | /0 (U, V)™ + (™, D)0, uf oy dt] < /v,

/ (e, o

T 1 t+h )
<c m — w"(x, s ds
< /0 ks ‘Q(t)\/ﬁ‘/t (0™ (@, )]s
(5.16) <c/Vh,

1
2 dt

) /Q(VTm SV 4 e Ribym g rmn

+U -Vt +w™ - VG1") da:dt‘
<¢/Vh,

T T
(5.17) ‘ - kl/o (wm,whm)g(t) dt — kl/o (Tm,T;Ln)Q(t) dt‘ < C/\/E

By Assumption 2.1,

il Vt)‘ > 6 > 0 on X;. Taking this and the trace

theorem into account, we get

(5.18) ‘ /21 [cos(r, t) + k(z, t)] 77" da‘

R 1
= ‘/ [cos(r,t) + k(x,t)] ———7""77" dadt
ol sin(r, t)
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1
“dt < c//|n|.

T t
1
<c (i —’/ 7 (z, 8)||3 ds
/0 || ||Q(t) /_‘h’ i || h ( )HQ

Also, we have that

‘(wm(x’ T)v w?(-xv T))Q(T)‘ =0,

1
> dt

T
m m ¢ =m
" ) e Dan] < =] [ 7@l ds

(5.19) <¢/Vh,

_ c o c
@@ o | < 7= |Gl @ Dagn| < =
_ c - .
U, w™(z, t; < —, G, 7" (x,0 < —,
‘( h( ))Q(O)‘ Vh K h( ))Q(O)| NG
ou . oG c
— | —wl'dxdt — | —77"dxdt| < —
o ot /QatTh v )—\/ﬁ’
= = c
k Uwl dxdt + k / Gt dxdt| < —,
1/Cg h 1 0 Th ‘ \/E
T a T -
(5.20) —1//0 (rot U,rotwﬁ”)g(t) dt—/o (N(xvt)Gelule)Q(t) dt

C

=Va
’—/QVG-VT,dedt)gﬁ.

In the same way as (5.14) we get

T
_ c
rot U x U, wi* dt)g—,
[ P < -

(5.21)
‘/Q(U-VG)T,Tda;dt‘gﬁ.
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And also,
‘/ flwhmdxdt—i—/ ng}Lndxdt‘
Q Q
[ 51 ]
<c — w"(x, s ds
<c| f\ th\ (2. ) )
1
2
‘/t . (x,s ]Q(t ds }
(5.22) <c/Vh,

T T
v [ i i - [ e

T
—l—/o (&, 7h") 1)
<c/Vh,

|(w(0), w (0))ayoy + (7(0), 7 (0))eyoy|* < ¢/ V.

dt

Let us estimate

1
_/ w™ - — [@™(z,t + h) — w™(z,1)] dzdt,
0 h

/QTm . % (77" (2, t) — 7" (2, t — h)] dadt.

I3

1y

Setting €(t) = Q(T) for t > T and using —ab = —3[(a + b)? — a® — b?], we

have

1 T
(5.23) 13:—5/ (@™ (), " (2, + ) — " (2, 1))y
0
_ dt— " h)2, d
=g | g de— g [t Wl dt
1 T
+ﬁ |lw™(x,t + h) — 0™ (z, t)\Q dt
1 T

Lot
=i | el =g [l de
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T
+% i @™ (2, t + h) — @™ (2, 1) [Bqy di
1 T m 2 1 T m 2
=g | el = g [ el
1 T —m 2
~on ), (0™ (@, ) [qu—nn\aq)
1 T —-m —-m 2
+% ; |lw™(xz,t+ h) —w (x,t)\Q(t) dt
> 1 T|wm(g; t+h) — 0™ (@, t) |3, dt
= 2h J, ’ P

where the fact that Q(t) C Q(t — h) and w™(z,t) = 0 on Q(t — h) \ Q(t)
were used.

Setting Q(t) = Q(0) for t < 0 and using ab = 1[a® + b* — (a — b)?], we
have the following estimate.

1 (T
(5.24) I, = E/o (%m(t),%m(m,t)—fm(x,t—h))g(t) dt
1T - .
= » (7™t +h), 7 (x,t+h)—T (mat))ﬂ(t+h) dt
1 T=h —m 2 1 T —m 2
=/, 7™ (@, O)|eetn) dt+ﬁ 0 7" (@, Dl dt
TR . )
—1-% » !T (CU,t—i‘h)—T (xvt)’Q(t+h) dt
T
> on | bl d
42 T_hy‘m( t+h) — 7" (2, b)) dt
— T \T, -7 7,
on ), ()
1 [T 2
“an ), 7" (@, t 4+ h) = 7" (@, D) ounan) 9

where the fact that Q(¢t + h) C Q(t) was used. Applying Holder’s inequality
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and using that H1(Q2) — Lg(£2), (5.5) and Assumption 2.2, we have

T—h
2
(5.25) ‘2h/ |77 (@, t+ h) = 7@, )| Gupnaein) dt‘

1 T—h %
< — ™Mz, t+h)— T dx
i /Q oo @R =T ¥ x

x [mes () \ Qt + h))]5 di
T

&
_e [T
< g | 17 Doy di (k)

wln

C
< — .
2h

where w(-) is one in 3) of Assumption 2.2. Substituting (5.25) in the right-
hand side of (5.24), we have

T
(5.26) I, > - ~w(h)% + —/ | 7™ (z,t + h) — %m(:p,t)%(t) dt
0
Formula (5.6), (5.9), (5.12)~(5.23) and (5.26) imply

T
(5.27) /0 @ (2, £+ B) — @™ (2, ) dt

T
+/ 77 (2,4 h) — T (2, 1) o dt
0

< c[Vh+w(h)i] for T>h>0.
In the same way we will get

T
(5.28) /0 0™ (2, — ) — 0™ (2, 1)y

T
+ [t = b - 7wl de
0

< c[Vh+w(h)i] for T >h>0.
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To this end, we will get other estimates for I3 and I4.

T
(5.29) 13:—1/0 (@™ (), " (2, + ) — " (2, 1))y

h
1 (7 e
_ 1 dt — |wm(x t+h)|5 dt
2 J, [w™(z, t)‘Q (t) 2% ’ Q(t)
1 /T
+ ﬁ |w™(z,t+ h) — 0™ (z, t)‘?)(t) dt
= MRy dit 2 [ e, d
h ; 10 2h J, » 171Q(¢)
1 [T+h )
o |wm(x7t)’§2(t—h) dt
1 T+h
+ — |lo™(z,t) — 0™ (x, e ny dt
w™(x,t)
Q
T+h )
2h L e t) = ot = )lag dt
1 [T+h 5
4 % o™ (x,t) — 0™ (x,t — h)\Q(t_h)\Q(t) dt
1 T —m —m 2
> o J, [w™ (@, 1) — w™ (@, t — h)[g dt,

where the fact that Q(t) C Q(¢t — h) and W™ (z,t) = 0 on Q(t — h) \ Q(¢)
were used.

Setting Q(t) = Q(0) for ¢t < 0 and using ab = [a +b% — (a —b)?], we
have the following estimate.

1 /7
(5.30) I4:ﬁ/0 (7™ (), 7" (2, ) = T™ (2, t = h))qqyy At

_ dt + = " m " W& d

“an ), T t)l6ye) gy | ) =Tt = Blgg dt

1 /T

—-m 2
“on ), 7" (@, t = h)[gqy dit
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RN , 1 T-h , .
=T 7" (@, Olae dt — 5 » 17" (@ )| eny At

1 (T _
+ ﬁ 0 ‘Tm(l',t) - Tm(x7t - h)‘?l(t) dt
I 2 I 2
3 | Ol =g [l
1 T =m 2 d
+3 ; 17" (@, D) anagrn) 9

Vv

1 T —m —m 2
35 ; [T (2, t) — 7" (z,t — h)[g dt

1T
= ), |77 (2, ) b aeany
1 T

ton ; 77 (@, t) = 7™ (2, t = h)[5y dt,

where the fact that Q(¢ + h) C Q(t) was used. Estimating the first term in
the right side of (5.30) as (5.25), we get

c 2 1 T _
(5.31) I, > T ~w(h)s + ﬂ/o |7 (x,t) — 7" (2, t — h)’?)(t) dt.

Formula (5.6), (5.9), (5.12)~(5.22), (5.29) and (5.31) imply (5.28).
Now, let us consider the case (3b) in Assumption 2.2. Define

1 t
wp'(x,t) = _E/t hu‘Jm(:L‘,s) ds,

t+h
(2, t) = E/t 7™ (x,s)ds if 0 < h <T.

Then, by Assumption 2.2 wi*|g € W(Q), 177"*|g € Y(Q). Now, in the same
way above, we get (5.27), (5.28).
Next, let

5 (2 1) = w(x,t) if (z,t) € Q
’ 0 if (z,t) € RH1\ Q,

S () = TM(z,t) if (z, t) € Q,
’ 0 if (z,t) € R\ Q.
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Then, when 0 < |h| < T, for any cases in 3) of Assumption 2.2 we have
T 2
| e =l

T
< /O [P @yt B) — 7, D) B At

(5.32) T m -
+/O 7™ (@, t+ h) — 7™ (@, -+ 1) B 9t

T
= / 177 (2, t + )3 dt - w(|h])5 < cw(|h])3,
0
w™(x,t) = w™(z,t) on Q.

From (5.27)~(5.32) we have
T
(5.33) / [0 (£ + ) — ™ (2, ) dt
0
T
+/ |77 (2,4 h) — 7™ (2, 1) [o dt
0
< c[/]h] + w(|h])3] for 0 < |h| <T.
Let h € R' and
Q;(t) = {xz € Q) : dist(z,00(t)) > 2/5} forj=1,2,3,---.

Then, by (5.4) and (5.5)

/ W™ (z, )| do

Q(0\;(t)
< [/Q(t)\ﬂ.(t) |wm(ﬂc,t)\6dw] Bl [mes (Q(t) \ Q](t))]% dt
< cllu™ (. 1) [y - (1/3)5 < e (1/3)3,

/ (e D)2 de < e (1/5)F
Q()\Q;(t)

(5.34)

where ¢ depends only on Q. Now, if |h| < 1/4, then z+4sh € 9;(t) provided
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z € Q;(t) and s € [0,1]. For w™ € C>(Q(t)),

(5.35) / lw™(z 4 h,t) — w™(x,t)|* dx
Q;(t)

1

<[l

o, LJo

1 2

g/ do [/ \Vwm(x+sh,t)\-\h|ds]
Q;(t) 0

1
gyhﬁ// VW™ (2 + sh,t)| dads
0 JQ;()

2
w™(x + sh, t)‘d] dx

ds

< |2 / V™ de < (1/5) w™|[-
Q2;(t)

Since C*®(Q2(t)) is dense in HY(Q(t)), (5.35) is valid for any w™(t) €
H!(Q(t)). By (5.4), (5.34) and (5.35) we have

(5.36) / @™ (z + b, t) — @™ (2, 1)|* dadt < ¢(1/5)¥® i [B] < 1/],
where c is independent of m. Similarly, we have
(5.37) / |77 (@ + hyt) — 77 (2, 1) |* dadt < ¢(1/5)** if |B] < 1/4.
Formulas (5.33), (5.36) and (5.37) imply that
/Q | @™ (x + byt + ) — @™ (x,t)|* dadt — 0,
(5-38) /Q|%m(:c+ﬁ,t+h)%m(x,t)fd:cdtﬂo

uniformly with respect to m as (h,h) — 0 in R'TL.

From (5.27), (5.28) and (5.34) we get

Ve, 3Q. suchthat Q. C Q; |wm(ar;,t)|2 dxdt < e,
Q\Q-

(5.39)
/ 77 ()2 dadt < .
Q\Q-
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By (5.38) and (5.39) we know that the sets {w"} and {7} are, respectively,
precompact in Lg(Q) and La(Q) (cf. Theorem 2.32 in [1]). O

Acknowledgments. The authors are grateful to the anonymous referee
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