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Dedicated to the memory of Kunihiko Kodaira with great admiration

Abstract. In this article we construct three new families of sur-
faces of general type with pg = q = 0,K2 = 6, and seven new families
of surfaces of general type with pg = q = 1,K2 = 6, realizing 10
new fundamental groups. We also show that these families correspond
to pairwise distinct irreducible connected components of the Gieseker
moduli space of surfaces of general type.

We achieve this using two different main ingredients. First we intro-
duce a new class of surfaces, called generalized Burniat type surfaces,
and we completely classify them (and the connected components of
the moduli space containing them). Second, we introduce the notion
of Bagnera-de Franchis varieties: these are the free quotients of an
Abelian variety by a cyclic group (not consisting only of translations).
For these we develop some basic results.

Introduction

The present paper continues, with new inputs, a research developed

in a series of articles ([BC04], [BCG08], [BC10], [BC11a], [BC11b], [BC12],

[BCGP12], [BC13a], [BC13b]) and dedicated to the discovery of new surfaces

of general type with geometric genus pg = 0, to their classification, and to

the description of their moduli spaces (see the survey article [BCP11] for

an account of what is known about surfaces wit pg = 0, related conjectures

and results).
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Indeed, in this article, we consider the more general case of surfaces of

general type with χ = 1, i.e., with pg = q.

In the first part we focus again on the construction method originally

due to Burniat (singular bidouble coverings), but in the reformulation done

by Inoue (quotients by Abelian groups of exponent two), presenting it in

a rather general fashion which shows how topological methods allow to

describe explicitly connected components of moduli spaces. A first novelty

here is a refined analysis of pencils of Del Pezzo surfaces admitting a certain

group of symmetries, as we shall now explain.

In a more general approach (cf. [BC13b]) we consider quotients (cf.

[BC12] for the case of a free action, treated there in an even greater gen-

erality), by some group G of the form (Z/m)r, of varieties X̂ contained

in a product of curves ΠiCi, where each Ci is a maximal Abelian cover of

the projective line with Galois group of exponent m and with fixed branch

locus.

In the case m = 2 there is a connection with the Burniat surfaces: these

are surfaces of general type with invariants pg = 0 and K2 = 6, 5, 4, 3, 2,

whose birational models were constructed by Pol Burniat (cf. [Bur66]) in

1966 as singular bidouble covers of the projective plane. Later these surfaces

were reconstructed by Inoue (cf. [Ino94]) as G := (Z/2Z)3-quotients of a

(G-invariant) hypersurface X̂ of multidegree (2, 2, 2) in a product of three

elliptic curves.

While Inoue writes the (affine) equation of X̂ in terms of the uniformiz-

ing parameters of the respective elliptic curves using a variant of the Weier-

strass’ function (a Legendre function), we found it much more useful to write

the elliptic curves as the complete intersection of two diagonal quadrics in

three space.

This algebraic and systematic approach allows us, also with the aid of

computer algebra, to find all the possible such constructions.

Our situation is as follows: we consider first the following diagram of

quotient morphisms:
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E1 × E2 × E3

H′:=(Z/2)3 π′

��

E1 := {x2
1 + x2

2 + x2
3 = 0, x2

0 = a1x
2
1 + a2x

2
2}

E2 := {u2
1 + u2

2 + u2
3 = 0, u2

0 = b1u
2
1 + b2u

2
2}

P1 := P1 × P1 × P1

πH:=((Z/2)2)3

��

E3 := {z2
1 + z2

2 + z2
3 = 0, z2

0 = c1z
2
1 + c2z

2
2}

P2 := P1 × P1 × P1

where the map π′ is given by “forgetting” the variables x0, u0, z0, the map

π is given by setting x2
j = yj , u

2
j = vj , z

2
j = wj , j = 1, 2, 3, and where we

view P2 ⊂ (P2)3 as the subvariety defined by the equations

y1 + y2 + y3 = 0 , v1 + v2 + v3 = 0 , w1 + w2 + w3 = 0 .

The Galois group for π ◦ π′ is rather large, it is indeed (Z/2Z)9 ∼= {±1}9.
We consider then P1 with homogeneous coordinates ((s1 : t1), (s2 :

t2), (s3 : t3)) and for each λ := (λ1, . . . , λ8) ∈ C8 \ {0} we consider the

hypersurface Yλ of multidegree (1, 1, 1) in P1 given by the multihomoge-

neous equation

λ1s1s2s3 + λ2s1s2t3 + λ3s1t2s3 + λ4s1t2t3 +

λ5t1s2s3 + λ6t1s2t3 + λ7t1t2s3 + λ8t1t2t3 = 0.

We then classify the subgroups H1 (resp. H0) of H ∼= ((Z/2Z)2)3 which

are isomorphic to (Z/2Z)2 (resp. to (Z/2Z)3) and satisfy the property that

there is an irreducible Del Pezzo surface Yλ invariant under H1 (resp. H0).

We consider then X̂λ := (π′)−1(Yλ), which is then invariant under

the subgroup G1
∼= (Z/2Z)5 ⊂ (Z/2Z)9 inverse image of H1 (resp. G0

∼=
(Z/2Z)6). We determine in this article all the subgroups G ∼= (Z/2Z)3 ⊂ G1

(resp. G0), having the property that G acts freely on X̂λ.

This leads us to introduce a class of surfaces of general type, described

by the following
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Definition 0.1. Let G ∼= (Z/2Z)3 ≤ G1 (resp. G0) be such that G

acts freely on X̂λ. Then the minimal resolution S of Xλ := X̂λ/G is called

a generalized Burniat type surface.

With the help of the computer algebra system MAGMA (cf. [BCP97])

we can classify all generalized Burniat type surfaces (=GBT surfaces for

short) and can prove the following (see Proposition 3.4 and Theorem 3.6)

Main Theorem 1.

(1) There are 16 irreducible families of GBT surfaces. These have K2 = 6

and 0 ≤ pg = q ≤ 3. The families are listed in Tables 3 - 6, and the

dimension of the irreducible family is 4 in cases S1 and S2, and 3

otherwise.

(2) Among the 16 families of generalized Burniat type surfaces four have

pg = q = 0 (Table 3), eight have pg = q = 1 (Table 4), three have

pg = q = 2 (Table 5) and one has pg = q = 3 (Table 6). Family S2 is

the family of primary Burniat surfaces (the one due to Pol Burniat).

(3) The fundamental groups of these families are pairwise non isomorphic,

except that π1(S11) ∼= π1(S12) and π1(S14) ∼= π1(S15), where Sj is in

the family Sj.

(4) The surfaces in the families S1, S3 and S4 realize new (i.e., up to now

unknown) fundamental groups of surfaces with pg = 0,K2 = 6, while

the surfaces in the families S5-S11 realize new fundamental groups for

surfaces with pg = q = 1,K2 = 6.

(5) In cases S1-S10, each family of generalized Burniat type surfaces maps

with a generically finite morphism onto an irreducible connected com-

ponent of the Gieseker moduli space of surfaces of general type.

We use indeed the techniques developed in [BC12] to determine the

irreducible connected components of the moduli space containing the gen-

eralized Burniat type surfaces. We do not spell out all the details in the

cases S13-S16, since the surfaces that we obtain in this way are not new and

have already been classified by other authors.
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In cases S1-S10 we can apply the general results of [BC12] concerning

classical diagonal Inoue type varieties in order to describe the connected

components of the moduli space containing the generalized Burniat type

surfaces. As proved in [BF14], Bloch’s conjecture holds for the surfaces in

families S1-S4.

We then show that it is no coincidence that the fundamental groups of

the families S11 and S12 in Table 4 are isomorphic. These families of surfaces

are shown to be contained in a larger irreducible family, which corresponds

to another realization as Inoue type varieties. This is done via the concept

of a Bagnera-de Franchis variety, which we define simply as the quotient of

an Abelian variety A by a nontrivial finite cyclic group G acting freely on

A and not containing any translation.

We obtain in this way the following theorem

Main Theorem 2. Define a Sicilian surface to be any minimal surface

of general type S such that

• S has invariants K2
S = 6, pg(S) = q(S) = 1,

• there exists an unramified double cover Ŝ → S with q(Ŝ) = 3,

• the Albanese morphism α̂ : Ŝ → A = Alb(Ŝ) is birational onto its

image Z, a divisor in A with Z3 = 12.

1) Then the canonical model of Ŝ is isomorphic to Z, and the canonical

model of S is isomorphic to Y = Z/(Z/2Z). Y is a divisor in a Bagnera-de

Franchis threefold X := A/G, where A = (A1 × A2)/T , G ∼= T ∼= Z/2Z,

and where the action is as in (6.1).

2) Sicilian surfaces exist, have an irreducible four dimensional moduli space,

and their Albanese map α : S → A1 = A1/A1[2] has general fibre a non

hyperelliptic curve of genus g = 3.

3) A GBT surface is a Sicilian surface if and only if it is in the family S11

or S12.

4) Any surface homotopically equivalent to a Sicilian surface is a Sicilian

surface.

Indeed, one can replace the above assumption of homotopy equivalence

by a weaker one, see Corollary 6.5.
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In Section 5 we discuss the basic results of the theory of Bagnera-de

Franchis varieties, and show how to describe concretely the effective divisors

on them, thus solving in a special case one of the main technical difficulties

in the general theory of Inoue type varieties, developed in [BC12].

1. Inoue’s Description of Burniat Surfaces

We briefly recall the description of (primary) Burniat surfaces (those

constructed by P. Burniat in [Bur66]) given by Inoue in [Ino94].

Inoue considers, for j ∈ {1, 2, 3}, a complex elliptic curve Ej := C/〈1, τj〉
with uniformizing parameter zj , and then the following three commuting

involutions on the Abelian variety A0 := E1 × E2 × E3:

g1(z1, z2, z3) = (−z1 + 1
2 , z2 + 1

2 , z3) ,

g2(z1, z2, z3) = (z1,−z2 + 1
2 , z3 + 1

2) ,

g3(z1, z2, z3) = (z1 + 1
2 , z2,−z3 + 1

2) .

Note that G := 〈g1, g2, g3〉 ∼= (Z/2Z)3.

Let Lj , for j = 1, 2, 3, be a Legendre function for Ej : Lj : Ej → P1, a

meromorphic function which makes Ej a double cover of P1 branched over

the four distinct points: ±1,±aj ∈ P1 \ {0,∞}.
It is well known that the following statements hold (see [Ino94, Lemma

3-2] and [BC11a, Section 1] for an algebraic treatment):

• Lj(0) = 1, Lj(1
2) = −1, Lj( τj2 ) = aj , Lj( τj+1

2 ) = −aj ;

• set bj := Lj( τj4 ): then b2j = aj ;

• dLj

dzj
(zj) = 0 if and only if zj ∈ {0, 1

2 ,
τj
2 ,

τj+1
2 } since these are the

ramification points of Lj .
Moreover,

Lj(zj) = Lj(zj + 1) = Lj(zj + τj) = Lj(−zj) = −Lj
(
zj +

1

2

)
,

Lj
(
zj +

τj
2

)
=

aj
Lj(zj)

.

For c ∈ C \ {0}, Inoue considers the surface

X̂c := {[z1, z2, z3] ∈ A0 | L1(z1)L2(z2)L3(z3) = c}
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inside the Abelian variety A0. Then he shows:

• X̂c is a hypersurface in A0 of multidegree (2, 2, 2) and is invariant

under the action of G, ∀c.

• For a general choice of c, X̂c is smooth, and G acts freely on X̂c,

whence Xc := X̂c/G is a smooth minimal surface of general type with

pg = 0 and K2 = 6.

• For special values of c, the hypersurface X̂c has 4, 8, 12, 16 nodes, which

are isolated fixed points of G; in these cases the minimal resolution of

singularities of Xc := X̂c/G is a minimal surface of general type with

pg = 0 and K2 = 5, 4, 3, 2.

Remark 1.1. The minimal resolution of singularities Sc of Xc is called

a Burniat surface. If Xc is already smooth, or equivalently if K2
Sc

= 6, then

Sc is called a primary Burniat surface. For an extensive treatment of Burniat

surfaces and their moduli spaces we refer to [BC11a], [BC10], [BC13a].

2. Intersection of Diagonal Quadrics and (Z/2Z)n-actions

As already in [BC13b, Section 3], we exhibit A0 as a Galois covering of

(P1)3 with Galois group ∼= (Z/2)9. This is done via the following diagram.

The main purpose of this section is to find irreducible Del Pezzo surfaces

in P1 which are left invariant under large subgroups of the group H ∼=
(Z/2)6.

E1 × E2 × E3

π′H′:=(Z/2Z)3

��

E1 := {x2
1 + x2

2 + x2
3 = 0, x2

0 = a1x
2
1 + a2x

2
2}

E2 := {u2
1 + u2

2 + u2
3 = 0, u2

0 = b1u
2
1 + b2u

2
2}

P1 := P1 × P1 × P1

πH:=((Z/2Z)2)3

��

E3 := {z2
1 + z2

2 + z2
3 = 0, z2

0 = c1z
2
1 + c2z

2
2}

P2 := P1 × P1 × P1

(2.1)
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The map π′ is given by “forgetting” the variables x0, u0, z0, whereas the

map π is given by setting x2
j = yj , u

2
j = vj , z

2
j = wj , j = 1, 2, 3, and viewing

P2 ⊂ (P2)3 as the subvariety defined by the equations

y1 + y2 + y3 = 0 , v1 + v2 + v3 = 0 , w1 + w2 + w3 = 0 .

The Galois group for π ◦ π′, is (Z/2Z)9 ∼= {±1}9.
Restricting diagram (2.1) to one (w.l.o.g. the first) factor we get:

E1 = E

Z/2Z

��
P1

(Z/2Z)2

��

= {x2
1 + x2

2 + x2
3 = 0} =: C ⊂ P2

P1 = {y1 + y2 + y3 = 0} ⊂ P2

(2.2)

Since

x2
1 + x2

2 + x2
3 = 0⇐⇒ det

(
x1 + ix2 −x3

x3 x1 − ix2

)
= 0 ,

we get an isomorphism of C with P1:

(s : t) = (x1 + ix2 : x3) = (−x3 : x1 − ix2)

and a parametrization of C

(x1 : x2 : x3) = (i(s2 − t2) : (s2 + t2) : 2ist).

With this parametrization, we can rewrite the action of (Z/2Z)2 on P1 in

the following way (on the left hand side we use the convenient notation by

which all variables not mentioned in a transformation are left unchanged by

the transformation):

a) x1 �→ −x1 corresponds to A1 : (s : t) �→ (t : s);

b) x2 �→ −x2 corresponds to A−1 : (s : t) �→ (−t : s);

c) x3 �→ −x3 corresponds to B : (s : t) �→ (s : −t).

The fixed points of these three involutions are respectively:
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a) s = ±t, equivalently, x1 = x3 ± ix2 = 0;

b) s = ±it, equivalently, x2 = x3 ± ix1 = 0;

c) st = 0, equivalently, x3 = x1 ± ix2 = 0.

For each λ := (λ1, . . . , λ8) ∈ C8 \ {0} we consider the hypersurface

Yλ of multidegree (1, 1, 1) in P1 = P1
(s1:t1) × P1

(s2:t2) × P1
(s3:t3) given by the

multihomogeneous equation

λ1s1s2s3 + λ2s1s2t3 + λ3s1t2s3 + λ4s1t2t3 +(2.3)

λ5t1s2s3 + λ6t1s2t3 + λ7t1t2s3 + λ8t1t2t3 = 0.

Clearly, Yλ is a Del Pezzo surface of degree 6. Since we shall be looking for

Del Pezzo surfaces Yλ which are left invariant by certain subgroups of H
(the Galois group of π), we first need to establish conditions ensuring that

the hypersurface Yλ is left invariant by an element h = (h1, h2, h3) ∈ H.

This is done in the next lemma, which is easy to verify and which takes

care of the normal form of a transformation (h1, h2, h3) ∈ H, taken up to

a permutation of the three factors (here Id is the identity map of P1, while

A1, A−1 and B are the maps defined above).

Table 1.

h λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 c2

Id, Id, Aα3
cλ1 cλ3 cλ5 cλ7 α3

Id, Id, B
0 0 0 0

0 0 0 0
Id, Aα2

, Aα3
cα3λ2 cλ1 cα3λ6 cλ5 α2α3

Id, Aα2 , B cλ1 −cλ2 cλ5 −cλ6 α2

Id, B,B
0 0 0 0

0 0 0 0
Aα1

, Aα2
, Aα3

cα2α3λ4 cα2λ3 cα3λ2 cλ1 α1α2α3

Aα1 , Aα2 , B cα2λ3 −cα2λ4 cλ1 −cλ2 α1α2

Aα1
, B,B cλ1 −cλ2 −cλ3 cλ4 α1

B,B,B
0 0 0 0

0 0 0 0
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Lemma 2.1. Let h = (h1, h2, h3) ∈ H \ {Id} be one of the transforma-

tions listed in the first column of Table 1.

Then Yλ is h-invariant if and only if the coefficients λj satisfy the linear

conditions listed in Table 1.

Note that in Table 1, the numbers αi ∈ {±1}, since they are labelling

A1 and A−1. If for a given case there appear two rows, this means that

there are two alternatives, one for each row.

Remark 2.2. Consider the following matrices:

Γ1 :=

(
1 1

1 −1

)
Γ−1 :=

(
i i

−1 1

)
,(2.4)

and denote by f1, respectively f−1, the induced projectivities in Aut(P1)

(observe that f1 = f−1
1 ).

It is straightforward to verify the following conjugacies

• B = f−1
1 ◦A1 ◦ f1 = f−1

−1 ◦A−1 ◦ f−1,

• A1 = f−1
1 ◦B ◦ f1 = f−1

−1 ◦B ◦ f−1,

• A−1 = f−1
1 ◦A−1 ◦ f1 = f−1

−1 ◦A1 ◦ f−1.

Remark 2.3. If Yλ is invariant under h = (Id, Id, Aα) (α = ±1), or

under h = (Id, Id, B) then the equation of Yλ is reducible. Since these

projectivities are conjugate, it suffices to consider the case h = (Id, Id, B),

when the equation of Yλ is

s3(λ1s1s2 + λ3s1t2 + λ5t1s2 + λ7t1t2) = 0 or

t3(λ2s1s2 + λ4s1t2 + λ6t1s2 + λ8t1t2) = 0

The above enable us to prove the following:

Proposition 2.4. Let λ ∈ C8 \ {0} be such that Yλ is irreducible.

Assume moreover that there is a subgroup H1
∼= (Z/2Z)2 of H, such that

Yλ is H1-invariant. Then, up to the action of P GL(2,C)3 and up to a

permutation of the factors of (P1)3, there are exactly two possibilities:
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i) H1 = 〈(A1, A1, A1), (Id, B,B)〉, or

ii) H1 = 〈(Id, B,B), (B,B, Id)〉.

Proof. LetH1 = 〈h, h′〉. Then, by Remarks 2.2 and 2.3, after possibly

changing the coordinates of (P1)3, we may assume that h = (B,B,B) or

= (Id, B,B).

1) h = (B,B,B): in this case h′ ∈ {(Id, B,B), (Aα1 , B,B)} implies that

(B, Id, Id) ∈ H1 or (Aα1 , Id, Id) ∈ H1, contradicting the irreducibility of Yλ
(cf. Remark 2.3).

If we assume that h′ ∈ {(Id, Aα2 , B), (Aα1 , Aα2 , Aα3)}, αi ∈ {±1}, then

we see (cf. Table 1) that the invariance of Yλ under h and h′ implies that

λ = 0: this is a contradiction.

Assuming instead that h′ = (Id, Aα2 , Aα3), then conjugating h′ by

(f1, fα2 , fα3), we see that in the new coordinates we have:

h = (f−1
1 B f1, f

−1
α2

B fα2 , f
−1
α3

B fα3) = (A1, A1, A1)

and

h′ = (f−1
1 Id f1, f

−1
α2

Aα2 fα2 , f
−1
α3

Aα3 fα3) = (Id, B,B) ,

i.e., we are in case i).

Assume finally that h′ = (A±1, A±1, B). Then h · h′ = (A∓1, A∓1, Id)

and we reduce to the previous case showing that we are in case i).

2) h = (Id, B,B): in this case if h′ = (Id, Aα2 , Aα3), the equation of Yλ is

(cf. Table 1):

(λ1s1 + λ5t1)(s2s3 + ct2t3) = 0,

contradicting the irreducibility of Yλ.

If h′ ∈ {(B,B,B), (Id, Aα2 , B), (Id, B,Aα3), (Aα1 , B,B)}, we obtain that

Yλ is not irreducible by Remark 2.3.

Assume that h′ ∈ {(Aα1 , Id, Aα3), (Aα1 , Aα2 , Id), (B,Aα2 , Id),

(B, Id, Aα3), (Aα1 , Aα2 , B), (Aα1 , B,Aα3), (B,Aα2 , B), (B,B,Aα3)}. Then

one checks easily, consulting Table 1, that λ = 0, hence also these cases

can be excluded.

If h′ ∈ {(Aα, Id, B), (Aα, B, Id)}, α ∈ {±1}, after changing the coordi-

nates by (fα, Id, Id) we get H1 = 〈(Id, B,B), (B, Id, B)〉, hence we are in

case ii).
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Assume now that h′ = (Aα1 , Aα2 , Aα3). Changing coordinates by con-

jugating with (γ1, γ2, γ3), where γj := Id if αj = 1 and γj := (f−1 ◦ f1) if

αj = −1 and using the fact that

(f−1 ◦ f1)
−1 ◦B ◦ (f−1 ◦ f1) = B, (f−1 ◦ f1)

−1 ◦A−1 ◦ (f−1 ◦ f1) = A1,

we see that (in the new coordinates) we are in case i).

If h′ = (B,Aα2 , Aα3), then changing the coordinates by conjugating with

(f1, γ2, γ3), where γj is defined as above, we are in case i).

Finally, if h′ ∈ {(B, Id, B), (B,B, Id)}, then we are in case ii). �

Remark 2.5. It is seen immediately that in case i) each Del Pezzo sur-

face Yλ = {λ1s1s2s3+λ8t1t2t3 = 0} is invariant underH1, whereas in case ii)

each surface Yλ = {λ1(s1s2s3 + t1t2t3)+λ4(s1t2t3 + t1s2s3) = 0} is invariant

under H1. In particular, in both respective cases i) and ii), we obtain a lin-

ear action of H1 on the vector space V := H0((P1)3,O(P1)3(1, 1, 1)), which

is independent of the chosen invariant surface in the pencil (see Proposi-

tion 5.12).

Proposition 2.6. With the same notation as in Proposition 2.4, the

respective decompositions of V in character spaces with respect to the above

action of H1
∼= (Z/2Z)2 are as follows:

i) H1 = 〈(A1, A1, A1), (Id, B,B)〉:

• V ++ = {λ1(s1s2s3 + t1t2t3) + λ4(s1t2t3 + t1s2s3) | λ1, λ4 ∈ C} ∼= C2;

• V +− = {λ2(s1s2t3 + t1t2s3) + λ3(s1t2s3 + t1s2t3) | λ2, λ3 ∈ C};

• V −+ = {λ1(s1s2s3 − t1t2t3) + λ4(s1t2t3 − t1s2s3) | λ1, λ4 ∈ C};

• V −− = {λ2(s1s2t3 − t1t2s3) + λ3(s1t2s3 − t1s2t3) | λ2, λ3 ∈ C}.

ii) H1 = 〈(Id, B,B), (B,B, Id)〉:

• V ++ = {λ1s1s2s3 + λ8t1t2t3 | λ1, λ8 ∈ C} ∼= C2;

• V +− = {λ4s1t2t3 + λ5t1s2s3 | λ4, λ5 ∈ C};

• V −+ = {λ2s1s2t3 + λ7t1t2s3 | λ2, λ7 ∈ C};

• V −− = {λ3s1t2s3 + λ6t1s2t3 | λ3, λ6 ∈ C}.
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Proof. This is a simple calculation using Table 1. �

The same arguments as in the proof of Proposition 2.4 yield the following

statement:

Proposition 2.7. Let λ ∈ C8 \ {0} be such that Yλ is irreducible.

Assume moreover that there is a subgroup H0
∼= (Z/2Z)3 of H, such that

Yλ is H0-invariant. Then, up to the action of P GL(2,C)3 and up to a

permutation of the factors of (P1)3, we have:

H0 = 〈(Id, B,B), (A1, A1, A1), (B,B, Id)〉 .

Remark 2.8. Again we see immediately that the Del Pezzo surface

Yλ = {s1s2s3 + t1t2t3} is invariant under H0, hence we get again a linear

action of H0 on the vector space V := H0((P1)3,O(P1)3(1, 1, 1)).

Proposition 2.9. Use the same notation as in Proposition 2.7; then

V decomposes in 8 one-dimensional character spaces for the action of H0
∼=

(Z/2Z)3, as follows:

• V +++ = {λ(s1s2s3 + t1t2t3) | λ ∈ C};

• V +−+ = {λ(s1s2s3 − t1t2t3) | λ ∈ C};

• V ++− = {λ(s1t2t3 + t1s2s3) | λ ∈ C};

• V +−− = {λ(s1t2t3 − t1s2s3) | λ ∈ C};

• V −++ = {λ(s1s2t3 + t1t2s3) | λ ∈ C};

• V −−+ = {λ(s1s2t3 − t1t2s3) | λ ∈ C};

• V −+− = {λ(t1s2t3 + s1t2s3) | λ ∈ C};

• V −−− = {λ(t1s2t3 − s1t2s3) | λ ∈ C}.

Remark 2.10. Case 1):

H1 := 〈(Id, B,B), (A1, A1, A1)〉 ∼= (Z/2Z)2 +H.
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Then there are four pencils of Del Pezzo surfaces, which are left invariant by

H1 (cf. Proposition 2.6); their inverse images under π′ (see (2.1)) π′−1(Yν)

(resp. π′−1(Y ′
ν), π

′−1(Y ′′
ν ), π′−1(Y ′′′

ν )) are pencils of hypersurfaces of mul-

tidegree (2, 2, 2) in A0 = E1 × E2 × E3 invariant under G′1 ∼= (Z/2Z)5 ⊂
(Z/2Z)9.

We list now the four pencils (ν = (ν1 : ν2) ∈ P1):

Yν := {ν1(s1s2s3 + t1t2t3) + ν2(s1t2t3 + t1s2s3) = 0} ,(2.5)

Y ′
ν := {ν1(s1s2t3 + t1t2s3) + ν2(s1t2s3 + t1s2t3) = 0} ,(2.6)

Y ′′
ν := {ν1(s1s2s3 − t1t2t3) + ν2(s1t2t3 − t1s2s3) = 0} ,(2.7)

Y ′′′
ν := {ν1(s1s2t3 − t1t2s3) + ν2(s1t2s3 − t1s2t3) = 0} .(2.8)

It is immediate to see that the 4 pencils are transformed to each other

by the elements of the group H = ((Z/2)2)3 (for instance we pass from the

first to the second via s3 ↔ t3, from the first to the third via t1 ↔ −t1,
and so on). Therefore, in the future we shall only consider the first pencil:

(2.5).

Case 2):

H1 := 〈(Id, B,B), (B,B, Id)〉 ∼= (Z/2Z)2 +H.

Then there are four pencils of Del Pezzo surfaces, which are left invariant

by H1; their respective inverse images under π′ yield four pencils, invariant

under G1
∼= (Z/2Z)5 ⊂ (Z/2Z)9.

The four pencils are given by the following equations (µ ∈ C, µ �= 0):

Yµ := {s1s2s3 + µ t1t2t3 = 0} ,(2.9)

Y ′
µ := {s1t2s3 + µ t1s2t3 = 0} ,(2.10)

Y ′′
µ := {s1t2t3 + µ t1s2s3 = 0} ,(2.11)

Y ′′′
µ := {s1s2t3 + µ t1t2s3 = 0} .(2.12)

Also in this case the 4 pencils are transformed to each other by the

elements of the group H = ((Z/2)2)3, hence in the future we shall only

consider the first pencil: (2.9).

Case 3):

H0 := 〈(Id, B,B), (A1, A1, A1), (B,B, Id)〉 ∼= ((Z/2Z))3 +H.
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Then there are eight Del Pezzo surfaces which are are left invariant by H0;

their respective inverse images under π′ are invariant under G0
∼= (Z/2Z)6 ⊂

(Z/2Z)9.

Their respective equations are the following ones:

Y1 := {s1s2s3 + t1t2t3 = 0}, Y−1 := {s1s2s3 − t1t2t3 = 0},(2.13)

Y ′
1 := {s1t2t3 + t1s2s3 = 0}, Y ′

−1 := {s1t2t3 − t1s2s3 = 0},(2.14)

Y ′′
1 := {s1s2t3 + t1t2s3 = 0}, Y ′′

−1 := {s1s2t3 − t1t2s3 = 0},(2.15)

Y ′′′
1 := {t1s2t3 + s1t2s3 = 0}, Y ′′′

−1 := {t1s2t3 − s1t2s3 = 0}.(2.16)

Also here the 8 hypersurfaces are transformed to each other by the ele-

ments of the groupH = ((Z/2)2)3, hence in the future we shall only consider

the first one: (2.13).

Definition 2.11. Let X̂ be an irreducible hypersurface, in the product

of three smooth elliptic curves A0 := E1 × E2 × E3, which is the inverse

image under π′ of a Del Pezzo surface Y of degree 6, invariant under a

subgroup H ∼= (Z/2Z)2 +H.

Then we call X̂ a Burniat hypersurface in A0.

Lemma 2.12. Let G0
∼= (Z/2Z)6 + (Z/2Z)3× (Z/2Z)3× (Z/2Z)3 be the

group:

G0 := {(ε0, η1, ε1, η0, ε2, ζ0, ε3) ⊂ {±1}7 ∼= (Z/2Z)7 | ε1ε2ε3 = 1} ,

which acts on E1 × E2 × E3 by:

x0 �→ ε0x0 , u0 �→ η0u0 , z0 �→ ζ0z0 ,

x3 �→ ε1x3 , u3 �→ ε2u3 , z3 �→ ε3z3
and


x1

u1

z1


 �→ η1


x1

u1

z1


 .

With the same notation as in Remark 2.10:

(1) π′−1(Yν) is invariant under the group

G′1 := {(ε0, η1, 1, η0, ε2, ζ0, ε3) | ε2ε3 = 1} ∼= (Z/2Z)5 + G0 .

(2) π′−1(Yµ) is invariant under the group

G1 := {(ε0, 1, ε1, η0, ε2, ζ0, ε3) | ε1ε2ε3 = 1} ∼= (Z/2Z)5 + G0 .
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(3) If µ = ±1, then π′−1(Yµ) is invariant under G0.

Proof. Just note that multiplication of (x1, u1, z1) by −1 corresponds

to (sj : tj) �→ (tj : sj) for each j = 1, 2, 3. �

2.1. Fixed points

In order to systematically search for all the subgroups G ∼= (Z/2Z)3 +G0

acting freely on a Burniat hypersurface in A0 := E1 × E2 × E3, we need to

determine which elements of G0 have fixed points on A0 .

Remark 2.13. Fix a1, a2 ∈ C pairwise distinct such that the curve

E := {x2
1 + x2

2 + x3
3 = 0, x2

0 = a1x
2
1 + a2x

2
2} ⊂ P2

is smooth. Then

g(x0 : x1 : x2 : x3) := (α0x0 : α1x1 : x2 : α3x3) , αj ∈ {±1}

has fixed points on E if and only if

• either α0 = α1 = α3 = −1, or

• exactly one αi = −1 and the others are equal to 1.

From now on, we change to an additive notation in which Z/2Z is the

additive group {0, 1}.
Let g ∈ G0 be an element fixing points on A0. By [BC13b, Proposition

3.3], g is an element in Table 2.

Remark 2.14. 1) Let X̂ := π′−1(Y±1). In Table 2, the elements 1-3

fix pointwise a surface S ⊂ A0. Each element 4-9 fixes pointwise a curve

C ⊂ A0 and its fixed locus has non trivial intersection with X̂ since X̂ ⊂ A0

is an ample divisor. Finally, the elements 10-17 have isolated fixed points

on A0; arguing as in [BC13b, Proposition 3.3] one proves that the elements

11-17 have fixed points on X̂, while the fixed locus of element 10 intersects

X̂ only for special choices of the three elliptic curves.

2) The same holds for X̂ := π′−1(Yν) (resp. π′−1(Yµ)), considering only

the elements 1-7,10,11,14,15 (resp. 1-13), i.e. the ones belonging to G′1 (resp.

G1). In particular, the fixed locus of element 10 intersects X̂ only for special

choices of the three elliptic curves and of the parameter ν (resp. µ).
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Table 2. The elements of G0 having fixed points on A0, written additively!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ε0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1
η1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
ε1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
η0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1
ε2 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
ζ0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0
ε3 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0

2.2. Description in terms of Legendre families

We now describe the families of Burniat hypersurfaces in A0 in terms of

Legendre functions L (see Section 1).

To this purpose, we consider the following 1-parameter family of inter-

sections of two quadrics:

E(b) := {x2
1 + x2

2 + x2
3 = 0, x2

0 = (b2 + 1)2x2
1 + (b2 − 1)2x2

2},

where b ∈ C \ {0, 1,−1, i,−i}.
We set

ξ :=
bs

t
,

and in this way the family of genus one curves E(b) is the Legendre family

of elliptic curves in Legendre normal affine form:

y2 = (ξ2 − 1)(ξ2 − a2), a := b2 .

In fact,

x2
0 = (b2 + 1)2x2

1 + (b2 − 1)2x2
2 =

= −(a+ 1)2(s2 − t2)2 + (a− 1)2(s2 + t2)2 =

= 4[(a2 + 1)s2t2 − a(t4 + s4)] =

= 4t4

[
(a2 + 1)

(
ξ

b

)2

− a
(

1 +

(
ξ

b

)4
)]

=

= −4t4
1

b2
[−(a2 + 1)ξ2 + (a2 + ξ4) =

−4t4

b2
[(ξ2 − 1)(ξ2 − a2)]
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and it suffices to set

y :=
ibx0

2t2
.

The group (Z/2)3 acts fibrewise on the family E(b) via the commuting

involutions:

x0 ←→ −x0, x3 ←→ −x3, x1 ←→ −x1,

which on the birational model given by the Legendre family act as

y ←→ −y, ξ ←→ −ξ, ξ ←→ a

ξ
.

Consider the subgroup

Γ2,4 :=

{(
α β

γ δ

)
∈ PSL(2,Z)

∣∣∣∣ α ≡ 1 mod 4, β ≡ 0 mod 4,

γ ≡ 0 mod 2, δ ≡ 1 mod 2

}

a subgroup of index 2 of the congruence subgroup

Γ2 :=

{(
α β

γ δ

)
∈ PSL(2,Z)

∣∣∣∣ α ≡ 1 mod 2, β ≡ 0 mod 2,

γ ≡ 0 mod 2, δ ≡ 1 mod 2

}
.

To the chain of inclusions

Γ2,4 < Γ2 < PSL(2,Z)

corresponds a chain of fields of invariants

C(j) ⊂ C(λ) = C(τ)Γ2 ⊂ C(τ)Γ2,4 ,

where the respective degrees of the extensions are 6, 2.

Here, λ is the cross-ratio of the four points p(0), p(1
2), p( τ2 ), p(1+τ

2 ), where

p is the Weierstrass function, and j(λ) = (λ2−λ+1)3

λ2(λ−1)2
is the j-invariant.

If λ(a) is the cross ratio of the four points 1,−1, a,−a, λ(a) = (a−1)2

(a+1)2
,

thus C(a) = C(
√
λ) is a quadratic extension and there are two values of a for

which we get a Legendre function for the elliptic curve. Setting b := L( τ4 ),

we have that a = b2, hence C(b) is a quadratic extension of C(τ)Γ2,4 .

In other words, the parameter b ∈ C \ {0, 1,−1, i,−i} yields an unrami-

fied covering of degree 4 of λ ∈ C\{0, 1}, hence the field C(b) is the invariant

field for a subgroup Γ2,8 of index 2 in Γ2,4.
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By [Bia16, §182], b is invariant under the subgroup of Γ2 given by the

transformation such that α2 + αβ ≡ 1 mod 8. Since α ≡ 1 mod 2, this

equation is equivalent to require that β ≡ 0 mod 8, i.e.:

Γ2,8 :=

{(
α β

γ δ

)
∈ PSL(2,Z)

∣∣∣∣ α ≡ 1 mod 4, β ≡ 0 mod 8,

γ ≡ 0 mod 2, δ ≡ 1 mod 2

}
.

Consider now the following family

A0 = E(b1)× E(b2)× E(b3).

It is the family of products of three elliptic curves with a Γ2,8-level structure:

A0 is the quotient of (C × H)3, with coordinates ((z1, τ1), (z2, τ2), (z3, τ3)),

by the action of the group (a semidirect product) generated by (Z2)3 which

acts by

((m1, n1), (m2, n2), (m3, n3)) ◦ ((z1, τ1), (z2, τ2), (z3, τ3)) =

= ((z1 +m1 + n1τ1, τ1), (z2 +m2 + n2τ2, τ2), (z3 +m3 + n3τ3, τ3))

and by Γ2,8
3 ⊂ PSL(2,Z)3.

The fibre of f : A0 → E := (H/Γ2,8)
3 is the product of the three elliptic

curves, for k = 1, 2, 3, Ek := C/〈1, τk〉.
Let Lk : Ek → P1 be a Legendre function for Ek. We have seen that the

relation between Lk(zk) and the coordinates (sk : tk) of P1 is

Lk(zk)
bk

=
sk
tk

where bk := Lk( τk4 ). A basis for the (Z/2Z)3-action on Ek, k = 1, 2, 3, is

given by:

x0 �→ −x0 =̂ (zk �→ −zk) =̂ (1, 0, 0)

x1 �→ −x1 =̂ (zk �→ −zk + τk
2 ) =̂ (0, 1, 0)

x3 �→ −x3 =̂ (zk �→ −zk + 1
2) =̂ (0, 0, 1)

(2.17)

The above formulae define an action of ((Z/2)3)3 on the fibration f :

A0 → E , which acts trivially on the basis.



74 Ingrid Bauer, Fabrizio Catanese and Davide Frapporti

It follows from (2.5, 2.9, 2.13) that it suffices to consider only the families

of Burniat hypersurfaces defined by:

X̂ν = {([(z1, τ1), (z2, τ2), (z3, τ3)], (ν1 : ν2)) ∈ A0 × P1 |
ν1(L1(z1)L2(z2)L3(z3) + b1b2b3)

+ν2(L1(z1)b2b3 + b1L2(z2)L3(z3)) = 0} ,
(2.18)

X̂µ = {([(z1, τ1), (z2, τ2), (z3, τ3)], µ) ∈ A0 × C∗ |
L1(z1)L2(z2)L3(z3) = µ} ,

(2.19)

X̂b = {[(z1, τ1), (z2, τ2), (z3, τ3)] ∈ A0 |
L1(z1)L2(z2)L3(z3) = b1b2b3} ,

(2.20)

where the meaning of the subscript is to refer to the variables: ν = (ν1 :

ν2) ∈ P1, µ ∈ C∗, b := b1b2b3.

Remark 2.15. There is also an obvious action of the symmetric group

S3 on the family f : A0 → E .

Let X̂ be a Burniat hypersurface in A0 (see Definition 2.11). An explicit

calculation using the above equations shows that X̂ has at most finitely

many nodes as singularities.

Let ε : X ′ → X̂ be the minimal resolution of its singularities. Since

X̂ has at most canonical singularities, KX′ = ε∗KX̂ and X ′ is a minimal

surface of general type with K2
X′ = 48 and χ(X ′) = 8 (cf. [Ino94]).

3. Generalized Burniat Type Surfaces

Using the notation introduced in the previous sections, we give the fol-

lowing definition.

Definition 3.1. Let X̂ be a Burniat hypersurface in A0 := E1×E2×
E3, let G ∼= (Z/2Z)3 be a subgroup of G0 acting freely on X̂.

The minimal resolution S of the quotient surface X := X̂/G is called a

generalized Burniat type (GBT) surface. We call X the quotient model of S

(indeed, we easily see that X is the canonical model of S).
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Remark 3.2. 1) Since G acts freely and X̂ has at most nodes as sin-

gularities (we assume Y , hence also X̂, to be irreducible!), a generalized

Burniat type surface S is a smooth minimal surface of general type with

K2
S = 6 and χ(S) = 1.

2) If G + G1 or G + G′1, then there is a pencil of Burniat hypersurfaces

which are left invariant by the G-action, and the family of quotients of the

hypersurfaces on which the action is free is then a one parameter family

of GBT G-quotient surfaces (if we vary also E1, E2, E3 we obtain a four

dimensional family).

Let ∆ be the subgroup of Aut(((Z/2Z)3)3) generated by:

l1(g1, g2, g3) = (g2, g1, g3)

l2(g1, g2, g3) = (g3, g2, g1)

h1(g1, g2, g3) = (f(g1), f(g2), g3)

h2(g1, g2, g3) = (f(g1), g2, f(g3))

h3(g1, g2, g3) = (g1, f(g2), f(g3))

where gj ∈ (Z/2Z)3 (j ∈ {1, 2, 3}) and where f is defined by:

f : (Z/2Z)3 −→ (Z/2Z)3

f : (a, b, c) �−→ (a+ b, b, b+ c)

Remark 3.3. 1) It is easy to see that ∆(G0) = (G0).

2) We claim now that, as it can be verified, for each δ ∈ ∆, δ(g) is

conjugate to g via an element φ of the group of automorphisms of A0.

For example, let E := C/〈1, τ〉 be a complex elliptic curve and let τ ′ :=

τ + 1. Then E = C/〈1, τ ′〉 and the (Z/2Z)3-action, defined in (2.17), is:

(z �→ −z) = (1, 0, 0)

(z �→ −z + τ ′
2 ) = (z �→ −z + τ+1

2 ) = (1, 1, 1)

(z �→ −z + 1
2) = (0, 0, 1)

(3.1)

This shows that the groups G and G′ := hj(G) ⊂ G0 , j = 1, 2, 3 are conju-

gate via an automorphism of A0.

It follows then that g ∈ G0 acts freely on one of the families X̂ if and

only if δ(g) acts freely on the transformed family φ(X̂ ).
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It follows also that two groups in the same ∆-orbit yield isomorphic

families of GBT surfaces, hence we can restrict our attention to a single

representative for each ∆-orbit.

Proposition 3.4.

(1) There are exactly 16 irreducible families of generalized Burniat type

surfaces, listed in Tables 3-6.

(2) The family of generalized Burniat type surfaces has dimension 4 in

cases S1 and S2, and dimension 3 otherwise.

Proof. 1) The MAGMA script below searches for subgroups of G ≤
G0, which satisfy the following

• G ∼= (Z/2Z)3;

• G does not contain the elements 1-9, 11-17 of Table 2.

The 161 groups of the output therefore act freely on X̂b ⊂ E(b1)×E(b2)×
E(b3), except for a finite number of values of b1, b2, b3 ∈ C (cf. Remark

2.14).

The following script moreover proves that the 161 groups G belong to

exactly 16 ∆-orbits.

F:=FiniteField(2); V6:=VectorSpace(F,6);

V3:=VectorSpace(F,3); H3:=Hom(V6,V3);

U:={ V6![0,0,0,0,0,1], V6![0,0,0,1,0,0], V6![1,0,0,0,0,0],

V6![1,0,0,0,1,0], V6![0,1,0,0,0,0], V6![0,1,0,1,1,1],

V6![0,0,1,1,0,0], V6![0,0,1,0,1,1], V6![1,1,1,0,0,1],

V6![1,1,1,1,1,0], V6![0,0,0,0,1,0], V6![0,0,0,1,0,1],

V6![0,0,1,0,0,0], V6![1,0,0,0,0,1], V6![0,0,1,0,1,0],

V6![1,0,0,1,0,0]};

S3:={Kernel(f): f in H3 | Dimension(Kernel(f)) eq 3};

M:=[**];

for k in S3 do K:=Set(k);

if #(K meet U) eq 0 then Append(~M, k ); end if;

end for;

#M;

161

P:={1..#M}; Q:={}; // Delta-action
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g1:=hom<V6->V6| V6![0,0,0,1,0,0],V6![0,1,0,0,0,0],V6![0,0,0,0,1,0],

V6![1,0,0,0,0,0],V6![0,0,1,0,0,0], V6![0,0,0,0,0,1]>;

g2:=hom<V6->V6| V6![0,0,0,0,0,1],V6![0,1,0,0,0,0], V6![0,0,1,0,0,0],

V6![0,0,0,1,0,0],V6![0,0,1,0,1,0], V6![1,0,0,0,0,0]>;

f1:=hom<V6->V6| V6![1,0,0,0,0,0],V6![1,1,1,1,1,0], V6![0,0,1,0,0,0],

V6![0,0,0,1,0,0],V6![0,0,0,0,1,0], V6![0,0,0,0,0,1]>;

f2:=hom<V6->V6| V6![1,0,0,0,0,0],V6![1,1,1,0,0,1], V6![0,0,1,0,0,0],

V6![0,0,0,1,0,0],V6![0,0,0,0,1,0], V6![0,0,0,0,0,1]>;

f3:=hom<V6->V6| V6![1,0,0,0,0,0],V6![0,1,0,1,1,1], V6![0,0,1,0,0,0],

V6![0,0,0,1,0,0],V6![0,0,0,0,1,0], V6![0,0,0,0,0,1]>;

L1:=Transpose(Matrix([g1(x): x in Basis(V6)]));

L2:=Transpose(Matrix([g2(x): x in Basis(V6)]));

H1:=Transpose(Matrix([f1(x): x in Basis(V6)]));

H2:=Transpose(Matrix([f2(x): x in Basis(V6)]));

H3:=Transpose(Matrix([f3(x): x in Basis(V6)]));

GL6:=GeneralLinearGroup(6,F); PG:=sub<GL6|L1,L2,H1,H2,H3>;

while not IsEmpty(P) do

i:=Rep( P ); Exclude(~P,i); Include(~Q,i);

for m in PG do

f:=map<V6->V6| x:->[(m[1],x),(m[2],x),(m[3],x),

(m[4],x),(m[5],x),(m[6],x)]>;

test:=sub<V6|f(Set(M[i]))>;

if exists(x){x: x in P | M[x] eq test } then

Exclude(~P, x); end if;

end for; end while;

#Q;

16

This proves the first assertion.

2) In Tables 3-6 we list one representative G for each of the 16 ∆-orbits.

Observe that the dimension of the family is 3 (the number of moduli of

the three elliptic curves E(b1) × E(b2) × E(b3)) if and only if the group G

stabilizes only a finite number of Burniat hypersurfaces, equivalently iff G

is neither contained in G1 nor in G′1. Otherwise G is contained in G1 or in

G′1 and, by Lemma 2.12, fixes a pencil of Burniat hypersurfaces. Therefore

in this case the dimension of the family of generalized Burniat type surfaces

is 4.

It is now easy to verify that in case S1 (of Table 3) G ⊂ G′1, in case S2

G ⊂ G1, whereas in cases S3-S16 of Tables 3-6 G is not contained in any of

the two groups G1,G′1. �
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3.1. The fundamental groups

To determine the fundamental group of a GBT surface S → X = X̂/G,

we preliminarily observe that, by van Kampen’s theorem and since X has

only nodes as singularities, π1(X) = π1(S). Then we argue as follows.

Let Ej = C/〈ej , τjej〉, j = 1, 2, 3 and denote by Λ the fundamental

group of A0 := E1 × E2 × E3. In particular, Λ = Λ1 ⊕ Λ2 ⊕ Λ3, where

Λj = 〈ej , τjej〉.

Lemma 3.5. Consider the affine group

Γ := 〈γ1, γ2, γ3, e1, τ1e1, e2, τ2e2, e3, τ3e3〉 ≤ A(3,C) ,

generated by Λ and by lifts γj of the generators gj of G as affine transfor-

mations.

Then Γ = π1(X) = π1(S).

Proof. Observe that by the Lefschetz’ hyperplane section theorem

(see [Mil63, Theorem 7.4]) follows that π1(X̂) ∼= π1(A
0) = Λ.

The universal covering X̃ of X̂ ⊂ A0 has then a natural inclusion X̃ ⊂ C3

and the affine group Γ acts on C3 leaving X̃ invariant. Since the action of

Γ on X̃ is free, and X = X̂/G = X̃/Γ we conclude that Γ = π1(X) =

π1(S). �

The following MAGMA script, which continues the previous one, com-

putes the fundamental group of each GBT surface. Observe that the fun-

damental group does only depend on G: since it does not change within the

same connected family, and since each group G determines an irreducible

family.

V9:=VectorSpace(F,9); T:=[* *];

h:=hom<V6->V9| V9![1,0,0,0,0,0,0,0,0], V9![0,1,0,0,1,0,0,1,0],

V9![0,0,1,0,0,0,0,0,1], V9![0,0,0,1,0,0,0,0,0],

V9![0,0,0,0,0,1,0,0,1], V9![0,0,0,0,0,0,1,0,0]>;

G1:=DirectProduct([CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)]);

G2:=DirectProduct([CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)]);

G3:=DirectProduct([CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)]);

H:=DirectProduct([G1,G2,G3]);

PolyGroup:=func<seq|Group<a1,a2,a3,a4|

a1^seq[1], a2^seq[2],a3^seq[3],a4^seq[4], a1*a2*a3*a4>>;
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P1:=PolyGroup([2,2,2,2]);

P2:=PolyGroup([2,2,2,2]);

P3:=PolyGroup([2,2,2,2]);

P:=DirectProduct([P1,P2,P3]);

f:=hom<P->H | H!(1,2),H!(3,4),H!(5,6),H!(1,2)(3,4)(5,6),

H!(7,8),H!(9,10),H!(11,12),H!(7,8)(9,10)(11,12),

H!(13,14),H!(15,16),H!(17,18),H!(13,14)(15,16)(17,18)>;

for i in Q do G:=h(M[i]);

s:=[]; for j in [1..3] do s[j]:=Id(H); end for;

for i in {1..3} do

for j in [1..9] do

if (G.i)[j] eq 1 then s[i]:=s[i]* H!(2*j-1,2*j);

end if; end for; end for;

GG1:=sub<H|s>;

Pi1:=Simplify(Rewrite(P,GG1@@f));

Append(~T, [* G, Pi1, AbelianQuotient(Pi1) *]);

end for;

Since the fundamental groups are infinite and the presentations given as

output are quite long, we only list the respective first homology groups for

the 16 families of surfaces in Tables 3, 4, 5 and 6.

It is not obvious, from the presentation given as output of the MAGMA

script, whether two of these fundamental groups are isomorphic or not. To

check whether two different families have different fundamental groups, we

Table 3. q = 0.

ε0 η1 ε1 η0 η1 ε2 ζ0 η1 ε3 H1

S1

1 0 0 1 0 0 1 0 0
(Z/2Z)2 × (Z/4Z)20 1 0 1 1 0 1 1 0

0 0 0 0 0 1 1 0 1

S2

1 0 0 0 0 1 1 0 1
(Z/2Z)60 0 1 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1

S3

1 0 0 0 0 1 1 0 1
(Z/4Z)30 1 0 0 1 0 1 1 0

0 0 1 1 0 1 1 0 0

S4

1 0 1 0 0 1 1 0 0
(Z/2Z)2 × (Z/4Z)20 1 0 0 1 0 1 1 0

0 0 0 1 0 1 1 0 1
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can compare the number of normal subgroups of the fundamental group

of index k ≤ m (in our case m = 6). This can be done easily using the

MAGMA function: LowIndexNormalSubgroups(H, m) which returns a se-

quence containing the normal subgroups of the finitely presented group H

of index k ≤ m. This allows us to see that the fundamental groups of the

families we constructed are pairwise non-isomorphic, except for two pairs:

(S11,S12) and (S14,S15).

Indeed in these cases, the fundamental groups are isomorphic. We ver-

ified this using the MAGMA function SearchForIsomorphism(H, K, n)

which attempts to find an isomorphism of the finitely presented group H

with the finitely presented group K. The search is restricted to those ho-

momorphisms for which the sum of the word-lengths of the images of the

Table 4. q = 1.

ε0 η1 ε1 η0 η1 ε2 ζ0 η1 ε3 H1 π1

S5

1 0 1 0 0 0 1 0 1
(Z/2Z)3 × Z20 1 0 0 1 0 1 1 0

0 0 0 0 0 1 1 0 1

S6

0 1 0 1 1 0 1 1 0
(Z/2Z)2 × Z20 0 1 1 0 0 1 0 1

0 0 0 0 0 1 1 0 1

S7

1 0 0 0 0 1 1 0 1
(Z/4Z)× Z20 1 0 0 1 0 1 1 0

0 0 1 1 0 1 0 0 0

S8

1 0 0 0 0 1 1 0 1
(Z/2Z)2 × Z20 1 0 1 1 0 1 1 0

0 0 1 1 0 0 1 0 1

S9

1 0 0 1 0 1 1 0 1
(Z/2Z× Z/4Z)× Z20 1 0 0 1 0 1 1 0

0 0 1 1 0 1 0 0 0

S10

1 0 1 1 0 0 1 0 1
(Z/2Z)2 × Z20 1 0 1 1 0 1 1 0

0 0 0 0 0 1 1 0 1

S11

1 0 0 1 0 1 0 0 1
(Z/2Z)3 × Z20 1 0 1 1 0 0 1 0

0 0 1 1 0 1 1 0 0

S12

1 0 1 0 0 0 1 0 1
(Z/2Z)3 × Z2 ∼= π1(S11)0 1 0 0 1 0 1 1 0

0 0 0 1 0 1 1 0 1
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generators of H in K is at most n (in our case n = 8). The answer is given

as follows: if an isomorphism φ is found, then the output is the triple (true,

φ, φ−1); otherwise, the output is ‘false’.

That these isomorphisms exist is no coincidence: we shall in fact show

later that in both cases we have two families of surfaces which are contained

in a larger irreducible family (see Sections 4 and 6).

Since for a smooth projective surface S it holds q(S) = 1
2 rkH1(S,Z),

we have proved the following:

Theorem 3.6. Among the 16 families of generalized Burniat type sur-

faces four have pg = q = 0 (Table 3), eight have pg = q = 1 (Table 4), three

have pg = q = 2 (Table 5) and one has pg = q = 3 (Table 6).

Moreover, the fundamental groups of these families are pairwise non

isomorphic, except for π1(S11) ∼= π1(S12) and π1(S14) ∼= π1(S15), where Sj
is in the family Sj.

Table 5. q = 2.

ε0 η1 ε1 η0 η1 ε2 ζ0 η1 ε3 H1 π1

S13

1 0 0 1 0 1 1 0 1
Z40 1 0 1 1 0 1 1 0

0 0 1 1 0 1 0 0 0

S14

1 0 1 0 0 0 0 0 1
(Z/2Z)× Z40 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 0 1

S15

1 0 1 0 0 0 1 0 1
(Z/2Z)× Z4 ∼= π1(S14)0 1 1 0 1 1 0 1 0

0 0 0 1 0 1 1 0 1

Table 6. q = 3.

ε0 η1 ε1 η0 η1 ε2 ζ0 η1 ε3 π1

S16

1 0 1 0 0 0 1 0 1
Z60 1 1 0 1 1 1 1 0

0 0 0 1 0 1 1 0 1
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Remark 3.7. We observe that the family S2 in Table 3 corresponds

to the family of primary Burniat surfaces (cf. Section 1).

4. The Moduli Space of Generalized Burniat Type Surfaces

The aim of this section is to describe the connected components of the

Gieseker moduli space of surfaces of general type containing the isomor-

phism classes of the generalized Burniat type surfaces.

First we shall prove the following result:

Theorem 4.1. Let X be the canonical model of a generalized Burniat

type surface S. Then the base of the Kuranishi family of X is smooth.

Proof. Recall that X is the quotient model of a generalized Burniat

type surface S, and let X̂ → X be the canonical G ∼= (Z/2Z)3-cover. Then

X̂ ⊂ A0 = E1 ×E2 ×E3 is a hypersurface of multidegree (2, 2, 2) having at

most nodes as singularities.

It suffices to show (cf. [Cat13, Proposition 4.5]) that the base of the

Kuranishi family of X̂ is smooth (since the base of Kuranishi family of X

is given by the G-invariant part of the base of the Kuranishi family of X̂).

Now, since X̂ moves in a family with smooth base of dimension 13 =

6 + 7, it it is enough to show that

dim Ext1OX̂
(Ω1

X̂
,OX̂) = 13.

Moreover, the Kodaira-Spencer map of the above family is a bijection, but

we omit the verification here.

Indeed X̂ ⊂ A0 is an ample divisor, and it suffices to apply the following

lemma. �

Lemma 4.2. Let A be an Abelian variety of dimension n and let D ⊂ A

be an ample divisor. Then:

dim Ext1OD
(Ω1

D,OD) =
1

2
n(n+ 1) + dim |D|.

Proof. Consider the exact sequence

0→ OD(−D)→ Ω1
A ⊗OD ∼= O⊕n

D → Ω1
D → 0.



Burniat Type Surfaces and BdF Varieties 83

Applying the functor HomOD
(−,OD), we obtain the long exact sequence:

0 → Hom(Ω1
D,OD) = 0→ Hom(O⊕n

D ,OD)→
→ Hom(OD(−D),OD)→ Ext1(Ω1

D,OD)→
→ Ext1(O⊕n

D ,OD)→ Ext1(OD(−D),OD)→
→ Ext2(Ω1

D,OD)→ Ext2(O⊕n
D ,OD)→

→ Ext2(OD(−D),OD)→ . . . .

(4.1)

We have that

i) Exti(O⊕n
D ,OD) = H i(D,OD)⊕n;

ii) ωD = ωA ⊗OD(D) = OD(D);

iii) Exti(OD(−D),OD) ∼= Exti(OD,OD(D)) = Exti(OD, ωD) ∼=
Hn−1−i(D,OD)∗, where the last equality holds by Serre duality.

Next, we consider the short exact sequence:

0→ OA(−D)→ OA → OD → 0

and the associated long cohomology sequence

(4.2) 0→ H0(OA)→ H0(OD)→ H1(OA(−D))→ H1(OA)→
→ H1(OD)→ H2(OA(−D))→ H2(OA)→ . . .→ Hn−1(OD)→

→ Hn(OA(−D))→ Hn(OA)→ 0.

Note that by Serre dualityH i(OA(−D)) ∼= Hn−i(OA(D))∗, and sinceD ⊂ A

is an ample divisor, we get that these cohomology groups are trivial for

i ≤ n− 1 by the Kodaira vanishing theorem.

This implies that

• dimH i(OD) = dimH i(OA) =
(
n
i

)
, for 0 ≤ i ≤ n− 2,

• dimHn−1(OD) = dim |D|+ n.

Inserting this information in the long exact sequence (4.1), we see that

dim Ext1OD
(Ω1

D,OD) =
1

2
n(n+ 1) + dim |D| ,
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once we show that

ϕ : Ext1(O⊕n
D ,OD)→ Ext1(OD(−D),OD)

is surjective.

But

Ext1(O⊕n
D ,OD) ∼= H1(OD)⊕n ∼= H1(O⊕n

A ) ∼= H1(ΘA)

and

Ext1(OD(−D),OD) ∼= Hn−1−1(OD)∗ ∼= Hn−2(OA)∗ ∼= H2(OA),

where the first and third equality follow from Serre duality.

Composing with these isomorphisms, ϕ becomes

H1(ΘA)→ H2(OA),

the contraction with the first Chern class of D, an element of H1(A,Ω1
A),

which is represented by a non degenerate alternating form. Hence the sur-

jectivity of ϕ follows. �

4.1. Surfaces in Sj with j ≤ 10, i.e., with pg = q ≤ 1

Recall the following definition.

Definition 4.3 ([BC12, Definition 0.2-0.3]). A complex projective

manifold X is said to be a diagonal classical Inoue-type manifold if

(1) dim(X) ≥ 2;

(2) there is a finite group G and a Galois étale G-covering X̂ → X (=

X̂/G) such that:

(3) X̂ is an ample divisor inside a K(Γ, 1)-projective manifold Z (hence

by Lefschetz π1(X̂) ∼= π1(Z) ∼= Γ) and moreover

(4) the action of G on X̂ yields a faithful action on π1(X̂) ∼= Γ: in other

words the exact sequence

1→ Γ ∼= π1(X̂)→ π1(X)→ G→ 1

gives an injection G→ Out(Γ), defined by conjugation;
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(5) Z = (A1 × . . . × Ar) × (C1 × . . . × Cs) where each Aj is an Abelian

variety and each Ck is a curve of genus g(Ck) ≥ 2;

(6) the action of G on X̂ is induced by a diagonal action on Z;

(7) the faithful action on π1(X̂) ∼= Γ, induced by conjugation by lifts of

elements of G, has the Schur property:

Hom(Vj , Vk)
G = 0 , ∀k �= j ,(SP)

where Vj := Λj ⊗ Q, being Λj := π1(Aj) (it suffices to verify that,

for each Λj , there is a subgroup Hj of G for which Hom(Vj , Vk)
Hj =

0 ,∀k �= j).

We say instead that X is a diagonal classical Inoue-type variety if we

replace the assumption of smoothness of X by the assumption that X has

canonical singularities.

To fix the notation, let us call a surface S a generalized Burniat type

(GBT) surface of type j if S belongs to the family Sj in Tables 3-6.

Lemma 4.4. Let Xj be the canonical model of a GBT surface Sj of

type j. Then the embedding X̂j ⊂ A0 = E1 × E2 × E3 realizes Xj as a

diagonal classical Inoue-type variety if and only if 1 ≤ j ≤ 10.

Proof. It is trivial to see that the canonical model of a generalized

Burniat type surface Xj = X̂/Gj satisfies conditions (1-6) in Definition

4.3. Hence there remains only to determine which surfaces fulfill the Schur

Property (SP).

To verify the Schur Property one has to find, for each pair j �= k ∈
{1, 2, 3} an element g ∈ G such that dg being the derivative of g, dg|Ej

·
dg|Ek

= −1. Let j = 1 and g = (0, 1, 0, 1, 1, 0, 1, 1, 0) ∈ G1: then dg|E1
=

−1, dg|E2
= dg|E3

= 1, while for g′ = (0, 0, 0, 0, 0, 1, 1, 0, 1) ∈ G1 one has

dg′|E2
= −1 and dg′|E3

= 1. Hence X1 satisfies (SP). Considering a suitable

pair of generators of Gj , one can prove in the same way that Xj satisfies

(SP) for j = 2, . . . , 10.

Consider now the case j = 11 and let g be one of the three generators

of G11 in Table 4. Then dg|E1
= dg|E3

= −1 and dg|E2
= 1; this means that

Hom(V1, V3)
G �= 0, hence X11 does not fulfill the Schur property.
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In the same way one can show that Sj does not fulfill (SP) for j =

12, . . . , 16. �

We are now in the position to prove the following result.

Theorem 4.5. Let S be a smooth projective surface homotopically

equivalent to a GBT surface Sj of type j with 1 ≤ j ≤ 10. Then S is

a GBT surface of type j, i.e., contained in the same irreducible family

as Sj.

Proof. Assume that S is homotopically equivalent to Sj (1 ≤ j ≤ 10),

hence in particular S has the same fundamental group as Sj . Consider the

étale Gj
∼= (Z/2Z)3-cover Ŝ → S. Then by [BC12, Theorem 0.5] we have a

splitting of the Albanese variety and an Albanese map f : Ŝ → E1×E2×E3

which is generically finite onto its image W . By loc. cit. Lemma 1.2, Gj

acts on E1 × E2 × E3 with the same action as for a GBT surface of type

j. It is now easy to verify that there is no effective Gj-invariant divisor of

numerical type (1, 1, 1) on E1×E2×E3, hence W has class 2F1 +2F2 +2F3,

where Fi is the class of a fibre of the projection of E1 × E2 × E3 on the

j-th factor. Therefore f is birational onto its image and one verifies as in

loc. cit. that W has at most rational double points as singularities and is

therefore the canonical model X̂ of Ŝ.

Claim. W is the pull-back of a Del Pezzo surface in P1 × P1 × P1 for

a suitable degree (Z/2Z)3-covering π′.

Proof of the Claim. The pull back of a divisor of multidegree

(1, 1, 1) on P1 × P1 × P1 under any

π′ : E1 × E2 × E3 → P1 × P1 × P1

is a divisor which has the same class as W : hence the two divisors are

linearly equivalent to a translate of each other. Since the corresponding

linear systems have the same dimension we infer that W is the translate of

such an effective divisor. Changing the origin of the Abelian variety A0 we

obtain another action of (Z/2Z)3 such that W is invariant; the claim is thus

proven.
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We have therefore seen that S is a GBT surface and has the same funda-

mental group as Sj . Thus by our classification S is in the same irreducible

family as Sj , whence S is a GBT surface of type j. �

Remark 4.6. The same conclusion holds under the weaker assump-

tions:

1) π1(S) ∼= π1(Sj)

2) the corresponding covering Ŝ, whose Albanese is a product of 3 elliptic

curves because of the Schur property, satisfies that the image of the Albanese

map has class (2, 2, 2).

We can now summarize our results in the following theorem

Theorem 4.7. The connected component Nj of the Gieseker moduli

space Mcan
1,6 corresponding to generalized Burniat type surfaces of type j

(1 ≤ j ≤ 10) is irreducible, normal and unirational, of dimension 4 if j = 1

or 2, else of dimension 3.

Proof. We have shown that the Kuranishi family is smooth, hence

the moduli space is normal. By the previous theorem each family of GBT

surfaces with j ≤ 10 surjects onto a connected component of the Gieseker

moduli space: since the family has a rational base (a projective bundle over

a rational variety), follows the assertion about the unirationality. �

4.2. Surfaces in Sj with j = 11, 12, having pg = q = 1

Since these surfaces do not fulfill the Schur property, the family con-

structed as (Z/2Z)3-quotient of a Burniat hypersurface in a product of three

elliptic curves is not complete. We will study these surfaces in greater gen-

erality in Section 5 and Section 6. In fact, it turns out that the families

S11, S12 yield two irreducible subsets each of codimension one in an irre-

ducible connected component of dimension 4 of the moduli space of surfaces

of general type with pg = q = 1, K2 = 6.

4.3. Surfaces in Sj with j = 13, 14, 15, i.e., those with pg = q = 2

We have three families (each of dimension 3, the number of moduli of

the triple of elliptic curves) of GBT surfaces with pg = q = 2. We have

already observed that the embedding X̂j ⊂ A0 = E1 × E2 × E3 does not

fulfill the Schur property. In fact, it is not difficult to show that each of
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the three families is a subfamily of a four dimensional irreducibile family,

where the product of the two elliptic curves on which the projection of Gj

acts freely deforms to an Abelian surface A2. In this case the embedding

X̂j ⊂ E1×A2 fulfills the Schur property and we can show that we obtain in

this way exactly two irreducible connected components of the moduli space

of surfaces of general type.

We do not give more details here since these surfaces have already been

classified in [PP13].

Observe in fact the following:

Proposition 4.8. Let S be a GBT surface with pg(S) = q(S) = 2.

Then S is of Albanese general type and the Albanese map is generically of

degree 2.

Proof. Assume S to be of type 13 (the proof in the other two cases

is exactly the same) and consider the following diagram:

X̂ ⊂ E1 × E2 × E3

G13

��

p23 �� E2 × E3

p23(G13)

��
S �� X

a �� (E2 × E3)/p23(G13)

Since p23 : X̂ → E2×E3 is generically finite of degree 2 (as X̂ is a divisor of

multidegree (2, 2, 2)), and since G13
∼= p23(G13), one sees immediately that

a is generically finite of degree 2 and that Alb(S) = (E2×E3)/p23(G13). �

We recall the following result due to Penegini and Polizzi:

Theorem 4.9 ([PP13, Theorem 31]). Let M be the moduli space of

minimal surfaces S of general type with pg = q = 2, K2
S = 6 and Albanese

map of degree 2. Then the following holds:

(i) M is the union of three irreducible connected components, namely

MIa, MIb and MII .

(ii) MIa, MIb and MII are generically smooth of respective dimensions

4, 4, 3.
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(iii) The general surface in MIa and MIb has ample canonical class; all

surfaces in MII have ample canonical class.

It is immediately clear that the subset of the moduli space corresponding

to GBT surfaces with pg = q = 2 cannot be contained in MII , since it

has dimension 3, while the families 13, 14, 15 yield irreducible families of

dimension at least four. We have the following

Lemma 4.10. Let Sj be a GBT surface of type j with pg = q = 2,

i.e., j ∈ {13, 14, 15}. Consider the pencil fj : Sj → P1 ∼= Ek/pk(Gj), where

k = 1 for S13 and k = 3 for j = 14, 15. Then the general fibre of fj is a

smooth curve of genus 5 if j = 13 and of genus 3 if j = 14, 15.

Proof. Consider the diagram

X̂j ⊂ E1 × E2 × E3

Gj
∼=(Z/2)3

��

pk �� Ek

pk(Gj)

��
Sj �� Xj

fj �� Ek/pk(Gj)

Note that the general fibre of pk is a divisor of bidegree (2, 2) in the product

of two elliptic curves, whence has genus 5. Since p1(G13) ∼= (Z/2Z)3, the

genus of a general fibre of f13 is 5, whereas p3(G14), p3(G15) ∼= (Z/2Z)2,

whence the genus of a general fibre of f14 and f15 is 3. �

This allows us to conclude the following:

Proposition 4.11. Let Sj be a GBT surface of type j with pg = q = 2.

Then the point of the Gieseker moduli space corresponding to S13 lies in

MIa, whereas the point corresponding to S14, resp. S15, lies in MIb.

In particular, GBT surfaces with pg = q = 2 of type 13 (resp. 14, 15)

form a three dimensional subset of the four dimensional connected compo-

nent MIa (resp. MIb).

Proof. This follows from Lemma 4.10 and [PP13, Proposition 22]. �

Remark 4.12. Consider for j = 13 (the same holds also for j = 14, 15)

the irrational pencil f : S13 → E2/p2(G13). Observe that E2/p2(G13) is an
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elliptic curve and that the genus of the fibres of f is 3. This implies that

f is not isotrivial (otherwise it would be contained in the table of [Pen11]).

This contradicts Theorem A of [Zuc03].

4.4. Surfaces in S16, i.e., those with pg = q = 3

Minimal surfaces of general type with pg = q = 3 are completely classi-

fied by the work of several authors (cf. [CCML98, Pir02, HP02]).

Theorem 4.13. A minimal surface of general type with pg = q = 3

has K2 = 6 or K2 = 8 and, more precisely:

• if K2 = 6, S is the minimal resolution of the symmetric square of a

curve of genus 3;

• otherwise S = (C2×C3)/σ, where Cg denotes a curve of genus g and σ

is an involution of product type acting on C2 as an elliptic involution

(i.e., with elliptic quotient), and on C3 as a fixed point free involution.

In particular, the moduli space of minimal surfaces of general type with

pg = q = 3 is the disjoint union of M6,3,3 and M8,3,3, which are both

irreducible of respective dimension 6 and 5.

We get:

Proposition 4.14. Generalized Burniat type surfaces with pg = q = 3

(i.e. of type 16) form a three dimensional subset of the six dimensional

connected component M6,3,3.

5. Bagnera-de Franchis Varieties

Definition 5.1. A Generalized Hyperelliptic Variety (GHV) X is de-

fined to be a quotient X = A/G of an Abelian Variety A by a nontrivial

finite group G acting freely, and with the property that G contains no trans-

lations.

Remark that, if G is any group acting freely on A, which is not a sub-

group of the group of translations, then the quotient X = A/G is a GHV.

Because the subgroup GT of translations in G is a normal subgroup of G,
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and, if we denote G′ = G/GT , then A/G = A′/G′, where A′ is the Abelian

variety A′ := A/GT .

Definition 5.2. 1) A Bagnera-de Franchis variety (for short: BdF

variety) is a GHV X = A/G such that G ∼= Z/mZ is a cyclic group.

2) A Bagnera-de Franchis variety of product type is a Bagnera-de Fran-

chis variety X = A/G, where A = (A1 ×A2), A1, A2 are Abelian Varieties,

and G ∼= Z/mZ is generated by an automorphism of the form

g(a1, a2) = (a1 + β1, α2(a2)),

where β1 ∈ A1[m] is an element of order exactly m, and similarly α2 : A2 →
A2 is a linear automorphism of order exactly m without 1 as eigenvalue

(these conditions guarantee that the action is free).

3) If moreover all eigenvalues of α2 are primitive m-th roots of 1, we

shall say that X = A/G is a primary Bagnera-de Franchis variety.

Remark 5.3. 1) One can give a similar definition of Bagnera-de Fran-

chis manifolds, requiring only that A,A1, A2 be complex tori.

2) If A has dimension n = 2, the Bagnera-de Franchis manifolds coincide

with the Generalized Hyperelliptic varieties, due to the classification result

of Bagnera-de Franchis in [BdF08].

We have the following proposition, giving a characterization of Bagnera-

de Franchis varieties.

Proposition 5.4. Every Bagnera-de Franchis variety X = A/G is the

quotient of a Bagnera-de Franchis variety of product type, (A1 × A2)/G by

any finite subgroup T of (A1 ×A2) which satisfies the following properties:

(1) T is the graph of an isomorphism between two respective subgroups

T1 ⊂ A1, T2 ⊂ A2,

(2) (α2 − Id)T2 = 0,

(3) if g(a1, a2) = (a1+β1, α2(a2)), then the subgroup of order m generated

by β1 intersects T1 only in {0}.
In particular, we may write X as the quotient X = (A1 × A2)/(G × T ) of

A1 ×A2 by the Abelian group G× T .

Proof. We refer to [Cat14]. �
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5.1. Actions of a finite group on an Abelian variety

Assume that we have the action of a finite group G on a complex torus

A = V/Λ. Since every holomorphic map between complex tori lifts to a

complex affine map of the respective universal covers, we can attach to

the group G the group of affine transformations Γ, which consists of all

affine maps of V which lift transformations of G. Then Γ fits into an exact

sequence:

1 −→ Λ −→ Γ −→ G −→ 1 .

The following is a slight improvement of [BC12, Lemma 1.2]:

Proposition 5.5. The group Γ determines the real affine type of the

action of Γ on V (respectively: the rational affine type of the action of Γ

on Λ⊗Q), in particular the above exact sequence determines the action of

G up to real affine isomorphism of A (resp.: rational affine isomorphism of

(Λ⊗Q)/Λ).

Proof. It is clear that V = Λ ⊗Z R as a real vector space, and we

denote by VQ := Λ⊗Q. Let

Λ′ := ker(αL : Γ→ GL(VQ) ⊂ GL(V )),

G1 := im(αL : Γ→ GL(VQ)) .

The group Λ′ is obviously Abelian, contains Λ, and maps isomorphically

onto a lattice Λ′ ⊂ V .

In turn V = Λ′ ⊗Z R, and, if G′ := Γ/Λ′, then G′ ∼= G1 and the exact

sequence

1 −→ Λ′ −→ Γ −→ G′ −→ 1 ,

since we have an embedding G′ ⊂ GL(Λ′), shows that the affine group

Γ ⊂ Aff(Λ′) ⊂ Aff(V ) is uniquely determined (Γ is the inverse image of G′

under Aff(Λ′)→ GL(Λ′)).
There remains only to show that Λ′ is determined by Γ as an abstract

group, independently of the exact sequence we started with. In fact, one

property of Λ′ is that it is a maximal Abelian subgroup, normal and of finite

index.

Assume that Λ′′ has the same property: then their intersection Λ0 :=

Λ′ ∩Λ′′ is a normal subgroup of finite index, in particular Λ0 ⊗ZR = Λ′ ⊗Z
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R = V ; hence Λ′′ ⊂ ker(αL : Γ → GL(V )) = Λ′, where αL is induced by

conjugation on Λ0.

By maximality Λ′ = Λ′′. �

Observe that, in order to obtain the structure of a complex torus on

V/Λ′, we must give a complex structure on V which makes the action of

G′ ∼= G1 complex linear.

In order to study the moduli spaces of the associated complex manifolds,

we introduce therefore a further invariant, called the Hodge type, according

to the following definition.

Definition 5.6. Given a faithful representation G → Aut(Λ), where

Λ is a free Abelian group of even rank 2n, a G-Hodge decomposition is a

G-invariant decomposition

Λ⊗ C = H1,0 ⊕H0,1, H0,1 = H1,0.

Write Λ⊗ C as the sum of isotypical components

Λ⊗ C = ⊕χ∈Irr(G)Uχ.

Write also Uχ = Wχ⊗Mχ, where Wχ is the given irreducible representation,

and Mχ is a trivial representation of dimension nχ.

Then V := H1,0 = ⊕χ∈Irr(G)Vχ, where Vχ = Wχ ⊗M1,0
χ and M1,0

χ is a

subspace of Mχ. The Hodge type of the decomposition is the datum of the

dimensions

ν(χ) := dimCM
1,0
χ

corresponding to the Hodge summands for non real representations (observe

in fact that one must have: ν(χ) + ν(χ̄) = dim(Mχ)).

Remark 5.7. Given a faithful representation G → Aut(Λ), where Λ

is a free Abelian group of even rank 2n, all the G-Hodge decompositions

of a fixed Hodge type are parametrized by an open set in a product of

Grassmannians. Since, for a non real irreducible representation χ one may

simply choose M1,0
χ to be a complex subspace of dimension ν(χ) of Mχ,

and for Mχ = (Mχ), one simply chooses a complex subspace M1,0
χ of half

dimension. Then the open condition is just that (since M0,1
χ := M1,0

χ ) we

want Mχ = (M1,0
χ )⊕ (M0,1

χ ), or, equivalently, Mχ = (M1,0
χ )⊕ (M1,0

χ̄ ).
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5.2. Bagnera-de Franchis varieties of small dimension

We have shown that a Bagnera-de Franchis variety X = A/G can be

seen as the quotient of one of product type (A1×A2)/G by a finite subgroup

T of A1 ×A2, satisfying the properties stated in Proposition 5.4.

Dealing with appropriate choices of T is the easy part, since, as we saw,

the points t2 of T2 satisfy, by property (2), α2(t2) = t2.

It suffices then to choose T2 ⊂ A2[∗] := ker(α2 − IdA2), which is a finite

subgroup of A2, and then to pick an isomorphism ψ : T2 → T1 ⊂ A1, such

that T1 := im(ψ) ∩ 〈〈β1〉〉 = {0}.
We therefore restrict ourselves from now on to Bagnera-de Franchis va-

rieties of product type and we show now how to further reduce to the inves-

tigation of primary Bagnera-de Franchis varieties.

In fact, in the case of a BdF variety of product type, Λ2 is a G-module,

hence a module over the group ring

R := R(m) := Z[G] ∼= Z[x]/(xm − 1).

The ring R is in general far from being an integral domain, since indeed

it can be written as a direct sum of cyclotomic rings, which are the integral

domains defined as Rk := Z[x]/(Pk(x)). Here Pk(x) is the k-th cyclotomic

polynomial

Pk(x) =
∏

0<j<k, (k,j)=1

(x− εj) ,

where ε = exp(2πi/k). Then

R(m) =
⊕

k|m
Rk .

The following elementary lemma, together with the splitting of the vec-

tor space V as a direct sum of eigenspaces for g, yields a decomposition of

A2 as a direct product A2 = ⊕k|mA2,k of G -invariant Abelian subvarieties

A2,k on which g acts with eigenvalues of order precisely k.

Lemma 5.8. Assume that M is a module over a ring R = ⊕kRk. Then

there is a unique direct sum decomposition

M =
⊕

k
Mk,

such that
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• Mk is an Rk-module, and

• the R-module structure of M is obtained through the projections R→
Rk.

Proof. We can write the identity in R as a sum of idempotents 1 =

Σkek, where ek is the identity of Rk, and ekej = 0 for j �= k.

Then each element w ∈M can be written as

w = 1w = (Σkek)w = Σkekw =: Σkwk.

Hence Mk is defined as ekM . �

Remark 5.9. 1) If we have a primary Bagnera-de Franchis variety,

then Λ2 is a module over the integral domain R := Rm := Z[x]/(Pm(x)).

Since Λ2 is a projective R-module, Λ2 splits as the direct sum Λ2 = Rr⊕I
of a free module with an ideal I ⊂ R (see [Mil71, Lemmas 1.5 and 1.6]), and

Λ2 is indeed free if the class number h(R) = 1. The integers m for which

this occurs are listed in the table on [Was97, page 353].

2) To give a complex structure to A2 := (Λ2⊗ZR)/Λ2 it suffices to give

a decomposition Λ2⊗ZC = V ⊕V , such that the action of x is holomorphic.

This is equivalent to asking that V is a direct sum of eigenspaces Vλ, for

λ = εj a primitive m-th root of unity.

Writing U := Λ2⊗ZC = ⊕Uλ, the desired decomposition is obtained by

choosing, for each eigenvalue λ, a decomposition Uλ = U1,0
λ ⊕U0,1

λ such that

U1,0
λ = U0,1

λ
.

The simplest case (see [CC93] for more details) is the one where I =

0, r = 1, hence dim(Uλ) = 1. Therefore we have only a finite number of

complex structures, depending on the choice of the ϕ(m)
2 indices j such that

Uεj = U1,0
εj

(here ϕ(m) is the Euler function).

Observe that the classification of BdF varieties in small dimension is

possible thanks to the observation that the Z-rank of R (or of any ideal

I ⊂ R) cannot exceed the real dimension of A2: in other words we have

ϕ(m) ≤ 2(n− 1),

where ϕ(m) is the Euler function, which is multiplicative for relatively prime

numbers, and satisfies ϕ(pr) = (p− 1)pr−1, if p is a prime number.

For instance, if n ≤ 3, then ϕ(m) ≤ 4. Observe that ϕ(pr) ≤ 4 iff
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• p = 3, 5 and r = 1, or

• p = 2, r ≤ 3.

Hence, for n ≤ 3, the only possibilities for m are

• ϕ(m) = 1: m = 2;

• ϕ(m) = 2: m = 3, 4, 6;

• ϕ(m) = 4: m = 5, 8, 10, 12.

The classification is then also made easier by the fact that, in the above

range for m, Rm is a P.I.D., hence every torsion free module is free. In

particular Λ2 is a free R-module.

The classification for n = 4, since we must have ϕ(m) ≤ 6, is going to

include also the case m = 7, 9.

We state now a result which will be useful in Section 6.

Proposition 5.10. The Albanese variety of a Bagnera-de Franchis va-

riety X = A/G is the quotient A1/(T1 + 〈〈β1〉〉).

Proof. Observe that the Albanese variety H0(Ω1
X)∨/ im(H1(X,Z))

of X = A/G is a quotient of the vector space V1 by the image of the

fundamental group of X (actually of its abelianization, the first homology

group H1(X,Z)): since the dual of V1 is the space of G-invariant forms on

A, H0(Ω1
A)G ∼= H0(Ω1

X).

We also observe that there is a well defined map X → A1/(T1 + 〈〈β1〉〉),
since T1 is the first projection of T . The image of the fundamental group

of X contains the image of Λ, which is precisely the extension of Λ1 by the

image of T , namely T1. Since we have the exact sequence

1 −→ Λ = π1(A) −→ π1(X) −→ G −→ 1

the image of the fundamental group of X is generated by the image of Λ

and by the image of the transformation g, which however acts on A1 by

translation by β1 = [b1]. �

Remark 5.11. Unlike the case of complex dimension n = 2, there

are Bagnera-de Franchis varieties X = A/G with trivial canonical divisor,

for instance an elementary example is given by any BdF variety which is

standard (i.e., has m = 2) and is such that A2 has even dimension.
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5.3. Line bundles on quotients and linearizations

Recall the following well known result (see Mumford’s books [Mum70],

[Mum65]).

Proposition 5.12. Let Y = X/G be a quotient algebraic variety and

let p : X → Y be the quotient map. Then:

(1) there is a functor between

• line bundles L′ on Y and

• G-linearized line bundles L,

associating to L′ its pull back p∗(L′).

(2) The functor L �→ p∗(L)G is a right inverse to the previous one, and

p∗(L)G is invertible if the action is free, or if Y is smooth.

(3) Given a line bundle L on X, it admits a G-linearization if and only

if there is a Cartier divisor D on X, which is G-invariant and such

that L ∼= OX(D) = {f ∈ C(X)|div(f) +D ≥ 0}.

(4) A necessary condition for the existence of a G-linearization on a line

bundle L on X is that

∀g ∈ G, g∗(L) ∼= L.(5.1)

If condition (5.1) holds for (L, G), one defines the Theta group of L as:

Θ(L, G) := {(ψ, g)|g ∈ G, ψ : g∗(L)→ L is an isomorphism},

and there is an exact sequence

1 −→ C∗ −→ Θ(L, G) −→ G −→ 1.(5.2)

• The splittings of the above sequence correspond to the G-linearizations

of L.

• If the sequence splits, the linearizations are a principal homogeneous

space over the dual group Hom(G,C∗) =: G∗ of G (namely, each lin-

earization is obtained from a fixed one by multiplying with an arbitrary

element in Hom(G,C∗) =: G∗).
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Thus, the question of the existence of a G-linearization on a line bundle

L is reduced to the algebraic question of the splitting of the central exten-

sion (5.2) given by the Theta group. This question is addressed by group

cohomology theory, as follows (for details see [Jac80]).

Corollary 5.13. Let L be an invertible sheaf on X, whose class in

Pic(X) is G-invariant. Then there exists a G-linearization of L if and only

if the extension class [ψ] ∈ H2(G,C∗) of the exact sequence (5.2) induced

by the Theta group Θ(G,L) is trivial.

The group H2(G,C∗) is the group of Schur multipliers (see again [Jac80,

page 369]).

Schur multipliers occur naturally when we have a projective representa-

tion of a group G. Since, if we have a homomorphism ϕ : G → P GL(r,C),

we can pull back the central extension

1 −→ C∗ −→ GL(r,C) −→ P GL(r,C) −→ 1

via ϕ, we obtain an exact sequence

1 −→ C∗ −→ Ĝ −→ G −→ 1,

and the extension class [ψ] ∈ H2(G,C∗) is the obstruction to lifting the

projective representation to a linear representation G→ GL(r,C).

It is an important remark that, if the group G is finite, and n = ord(G),

then the cocycles take values in the group of roots of unity µn := {z ∈
C∗|zn = 1}.

Remark 5.14. 1) Let E be an elliptic curve with origin O, and let G

be the group of 2-torsion points G := E[2] ∼= (Z/2Z)2, acting by translations

on E. The divisor class of 2O is never represented by a G-invariant divisor,

since all the G-orbits consist of 4 points, and the degree of 2O is not divisible

by 4. Hence, L := OE(2O) does not admit a G-linearization. However, we

have a projective representation on P1 = P(H0(OE(2O))), where each non

zero element η1 of the group fixes 2 divisors: the sum of the two points

corresponding to ±η1
2 , and its translate by another element η2 ∈ E[2].

The two group generators yield two linear transformations, which act

on V := H0(OE(2O)) = Cx0 ⊕ Cx1 as follows:

η1(x0) = x1, η1(x1) = x0, η2(xj) = (−1)jxj .
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The linear group generated is however D4 �= G, since

η1η2(x0) = x1, η1η2(x1) = −x0.

2) The previous example is indeed a special case of the Heisenberg exten-

sion, and V generalizes to the Stone-von Neumann representation associated

to an Abelian group G.

This is simply the space V := L2(G,C) of square integrable functions

on G (see [Igu72],[Mum70]):

• G acts on V := L2(G,C) by translation f(x) �→ f(x− g),

• G∗ acts on V by multiplication with the given character f(x) �→ f(x) ·
χ(x), and

• the commutator [g, χ] acts on V by the scalar multiplication with the

constant χ(g).

The Heisenberg group is the group of automorphisms of V generated by

G, G∗ and by C∗ acting by scalar multiplication. Then there is a central

extension

1 −→ C∗ −→ Heis(G) −→ G×G∗ −→ 1,

whose class in H2(G×G∗,C∗) is given by the C∗-valued bilinear form

β : (g, χ) �→ χ(g) ∈ Λ2(Hom(G×G∗,C∗)) ⊂ H2(G×G∗,C∗).

The relation with Abelian varieties A = V/Λ is through the Theta group

associated to an ample divisor L.

In fact, by the theorem of Frobenius the alternating form c1(L) ∈
H2(A,Z) ∼= ∧2(Hom(Λ,Z)) admits, in a suitable basis of Λ, the normal

form

D :=

(
0 D′

−D′ 0

)
,(5.3)

where D′ := diag(d1, d2, . . . , dg), d1 | d2 | · · · | dg.
If one sets G := Zg/D′Zg, then L is invariant under G×G∗ ∼= G×G ⊂ A,

acting by translation, and the Theta group of L is just isomorphic to the

Heisenberg group Heis(G).
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The nice part of the story is the following very useful result, which was

used by Atiyah in the case of elliptic curves to study vector bundles on these

(cf. [Ati57]). We give a proof even if the result is well known.

Proposition 5.15. Let G be a finite Abelian group, and let V :=

L2(G,C) be the Stone-von Neumann representation. Then V ⊗ V ∨ is a

representation of G × G∗ and splits as the direct sum of all the characters

of G×G∗.

Proof. Since the centre C∗ of the Heisenberg group Heis(G) acts triv-

ially on V ⊗V ∨, we have that V ⊗V ∨ is a representation of G×G∗. Observe

that G × G∗ is equal to its group of characters, and its cardinality equals

the dimension of V ⊗ V ∨, hence it suffices (and it will also be useful for

applications) to write for each character of G×G∗ an explicit eigenvector.

We shall use the letters g, h, k for elements of G, and the greek let-

ters χ, η, ξ for elements in the dual group. Observe that V has two bases,

one given by {g ∈ G}, and the other given by the characters {χ ∈ G∗}.
The Fourier transform F yields an isomorphism of the vector spaces V :=

L2(G,C) and W := L2(G∗,C):

F(f) := f̂ , f̂(χ) :=

∫
f(g)(χ, g) dg.

The action of h ∈ G on V sends f(g) �→ f(g−h), hence for the characteristic

functions in C[G], h ∈ G acts as g �→ g+h. Instead η ∈ G∗ sends f �→ f · η,
hence χ �→ χ+ η. Note that we use the additive notation also for the group

of characters.

Restricting V to the finite Heisenberg group, which is a central extension

of G×G∗ by µn, we get a unitary representation, hence we identify V ∨ with

V̄ . Then a basis of V ⊗ V̄ is given by the set {g ⊗ χ̄}.
Given a vector w :=

∑
g,χ ag,χ(g⊗ χ̄) ∈ V ⊗ V̄ , then the action by h ∈ G

is given by

h(w) =
∑
g,χ

(χ, h)ag−h,χ(g ⊗ χ̄),

while the action by η ∈ G∗ is given by

η(w) =
∑
g,χ

(η, g)ag,χ−η(g ⊗ χ̄).
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Hence one verifies right away that

Fk,ξ :=
∑
g,χ

(χ− ξ, g − k)(g ⊗ χ̄)

is an eigenvector with character (ξ, h)(η, k) for (h, η) ∈ (G×G∗). �

6. A Surface in a Bagnera-de Franchis Threefold

Let A1 be an elliptic curve, and let A2 be an Abelian surface together

with a line bundle L2 yielding a polarization of type (1, 2).

Take on A1 the line bundle L1 = OA1(2O), and let L be the line bundle

on A′ := A1 ×A2, obtained as the exterior tensor product of L1 and L2, so

that

H0(A′, L) = H0(A1, L1)⊗H0(A2, L2).

Moreover, we choose the origin in A2 such that the space of sections

H0(A2, L2) consists only of even sections (hence, we shall no longer be free

to further change the origin by an arbitrary translation).

We want to construct a Bagnera-de Franchis variety X := A/G, where

• A = (A1 ×A2)/T , and G ∼= T ∼= Z/2Z, such that

• there is a G × T invariant divisor D ∈ |L|, whence we get a surface

S = D/(T ×G) ⊂ X, with K2
S = 1

4K
2
D = 1

4D
3 = 6.

Write as usual A1 = C/Z ⊕ Zτ , and let A2 = C2/Λ2. Suppose moreover,

that λ1, λ2, λ3, λ4 is a basis of Λ2 such that with respect to this basis the

Chern class of L2 is in Frobenius normal form. Let then G = 〈g〉 ∼= Z/2Z

act on A1 ×A2 by

g(a1, a2) :=

(
a1 +

τ

2
,−a2 +

λ2

2

)
,(6.1)

and define T := (Z/2Z)(1
2 ,

λ4
2 ).

Now, G × T surjects onto the group of two torsion points A1[2] of the

elliptic curve, and also on the subgroup (Z/2Z)(λ2/2)⊕(Z/2)(λ4/2) ⊂ A2[2].

Moreover, both H0(A1, L1) and H0(A2, L2) are the Stone-von Neumann

representation of the finite Heisenberg group of G, which is a central Z/2Z

extension of G× T .
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By Proposition 5.15, since in this case V ∼= V (the only roots of unity

occurring are just ±1), we conclude that there are exactly 4 divisors in |L|,
invariant by:

• (a1, a2) �→ (a1,−a2) (since the sections of L2 are even),

• (a1, a2) �→
(
a1 + τ

2 , a2 + λ2
2

)
, and

• (a1, a2) �→
(
a1 + 1

2 , a2 + λ4
2

)
.

Hence these four divisors descend to give four surfaces Si ⊂ X, i ∈
{1, 2, 3, 4}.

Theorem 6.1. Let S be a minimal surface of general type with invari-

ants K2
S = 6, pg(S) = q(S) = 1 such that

• there exists an unramified double cover Ŝ → S with q(Ŝ) = 3, and

such that

• the Albanese morphism α̂ : Ŝ → A = Alb(Ŝ) is birational onto its

image Z, a divisor in A with Z3 = 12.

1) Then the canonical model of Ŝ is isomorphic to Z, and the canonical

model of S is isomorphic to Y = Z/(Z/2Z), which is a divisor in a Bagnera-

de Franchis threefold X := A/G, where A = (A1 × A2)/T , G ∼= T ∼= Z/2Z,

and where the action is as in (6.1).

2) These surfaces exist, have an irreducible four dimensional moduli

space, and their Albanese map α : S → A1 = A1/A1[2] has general fibre a

non hyperelliptic curve of genus g = 3.

Proof. By assumption the Albanese map α̂ : Ŝ → A is birational onto

Z, and we have K2
Ŝ

= 12 = K2
Z , since OZ(Z) is the dualizing sheaf of Z.

We shall argue similarly to [BC12, Step 4 of Theorem 0.5, page 31].

Denote by W the canonical model of Ŝ, and observe that by adjunction (see

loc. cit.) we have KW = α̂∗(KZ) − A, where A is an effective Q-Cartier

divisor.

We observe now that KZ and KW are ample, hence we have an inequal-

ity,

12 = K2
W = (α̂∗(KZ)− A)2 = K2

Z − (α̂∗(KZ) · A)− (KW · A) ≥ K2
Z = 12,
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and since both terms are equal to 12, we conclude that A = 0, which means

that KZ pulls back to KW , whence W is isomorphic to Z. We have a

covering involution ι : Ŝ → Ŝ, such that S = Ŝ/ι. Since the action of Z/2Z

is free on Ŝ, Z/2Z also acts freely on Z.

Since Z3 = 12, Z is a divisor of type (1, 1, 2) in A. The covering involu-

tion ι : Ŝ → Ŝ can be lifted to an involution g of A, which we write as an

affine transformation g(a) = αa+ β.

We have now Abelian subvarieties A1 = ker(α − Id), A2 = ker(α + Id),

and since the irregularity of S equals 1, A1 has dimension 1, and A2 has

dimension 2.

We observe preliminarly that g is fixed point free: since otherwise the

fixed point locus would be non empty of dimension one (as there is ex-

actly one eigenvalue equal to 1), so it would intersect the ample divisor Z,

contradicting that ι : Z → Z acts freely.

Therefore, Y = Z/ι is a divisor in the Bagnera-de Franchis threefold

X = A/G, where G is the group of order two generated by g.

We can then write the Abelian threefold A as (A1 × A2)/T , and since

β1 /∈ T1 (cf. Proposition 5.4) we have only two possible cases:

0) T = 0, or

1) T ∼= Z/2Z.

We further observe that, since the divisor Z is g-invariant, its polarization

is α invariant, in particular its Chern class c ∈ ∧2(Hom(Λ,Z)), where A =

V/Λ. Since T = Λ/(Λ1 ⊕ Λ2), c pulls back to

c′ ∈ ∧2(Hom(Λ1 ⊕ Λ2,Z)) = ∧2(Λ∨
1 )⊕ ∧2(Λ∨

2 )⊕ (Λ∨
1 )⊗ (Λ∨

2 ),

and by invariance c′ = (c′1 ⊕ c′2) ∈ ∧2(Λ∨
1 )⊕ ∧2(Λ∨

2 ). So Case 0) bifurcates

in the following cases:

0-I) c′1 is of type (1), c′2 is of type (1, 2);

0-II) c′1 is of type (2), c′2 is of type (1, 1).

Both cases can be discarded, since they lead to the same contradiction.

Setting D := Z, then D is the divisor of zeros on A = A1 ×A2 of a section

of a line bundle L which is an exterior tensor product of L1 and L2. Since

H0(A,L) = H0(A1, L1)⊗H0(A2, L2),
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and H0(A1, L1) has dimension one in case 0-I), while H0(A2, L2) has di-

mension one in case 0-II), we conclude that D is a reducible divisor, a

contradiction, since D is smooth and connected.

In case 1), we denote A′ := A1 ×A2, and we let D be the inverse image

of Z inside A′. Again D is smooth and connected, since π1(Ŝ) surjects onto

Λ. Now D2 = 24, so the Pfaffian of c′ equals 4, and there are a priori several

possibilities:

1-I) c′1 is of type (1);

1-II) c′2 is of type (1, 1);

1-III) c′1 is of type (2), c′2 is of type (1, 2).

The cases 1-I) and 1-II) can be excluded as case 0), since D would then be

reducible.

We are then left only with case 1-III), and we may, without loss of

generality, assume that H0(A1, L1) = H0(A1,OA1(2O)). Moreover, we have

already assumed that we have chosen the origin so that all the sections of

H0(A2, L2) are even.

We have A = A′/T , and we may write the generator of T as t1⊕ t2, and

write g(a1 ⊕ a2) = (a1 + β1)⊕ (a2 − β2).

By the description of Bagnera-de Franchis varieties (cf. Proposition 5.4)

we have that t1 and β1 are a basis of the group of 2 torsion points of the

elliptic curve A1.

Since all sections of L2 are even, the divisor D is G× T -invariant if and

only if it is invariant under T and under translation by β.

This condition however implies that translation of L2 by β2 is isomor-

phic to L2, and similarly for t2. It follows that β2, t2 form a basis of

K2 := ker(φL2 : A2 → Pic0(A2)), where φ(y) = tyL2 ⊗ L−1
1 . The iso-

morphism of G × T with both K1 := A1[2] and K2 allows to identify

both H0(A1, L1) and H0(A2, L2) with the Stone-von Neumann represen-

tation L2(T,C): observe in fact that there is only one alternating function

(G× T )→ Z/2Z, independent of the chosen basis.

Therefore, there are exactly 4 invariant divisors in the linear system |L|.
Explicitly, if H0(A1, L1) has basis x0, x1 and H0(A2, L2) has basis y0, y1,

then the invariant divisors correspond to the four eigenvectors

x0y0 + x1y1 , x0y0 − x1y1 , x0y1 + x1y0 , x0y1 − x1y0 .
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To prove irreducibility of the above family of surfaces, it suffices to show

that all the four invariant divisors occur in the same connected family.

To this purpose, we just observe that the monodromy of the family of

elliptic curves Eτ := C/(Z ⊕ Zτ) on the upper half plane has the effect

that a transformation in SL(2,Z) acts on the subgroup Eτ [2] of points of

2-torsion by its image matrix in GL(2,Z/2Z), and in turn the effect on the

Stone-von Neumann representation is the one of twisting it by a character

of Eτ [2].

This concludes the proof that the moduli space is irreducible of dimen-

sion 4, since the moduli space of elliptic curves, respectively the moduli

space of Abelian surfaces with a polarization of type (1, 2), are irreducible,

of respective dimensions 1, 3.

The final assertion is a consequence of the fact that Alb(S) = A1/(T1 +

〈〈β1〉〉), so that the fibres of the Albanese map are just divisors in A2 of

type (1, 2). Their self intersection equals 4 = 2(g − 1), hence g = 3.

In order to establish that the general curve is non hyperelliptic, it suffices

to prove the following lemma.

Lemma 6.2. Let A2 be an Abelian surface, endowed with a divisor L

of type (1, 2), so that there is an isogeny of degree two f : A2 → A′ onto a

principally polarised Abelian surface, and L = f∗(Θ). Then the only curves

C ∈ |L| which are hyperelliptic are contained in the pull backs of a translate

of Θ by a point of order 2 for a suitable such isogeny f ′ : A2 → A′′. In

particular, the general curve C ∈ |L| is not hyperelliptic.

Proof. Note that A′ is the quotient of A by an involution, given by

translation with a two torsion element t ∈ A[2]. Let C ∈ |L|, and consider

D := f∗(C) ∈ |2Θ|. There are two cases:

I) C + t = C;

II) C + t �= C.

In case I) D = 2B, where B has genus 2, so that C = f∗(B), hence, since

2B ≡ 2Θ, B is a translate of Θ by a point of order 2. There are exactly two

such curves, and for them C → B is étale.

In case II) the map C → D is birational, f∗(D) = C ∪ (C + t). Now,

C + t is also linearly equivalent to L, hence C and C + t intersect in the 4
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base points of the pencil |L|. Hence D has two double points and geometric

genus equal to 3. These double points are the intersection points of Θ and

a translate of Θ by a point of order 2, and are points of 2-torsion.

The sections of H0(OA′(2Θ)) are all even and |2Θ| is the pull-back of the

space of hyperplane sections of the Kummer surface K ⊂ P3, the quotient

K = A′/{±1}.
Therefore, the image E′ of each such curve D lies in the pencil of planes

through 2 nodes of K.

E′ is a plane quartic, hence E′ has geometric genus 1, and we conclude

that C admits an involution σ with quotient an elliptic curve E (normal-

ization of E′), and the double cover is branched in 4 points.

Assume that C is hyperelliptic, and denote by h the hyperelliptic invo-

lution, which lies in the centre of Aut(C). Hence we have (Z/2Z)2 acting on

C, with quotient P1. We easily see that there are exactly six branch points,

two being the branch points of C/h → P1, four being the branch points of

E → P1. It follows that there is an étale quotient C → B , where B is the

genus 2 curve, double cover of P1 branched on the six points.

Now, the inclusion C ⊂ A2 and the degree 2 map C → B induce a

degree two isogeny A2 → J(B), and C is the pull back of the Theta divisor

of J(B), thus it cannot be a general curve. �

This ends the proof of Theorem 6.1. �

We shall give the surfaces of Theorem 6.1 a name.

Definition 6.3. A minimal surface S of general type with invariants

K2
S = 6, pg(S) = q(S) = 1 such that

• there exists an unramified double cover Ŝ → S with q(Ŝ) = 3, and

such that

• the Albanese morphism α̂ : Ŝ → A = Alb(Ŝ) is birational onto its

image Z, a divisor in A with Z3 = 12,

is called a Sicilian surface with q(S) = pg(S) = 1.

Remark 6.4. We have seen that the canonical model of a Sicilian sur-

face S is an ample divisor in a Bagnera-de Franchis threefold X = A/G,
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where G = 〈g〉 ∼= Z/2Z. Hence the fundamental group of S is isomorphic

to the fundamental group Γ of X. Moreover, Γ fits into the exact sequence

1 −→ Λ −→ Γ −→ G = Z/2Z −→ 1 ,

and is generated by the union of the set {g, t} with the set of translations

by the elements of a basis λ1, λ2, λ3, λ4 of Λ2, where

g(v1 ⊕ v2) =
(
v1 +

τ

2

)
⊕
(
−v2 +

λ2

2

)

t(v1 ⊕ v2) =

(
v1 +

1

2

)
⊕
(
v2 +

λ4

2

)
.

Γ is therefore a semidirect product of Z5 = Λ2 ⊕ Zt with the infinite

cyclic group generated by g: conjugation by g acts as −1 on Λ2, and it

sends t �→ t− λ4 (hence 2t− λ4 is an eigenvector for the eigenvalue 1).

We shall now give a topological characterization of Sicilian surfaces with

q = pg = 1, following the lines of [BC12].

Observe in this respect that X is a K(Γ, 1)-space, so that its cohomology

and homology are just group cohomology, respectively homology, of the

group Γ.

Corollary 6.5. A Sicilian surface S with q(S) = pg(S) = 1 is char-

acterized by the following properties:

(1) K2
S = 6,

(2) χ(S) = 1,

(3) π1(S) ∼= Γ, where Γ is as above,

(4) the classifying map f : S → X, where X is the Bagnera-de Fran-

chis threefold which is a classifying space for Γ, has the property that

f∗[S] =: B satisfies B3 = 6.

In particular, any surface homotopically equivalent to a Sicilian surface is

a Sicilian surface, and we get a connected component of the moduli space

of surfaces of general type which is stable under the action of the absolute

Galois group Gal(Q̄,Q).
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Proof. Since π1(S) ∼= Γ, first of all q(S) = 1, hence also pg(S) = 1.

By the same token there is a double étale cover Ŝ → S such that q(Ŝ) = 3,

and the Albanese image of Ŝ, counted with multiplicity, is the inverse image

of B, therefore Z3 = 12. From this, it follows that Ŝ → Z is birational,

since the class of Z is indivisible.

We may now apply the previous Theorem 6.1 in order to obtain the

classification.

Observe finally that the condition (α̂∗Ŝ)3 = 12 is not only a topological

condition, it is also invariant under Gal(Q̄,Q). �

7. Proof of the Main Theorems

We conclude in this last short section the proofs of Main Theorem 1 and

Main Theorem 2.

Proof of Main Theorem 1. Statements 1), 2) and 3) summarize

the contents of Proposition 3.4 and Theorem 3.6.

4) We observe preliminarly that our fundamental groups are virtually

Abelian of rank 6 (i.e., they have a normal subgroup of finite index ∼=
Z6). By the results of [BCGP12], the fundamental group of (the minimal

resolution of) a product-quotient surface has a finite index normal subgroup

which is the product of at most two fundamental groups of curves. Therefore

if it is virtually Abelian it has rank 2 or 4.

This argument excludes rightaway that our fundamental groups may be

isomorphic to the fundamental groups of some product-quotient surfaces.

The only remaining case for pg = 0 is the Kulikov surface, whose first

homology group has 3-torsion.1

The known surfaces with pg = q = 1 and K2 = 6 are either product-

quotient surfaces (cf. [Pol09]) or mixed quasi-étale surfaces, which are con-

structed in [FP15]. Comparing Table 2 from loc. cit with our Table 4, we

see that they have different homology groups from ours.

5) is proved in Theorem 4.7. �

Proof of Main Theorem 2. The assertions 1) and 2) are contained

in Theorem 6.1.

1Disclaimer: the fundamental group of the Inoue surface with pg = 0, K2 = 6 has
not yet been calculated and we do not claim it is different from ours.
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4) is contained in Corollary 6.5.

3) Observe that in cases S11 and S12 of Table 4 there is a subgroup

H ∼= (Z/2Z)2 acting by translations on E1 × E2 × E3. Denote by Ŝ the

quotient of the Burniat hypersurface by H. Then Ŝ is an étale double cover

of the GBT S, which satisfies the defining property of Sicilian surfaces.

There remains to show that the other GBT surfaces (with pg = q = 1)

are not Sicilian surfaces. This is now obvious since they have fundamental

groups non-isomorphic to π1(S11), where S11 belongs to the family S11. �
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