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A New Characterization of Random Times for

Specifying Information Delay

By Takanori Adachi, Ryozo Miura and Hidetoshi Nakagawa

Abstract. We introduce a stochastic process called a follower
process consisting of a non-decreasing sequence of random times ft
whose values do not exceed t. It was originally introduced for repre-
senting information delay in structural credit risk models. The follower
process is an extension of a time change process introduced by Guo,
Jarrow and Zeng in the sense that each component of the follower pro-
cess is not required to be a stopping time. We introduce a class of
follower processes called idempotent, which contains natural examples
including follower processes driven by renewal processes. We show
that any idempotent follower process is hard to be an example of time
change processes. We define a filtration modulated by the follower pro-
cess and show that it is a natural extension of the continuously delayed
filtration that is the filtration modulated by the time change process.
We show that conditional expectations given idempotent follower fil-
trations have some Markov property in a binomial setting, which is
useful for pricing defaultable financial instruments.

1. Introduction

The original motivation of this paper comes from the theory of credit

risk models. In the credit risk theory, it is crucial to introduce a sort of in-

completeness into its model when adopting a so-called structural approach.

In order to make it, Guo, Jarrow and Zeng [GJZ09] introduced a process

called time change.

Let T be a fixed time domain that has the least element 0, equipped with

an adequate topology, and (Ω,F ,F = {Ft}t∈T ,P) be a filtered probability
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space where the filtration F satisfies the usual condition for continuous time

domains. Then the time change process is defined like the following.

Definition 1.1 [Time Change Process (Guo, Jarrow and Zeng

[GJZ09])]. An F-time change process is an F-adapted stochastic process

f : T × Ω → T satisfying the following conditions,

(1) f0 = 0 P-a.s.,

(2) ft ≤ t P-a.s. for all t ∈ T ,

(3) t1 ≤ t2 → ft1 ≤ ft2 P-a.s. for all t1, t2 ∈ T .

(4) for all t ∈ T , ft is an F-stopping time.

The time change process ft represents the amount of delayed time t−ft.
It can be read in the context of the credit risk theory that if the market

knows an event at time t, then the event actually happened at time ft
(ahead of t) when managers learned it. So, it models the fact that the

market would know the information possibly after the managers know it,

that is, representing asymmetric information.

Guo, Jarrow and Zeng succeeded to make their credit risk model an

incomplete one by using a filtration {Fft}t∈T called a continuously delayed

filtration. The results were somehow consistent with empirically observed

data.

Note that the continuously delayed filtration is well-defined since ft is

an F-stopping time.

Now let us suppose a natural example representing delayed information,

which we call a renewal follower process {ft}t∈T .

Example 1.2 [Renewal Follower Processes].

(1) Xn ∼ i.i.d. random variables such that 0 < E
P[Xn] < ∞ for n =

1, 2, . . . ,

(2) Sn :=
∑n

k=1Xk,

(3) Nt := sup{n | Sn ≤ t},

(4) ft := SNt .



Random Times for Information Delay 149

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

lambda = 10
date

m
ar

ke
t t

im
e

Fig. 1. Renewal follower process.

Intuitively, the random variable Xn specifies an interval time between

n-th and (n + 1)-th jumps when the follower process catch up with the

current time, i.e. ft = t. Figure 1 shows a sample trajectory of a renewal

follower process where the random variables Xn above obey an exponential

distribution Exp(10).

One of the possible interpretation of this example in reality is the situ-

ation that the firm makes all its insider information available to the mar-

ket only when it is under an audit activity by authorities (at the jumping

time).

However, we will see in Section 2.2 that it is hard for renewal follower

processes to be examples of the time change processes because of the strong

condition (4) in Definition 1.1. This is the main reason we introduced the

following new concept by dropping the condition.
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Definition 1.3 [Follower Processes].

A raw follower process is a stochastic process f : T × Ω → T satisfying

the following conditions,

(1) f0 = 0 P-a.s.,

(2) fτ ≤ τ P-a.s. for all τ ∈ T ∗,

(3) τ1 ≤ τ2 → fτ1 ≤ fτ2 P-a.s. for all τ1, τ2 ∈ T ∗.

where T ∗ is the set of all T -valued random times.

An F-follower process is a raw follower process which is F-adapted.

Apparently, renewal follower processes are raw follower processes.

The difference of Definition 1.3 from the first three conditions of Defini-

tion 1.1 is the use of T ∗ instead of T . This change is necessary if we consider

the case when we need to make a reasoning such as fs ≤ t implies ffs ≤ ft.

Therefore, the original definition of time change processes in Definition 1.1

is also better to be rewritten with ti varying in T ∗ instead of in T . So

in the rest of this paper, we assume that any F-time change process is an

F-follower process.

The remainder of this paper consists of three sections.

In Section 2, we begin with giving some properties and a couple of

examples of follower processes. After seeing that the set of all follower

processes forms a monoid, We introduce an important class of idempotent

follower processes that satisfy fft = ft for all t ∈ T . It is obvious that

the class contains all renewal follower processes. Then, we show that an

idempotent follower process fails to be an example of time change processes.

Next, we provide some characterizations of idempotent follower processes.

In the end of Section 2, we show that an idempotent follower process consists

of a sequence of honest times, and that any honest time can be represented

as a limit of an idempotent follower process.

One of our motivations to introduce the concept of follower processes

is to use it for modulating a given filtration, which is necessary for pric-

ing defaultable securities. However, except the case when ft is a stopping

time, it is not generally obvious how to define the σ-field Fft and the fil-

tration consisting of those σ-fields. In Section 3, we present a definition of

filtrations modulated by follower processes and show that our filtration is
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a natural extension of the continuously delayed filtrations in the sense that

they coincide each other when the underlying follower process consists of

stopping times.

Once we try to apply the theory of follower processes to the credit risk

theory, we would face the necessity to calculate some conditional expecta-

tions given the filtration defined in Section 3. Especially, we need a strong

Markov property like the following:

E
P[g(Ys) | Ff

t ] = E
P[g(Ys) | ft, Yft ]

where Ff
t is the filtration modulated by the follower process ft. In Section

4, we prove this when ft is idempotent in a binomial model.

2. Follower Processes

For s, t ∈ T , we define [s, t]T := {u ∈ T | s ≤ u ≤ t}, and similarly

define [s, t[T , ]s, t]T and ]s, t[T . We write T+ for T − {0}.
For a function f whose domain is T , f(t−) := lims→t−0 f(s) and

f(t+) := lims→t+0 f(s). Note that in the case T = {nδ | n = 0, 1, . . . },
t− = t− δ for t ∈ T+ and t+ = t+ δ for t ∈ T .

2.1. Properties and examples of follower processes

Here are some simple properties of follower processes whose proofs are

left to readers.

Proposition 2.1. Let f and g be raw follower processes. Then, so are

the following processes:

(1) ft ∧ gt ,

(2) ft ∨ gt ,

(3) ht :=

{
ft if t ≤ s,

fs + gt−s if t > s
.

The simplest example of follower processes is the identity process {t}t∈T .

Other than that and renewal follower processes, we give a couple of examples

in the rest of this subsection.
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Example 2.2 [Constantly Delayed Follower Processes].

Lindset et al. introduced the two time lags for markets and managers in

[LLP08]. Their lags are constant and not stochastically varying like ours.

Let d be a positive constant. A raw follower process f = {ft}t∈T is

called a constantly delayed follower process with delay d if for all t ∈ T ,

ft := max{t− d, 0}.

Example 2.3 [Occupation Times].

This example is taken from Example 6.2 in Chapter 3 of Karatzas and

Shreve [KS98]. Let W = {Wt}t∈T be a Brownian motion and B ∈ B(R) be

a Borel set. Then, the occupation time of B by the Brownian path up to

time t is the process f define by

ft :=

∫ t

0
11B(Ws)ds.

Obviously, any occupation time f is a follower process. However, the

occupation time will not recover to the managers’ time (that is, ft �= t) once

it had a chance to walk out of the Borel set B. More precisely speaking,

the delay t − ft is increasing as time passes, and never shrinks. Therefore,

the converse is untrue.

Similarly, for a given continuous semimartingale X = {Xt}t∈T , its local

time L = {Lt}t∈T is a follower process.

2.2. Idempotent follower processes

In this subsection, we introduce a class of follower processes whose ele-

ments are called idempotent. We show that the class contains all renewal

follower processes and that every idempotent follower process is hard to be

a time change process.

First, we introduce a composition operator defined on the space of fol-

lower processes.

A process f is a raw follower process if there is a raw follower process

f ′ such that fτ = f ′τ for all τ ∈ T ∗. Therefore, we can treat the space of

follower processes as a quotient space safely.
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Definition 2.4 [Space of Follower Processes].

(1) M is the set of all raw follower processes.

(2) For f1, f2 ∈ M, the composite process f1 ◦ f2 is defined by for t ∈ T
and ω ∈ Ω,

(f1 ◦ f2)t(ω) = (f1 ◦ f2)(t, ω) := f1(f2(t, ω), ω).

(3) M := M/ ∼, where ∼ is a binary relation on M defined by for any

pair of f1 and f2 in M, f1 ∼ f2 iff f1
τ = f2

τ P-a.s. for all τ ∈ T ∗.

For f ∈ M, we write f ∈ M by identifying f with the equivalence

class [f ]∼ ∈ M if it leads no confusion.

(4) An identity process is a process 11M ∈ M defined by 11Mt (ω) = t for

all t ∈ T and ω ∈ Ω.

Theorem 2.5. The structure 〈M, ◦, 11M〉 forms a monoid, that is, a

semigroup with identity, where ◦ is a well-defined operator on M induced by

the operator ◦ on M.

Proof. Straightforward. �

Definition 2.6 [Idempotent Follower Processes]. A raw follower pro-

cess f is called idempotent if for all τ ∈ T ∗,

ffτ = fτ P-a.s..(2.1)

We would see Equation 2.1 as f ◦ f = f . The word idempotent comes

from the fact.

You can easily verify that the identity follower process and the renewal

follower process are idempotent follower processes. On the other hand, nei-

ther constantly-delayed follower processes nor occupation times are idem-

potent.

Proposition 2.7. A raw follower process f is idempotent iff for all

τ1, τ2 ∈ T ∗, fτ1 ≤ τ2 ≤ τ1 → fτ1 = fτ2 P-a.s..
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Proof. If part. For τ ∈ T ∗, we have

{fτ ≤ τ} ∩ {fτ ≤ fτ ≤ τ → fτ = ffτ } ⊂ {fτ = ffτ }.

By the assumption, the probability of the left hand set is 1. Therefore,

P{fτ = ffτ } = 1 as well.

Only if part. For any τ1, τ2 ∈ T ∗, define a set A by

A := {ffτ1 = fτ1} ∩ {fτ1 ≤ τ2 → ffτ1 ≤ fτ2} ∩ {τ2 ≤ τ1 → fτ2 ≤ fτ1}.

Then, we have P(A) = 1 since f is an idempotent raw follower process.

Now, observing

A ∩ {fτ1 ≤ τ2 ≤ τ1}
=A ∩ {fτ1 ≤ τ2} ∩ {τ2 ≤ τ1}
⊂{ffτ1 = fτ1} ∩ {ffτ1 ≤ fτ2} ∩ {fτ2 ≤ fτ1}
={ffτ1 = fτ1} ∩ {ffτ1 ≤ fτ2 ≤ fτ1}
⊂{fτ1 = fτ2},

we have A ⊂ {fτ1 ≤ τ2 ≤ τ1 → fτ1 = fτ2}. Therefore, P{fτ1 ≤ τ2 ≤ τ1 →
fτ1 = fτ2} = 1. �

Here is one of the important implications derived from Proposition 2.7.

Corollary 2.8. Let f = {ft}t∈T be an idempotent F-follower process

where each ft is a F-stopping time. Then, for every pair t and s in T with

t ≥ s, we have {ft = fs} ∈ Fs.

Proof. Let A ⊂ Ω be the set defined by A := {ft ≤ s ≤ t → ft =

fs} ∩ {fs ≤ s}. Then, since f is a follower process and by Proposition 2.7,

we get P(A) = 1.

Now, under the assumption s ≤ t, we have

A ∩ {ft ≤ s} = A ∩ ({ft ≤ s ≤ t → ft = fs} ∩ {ft ≤ s}) ⊂ A ∩ {ft = fs}

and

A ∩ {ft = fs} = A ∩ ({fs ≤ s} ∩ {ft = fs}) ⊂ A ∩ {ft ≤ s}.
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Thus A∩{ft ≤ s} = A∩{ft = fs}. Therefore {ft ≤ s}�{ft = fs} ⊂ Ω−A.

Hence P({ft ≤ s}�{ft = fs}) = 0. Since {ft ≤ s} is Fs-measurable and Fs

is complete, we have {ft = fs} ∈ Fs. �

Let us think that s is the current time and that t is any future time. Then

by Corollary 2.8, we can know if the information will have increased since

now by any future time t, which is not realistic. So, we should conclude that

requiring each random time ft to be a stopping time is not practical in the

case that f is idempotent while some of the idempotent follower processes

are quite interesting both in the practical and the theoretical sense. This is

our original motivation to develop a delayed theory that does not depend

on stopping times.

Next, we show a characterization of idempotent follower processes.

Definition 2.9.

(1) For a random set F ⊂ T × Ω, define a process fF : T × Ω → T by

fFt (ω) = sup{s ≤ t | (s, ω) ∈ F},(2.2)

where we use the convention sup ∅ = 0.

(2) For a raw follower process f , define a random set F f by

F f := {(t, ω) ∈ T × Ω | ft(ω) = t}.(2.3)

Note that fFt is the end of the random set Ft := F ∩ ([0, t]T ×Ω). Here,

the end of a random set A ⊂ T × Ω is the random time EA defined by

EA(ω) := sup{t ∈ T | (t, ω) ∈ A}, where we use the convention sup ∅ = 0.

Proposition 2.10.

(1) Let F ⊂ T ×Ω be a random set. Then, the process fF is an idempotent

raw follower process.

(2) Let f be an idempotent raw follower process, Then, fF
f

τ = fτ P-a.s.

for all τ ∈ T ∗.
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Proof.

(1) It is clear that fF is a raw follower process. So, let us show it is also

idempotent. Let ω ∈ Ω, τ ∈ T ∗ and s := fFτ (ω). Then,

s ≤ τ(ω) and (∀u ∈ T )u ≤ τ(ω) ∧ (u, ω) ∈ F → u ≤ s.(2.4)

Now, it is enough to show that {u ≤ s | (u, ω) ∈ F} = {u ≤ τ(ω) |
(u, ω) ∈ F}. Since s ≤ τ(ω), it is obvious that LHS ⊂ RHS. Let

u ∈ RHS. Then by Equation 2.4, u ≤ s. Therefore, u ∈ LHS.

(2) For ω ∈ Ω, s ∈ T and τ ∈ T ∗, We have

fF
f

τ (ω) = sup{s ≤ τ(ω) | (s, ω) ∈ F f}(2.5)

= sup{s ∈ T | s ≤ τ(ω) ∧ fs(ω) = s}.

Then by Equation 2.5, we have {fτ ≤ τ} ∩ {ffτ = fτ} ⊂ {fF
f

τ ≥ fτ}.
Here, the probability of the left hand set of the above equation is 1

since f is an idempotent follower process. Therefore, P{fF f

τ ≥ fτ} =

1.

On the other hand,

{fτ < s ≤ τ → fτ = fs} ∩ {s ≤ τ ∧ fs = s} ∩ {fτ < s}
={fτ < s ≤ τ → fτ = fs} ∩ {fτ < s ≤ τ} ∩ {fτ < s} ∩ {fs = s}
⊂{fτ = fs} ∩ {fτ < s} ∩ {fs = s}
⊂{fs < s} ∩ {fs = s} = ∅.

Therefore,

{fτ < s ≤ τ → fτ = fs} ⊂ {(s ≤ τ ∧ fs = s) → s ≤ fτ}
⊂ {fF f

τ ≤ fτ}.(2.6)

Here the last inclusion holds by Equation 2.5. The probability of the

left most statement of Equation 2.6 is 1 by Proposition 2.7. Therefore,

P{fF f

τ ≤ fτ} = 1. �
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We have the following characterization theorem for idempotent raw fol-

lower processes.

Theorem 2.11. Let f : T × Ω → T be a process. Then, f is an

idempotent raw follower process iff there exists a random set F ⊂ T × Ω

such that fFτ = fτ for all τ ∈ T ∗.

Proof. Immediate from Proposition 2.10. �

The following is an example of idempotent follower process.

Example 2.12 [Starting Times for Excursions].

Let B = {Bt}t∈T be a standard F-Brownian motion, and define a ran-

dom set Z by

Z = {(t, ω) ∈ R+ × Ω | Bt(ω) = 0}.

Then, the idempotent follower process fZ picks the starting times for the

excursions out of 0 of B.

Proposition 2.13. Let F be an F-progressive set. Then, the process

fF is an idempotent F-follower process.

Proof. It is enough to show that fF is F-adapted. Since F is F-

progressive, Ft = F ∩ ([0, t]T × Ω) is B[0, t] ⊗ Ft-measurable. Then, since

fFt is the end of Ft, it is Ft-measurable. �

Theorem 2.14. Let f : T ×Ω → T be a càdlàg process. Then, f is an

idempotent F-follower process iff there exists an F-optional set F ⊂ T × Ω

such that fFτ = fτ for all τ ∈ T ∗.

Proof. If part. By Proposition 2.13 and the remark after Definition

A.1.

Only if part. All we need to show is that the random set F f defined by

Equation 2.3 is F-optional when f is F-adapted.

For n ∈ N, define processes pn by pn := 11{(t,ω)|ft(ω)≤t<ft(ω)+ 1
n
}. Then, pn

is obviously F-adapted and càdlàg. Therefore, (pn)−1(1) = {(t, ω) | ft(ω) ≤
t < ft(ω) + 1

n} is an F-optional set. Thus, so is F f =
⋂

n∈N(pn)−1(1). �

It is easily checked that the idempotent follower process in Example 2.12

is an idempotent F-follower process.
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2.3. Honest times

In Corollary 2.8, we were discouraged to make a follower process consist

of stopping times when it is idempotent.

In this subsection, we revisit the issue by adopting a wider class of

random times than the class of stopping times.

A random time τ is called F-honest with respect to an F-adapted process

{τt}t∈T+ on T if τ = τt on {τ ≤ t} for every t ∈ T+, i.e. τ11{τ≤t} = τt11{τ≤t}.
A random time τ is called F-honest if there exists an F-adapted process

{τt}t∈T+ such that τ is F-honest with respect to {τt}t∈T+ .

It is well known that every F-stopping time is F-honest (See e.g. page

373 of Protter [Pro04] or page 384 of Nikeghbali [Nik06]).

Here is another characterization of honest times by optional processes.

Theorem 2.15 [[Pro04] Theorem VI.16]. A random time τ is F-

honest if and only if there exists an F-optional set A such that τ = EA,

where EA is the end of A.

The following is a very nice characterization of honest times developed

by Yor (Yor [Yor78]).

Theorem 2.16 [Yor [Yor78]]. A random time τ is F-honest if and only

if for every u ∈ [0, s[T , there exists A ∈ Fs such that {τ ≤ u} = A∩{τ ≤ s}.

Our first question in this subsection is for a given follower process f =

{ft}t∈T , if there exists an honest time τ with respect to f .

Here is a necessary and sufficient condition of the existence of such τ .

Proposition 2.17. Let f = {ft}t∈T be an F-follower process. Then,

a random time τ : Ω → T ∪ {∞} is F-honest with respect to f if and only

if f∞(ω) := limt→∞ ft(ω) = τ(ω) = fτ(ω)(ω) for every ω ∈ Ω.

Proof. Note that the random time τ is F-honest with respect to f iff

for every t ∈ T+ and ω ∈ Ω,

τ(ω) ≤ t→ ft(ω) = τ(ω)(2.7)

Only if part: Since ft is monotonic, limt→∞ ft(ω) = supt∈T ft(ω). There-

fore, the result comes immediately by Equation 2.7.
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If part: Since supt∈T ft(ω) = τ(ω), ft(ω) ≤ τ(ω) for every t ∈ T+.

So, it is sufficient to show ft(ω) ≥ τ(ω), assuming τ(ω) ≤ t. But, by the

monotonicity of ft and the assumption τ(ω) = fτ(ω)(ω), we have τ(ω) =

fτ(ω)(ω) ≤ ft(ω). �

As an implication of Proposition 2.17, we missed the possibility of mak-

ing whole follower process be characterized by one honest time if the follower

process is unbounded. However, we have the following theorem of assert-

ing each ft becomes an honest time for some follower processes including

renewal follower processes.

Theorem 2.18. If f = {ft}t∈T is an idempotent F-follower process,

then for every t ∈ T , ft is an F-honest time.

Proof. Define a random field {τ ts}t,s∈T by τ ts := ft∧s.
Then, it is obvious that τ ts is Fs-measurable. So, all we need to show is

τ ts = ft on {ft ≤ s}.
If s ≥ t, we have τ ts = ft on Ω. Hence, we concentrate on the case s < t.

Now for any ω ∈ {ft ≤ s}, ft(ω) ≤ s < t. Then, since f is idempotent,

we get ft(ω) = fft(ω)(ω) ≤ fs(ω) ≤ ft(ω). Therefore, ft(ω) = fs(ω) =

τ ts(ω). �

Here is another characterization of honest times by using idempotent

follower processes.

Theorem 2.19. A random time τ : Ω → T̄ is F-honest if and only if

there exists an idempotent F-follower process f such that for every t ∈ T+,

τ = ft on {τ ≤ t}, i.e. τ = f∞.

Proof. If part. Immediate by the definition of honest times.

Only if part. By Theorem 2.15, there exists an F-optional set F such

that τ = EF since τ is F-honest.

Let f := fF . Then, by Theorem 2.14, f is an idempotent F-follower

process.

On the other hand, for ω ∈ {τ ≤ t}, we have

ft(ω) = sup{s ≤ t | (s, ω) ∈ F}
= sup{s ∈ T | (s, ω) ∈ F} since s ≤ τ(ω) ≤ t

= EF (ω).
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Therefore, ft = EF = τ . �

3. Follower Filtrations

As stated in Section 1, one of our motivations to introduce the concept

of follower processes is to use it for modulating a given filtration. Here is a

definition to make it.

Definition 3.1 [Follower Filtrations]. Let f = {ft}t∈T be an F-

follower process. The follower filtration modulated by the F-follower process

is the filtration F
f = {Ff

t }t∈T defined by for t ∈ T ,

Ff
t =

∨
s∈[0,t]T

Ffs .(3.1)

In Definition 3.1, Ffs is the σ-field defined in Definition A.2.

Theorem 3.2. Let f = {ft}t∈T be an F-follower process. Then the

follower filtration F
f is a subfiltration of F.

Proof. It is obvious that F
f is a filtration. So all we need to show is

that Ff
t ⊂ Ft for any t ∈ T . But for any s ≤ t, since fs ≤ ft ≤ t, we have

Ffs ⊂ Ft by Theorem A.4. Therefore, Ff
t =

∨
s∈[0,t]T

Ffs ⊂ Ft. �

The following theorem shows that our follower filtration is a natural

extension of the continuously delayed filtration of Guo, Jarrow and Zeng

[GJZ09].

Theorem 3.3. Let f = {ft}t∈T be an F-follower process where each ft
is an F-stopping time. Then, Ff

t = Fft.

Proof. Let s, t ∈ T with s ≤ t. Then fs ≤ ft.

First, we want to show Ffs ⊂ Fft . Let A ∈ Ffs . Then, by Theorem A.5,

for any u ∈ T , we have A ∩ {fs ≤ u} ∈ Fu.

On the other hand, since fs ≤ ft, we have

A ∩ {ft ≤ u} = (A ∩ {fs ≤ u}) ∩ {ft ≤ u}
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The first term of the right hand side belongs to Fu by the assumption, while

the second term is also in Fu since ft is an F-stopping time. So again by

Theorem A.5, we get A ∈ Fft .

Then, we have Ff
t =

∨
s∈[0,t]T

Ffs = Fft . �

Since a constant time is considered as a stopping time, we have the

following corollary.

Corollary 3.4. Assume that an F-follower process f is deterministic,

i.e. there exists a deterministic function g : T → T such that for all t ∈ T
and ω ∈ Ω, ft(ω) = g(t). Then, we have for all t ∈ T , Ff

t = Fg(t).

Next, we investigate the shape of follower filtrations when the underlying

follower processes are idempotent.

Lemma 3.5. Let f be an idempotent F-follower process which is càdlàg.

Then for every pair of s, t ∈ T with s < t, fs is Fft-measurable.

Proof. Let s ∈ T and B ∈ B(T ) be fixed. For any n ∈ N, define

processes pn and qn : T × Ω → R by

pn := 11{(u,ω)∈T ×Ω|fs(ω)∈B, fs(ω)≤u<fs(ω)+ 1
n
},

qn := 11{(u,ω)∈T ×Ω|fs(ω)∈B, u≥s+ 1
n
}.

Then, since fs is càdlàg, Fs-adapted and Ffs-adapted by Proposition A.3,

both pn and qn are F-adapted and càdlàg. Therefore, Pn, Qn ∈ Fft where

Pn :=
(
pnft

)−1
(1) = {fs ∈ B, fs ≤ ft < fs +

1

n
},

Qn :=
(
qnft

)−1
(1) = {fs ∈ B, ft ≥ s+

1

n
}.

Then, we have

P :=
⋂
n∈N

Pn = {fs ∈ B, fs = ft} ∈ Fft ,

Q :=
⋃
n∈N

Qn = {fs ∈ B, ft > s} ∈ Fft .
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Therefore

P ∪Q = {fs ∈ B} ∩
(
{fs = ft} ∪ {ft > s}

)
∈ Fft .

On the other hand, under the assumption s ≤ t, Proposition 2.7 implies that

the two sets {ft ≤ s} and {fs = ft} are identical by ignoring a null-measured

difference. Hence

{fs ∈ B} ∩
(
{ft ≤ s} ∪ {ft > s}

)
= {fs ∈ B} ∈ Fft .

Therefore, fs is Fft-measurable. �

Theorem 3.6. Let f be an idempotent F-follower process which is

càdlàg. Then, for every t ∈ T , we have Ff
t = Fft.

Proof. Immediate by Lemma 3.5 and Theorem A.4. �

4. Follower Processes in a Binomial Model

When we apply the theory of follower processes to the credit risk theory,

we need to calculate some conditional expectations given a follower filtration

in order to valuate defaultable financial instruments. In doing so, it would be

quite welcome if the follower filtration has a sort of strong Markov property

such as

E
P[g(Ys) | Ff

t ] = E
P[g(Ys) | ft, Yft ].(4.1)

However, it seems a difficult task to prove Equation 4.1 for an arbitrary

time domain.

In this section we show this when ft is idempotent in a binomial model,

and leave the continuous time domain case to future work.

4.1. The setup

In this subsection, we define a binomial model.

We fix the time domain T := {nδ | n = 0, 1, 2, . . . , N}, where δ is a

given positive number. We denote its horizon Nδ by T .

We define the set Ω := {H,T}T+ and ω(0) := ⊥ for ω ∈ Ω, where H, T

and ⊥ are distinct constants. For t ∈ T , we define a binary relation ∼t on
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Ω by ω ∼t ω
′ iff ω(s) = ω′(s) for all s ∈]0, t]T . Then, define a σ-field Ft by

σ(Ω/ ∼t). We also define F := FT .

We sometimes see the set Ω as a topological space equipped with the

discrete topology. In other words, any subset of Ω is an open set.

We define a probability measure P on Ω by P(A) :=
∑

ω∈A p
#ω(1 −

p)N−#ω. for A ∈ F , where p ∈]0, 1[ is a given number and #ω is the

cardinality of ω−1(H).

Throughout this section, all discussions are under the filtered probability

space (Ω,F ,F = (Ft)t∈T ,P). We also fix a state space (E, E) satisfying

{x} ∈ E for all x ∈ E. Note that both (R,B(R)) and (T , 2T ) satisfy this

condition.

Now it is easy to show that a function X : Ω → E is Ft-measurable iff

ω ∼t ω
′ implies X(ω) = X(ω′) for any ω, ω′ ∈ Ω. Consequently, we can

conclude that a process Z : T × Ω → E is F-adapted iff ω ∼t ω
′ implies

Z(t, ω) = Z(t, ω′) for all t ∈ T and ω, ω′ ∈ Ω.

Definition 4.1 [The Universal Process].

(1) Ω∗ := ∪t∈T {H,T}]0,t]T , where {H,T}∅ := {⊥}.

(2) For ω ∈ Ω and t ∈ T , a function ω|t ∈ {H,T}]0,t]T is defined by ω|t :=

ω|]0,t]T whose domain is expanded to [0, t]T by defining (ω|t)(0) := ⊥,

(3) The universal process is a process π : T ×Ω → Ω∗ defined by π(t, ω) :=

ω|t.

The following theorem says that the universal process has a so-called

universal property.

Theorem 4.2. Let Z : T × Ω → E be any F-adapted process.

(1) There exists a unique function g : Ω∗ → E such that Z = g ◦ π,

(2) For any t ∈ T , σ(Zt) ⊂ σ(πt).

Proof. Left to readers. �



164 T. Adachi, R. Miura and H. Nakagawa

4.2. Follower filtrations in a binomial model

In the rest of this section, we assume that f : T ×Ω → T is an arbitrary

but fixed idempotent F-follower process.

Proposition 4.3. OF = σ{{t} × [ω]∼t | t ∈ T , ω ∈ Ω}, where OF is

the optional σ-field defined in Definition A.1.

Proof. Since Ω is equipped with the discrete topology, any function

whose domain is Ω is continuous. Therefore,

OF :=σ{Z | Z is an F-adapted càdlàg process. }
=σ{Z | Z is an F-adapted process. }.

Then by Theorem 4.2 (2), we have OF = σ(π) since π itself is F-adapted.

Now remind that any element of Ω∗ can be represented as ω|t for ω ∈ Ω

and t ∈ T+. Then, we have the desired equation since π−1(ω|t) = {t}× [ω]∼t

for any ω ∈ Ω and t ∈ T+. �

Corollary 4.4. A process Z : T × Ω → E is F-optional iff it is F-

adapted.

Proposition 4.5. Ff
t = σ(πft).

Proof. By Theorem 3.6, Corollary 4.4 and Theorem 4.2 (2). �

Now we investigate the shape of the set π−1
ft

(x) for x ∈ Ω∗ in order to

characterize Ff
t .

Definition 4.6. For a random time τ , a neighborhood of ω ∈ Ω at τ

is the set Nτ (ω) := [ω]∼τ (ω).

Lemma 4.7. For ω, ω0 ∈ Ω, ω ∈ Nft(ω0) implies ft(ω) ≥ ft(ω0).

Proof. Since f is F-adapted and ω ∼t ω0,

fft(ω0)(ω) = fft(ω0)(ω0) = ft(ω0).

The right most equality holds because f is idempotent. On the other hand,

we have ft(ω0) ≤ t. Therefore, fft(ω0)(ω) ≤ ft(ω). �

Definition 4.8. Let τ be a random time, and ω0 ∈ Ω.
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(1) Kτ (ω0) := {ω ∈ Nτ (ω0) | τ(ω) > τ(ω0)},

(2) Kτ (ω0) := {ω ∈ Kτ (ω0) | (∀ω′ ∈ Kτ (ω0))(Nτ (ω) ⊂ Nτ (ω
′) →

Nτ (ω) = Nτ (ω
′))}.

Proposition 4.9. Let t ∈ T , ω0 ∈ Ω and x0 := πft(ω0). Then,

π−1
ft

(x0) = Nft(ω0)− ∪
{
Nft(ω) | ω ∈ Kft(ω0)

}
.(4.2)

Proof. Let ω ∈ π−1
ft

(x0). Then, πft(ω) = πft(ω0). Thus, ω|ft(ω) =

ω0|ft(ω0). Therefore, ft(ω) = ft(ω0) and ω ∼ft(ω0) ω0, which implies ω ∈
Nft(ω0).

Now, we show that ω′ ∈ Kft(ω0) implies ω /∈ Nft(ω
′). Since ω′ ∈

Kft(ω0), we have ω′ ∈ Nft(ω0) and ft(ω
′) > ft(ω0). Suppose ω ∈ Nft(ω

′).
Then by Lemma 4.7, ft(ω) ≥ ft(ω

′) > ft(ω0), which contradicts to ft(ω) =

ft(ω0). Therefore, we conclude ω /∈ Nft(ω
′) and LHS ⊂ RHS.

Next, we show the opposite inclusion. Let ω ∈ Nft(ω0) − ∪
{
Nft(ω) |

ω ∈ Kft(ω0)
}
. We want to show ω ∈ π−1

ft
(x0).

Since ω ∈ Nft(ω0), we have ft(ω) ≥ ft(ω0) by Lemma 4.7. Suppose

ft(ω) > ft(ω0). Then, ω ∈ Kft(ω0). We can pick ω′ ∈ Kft(ω0) such that

Nft(ω
′) ⊃ Nft(ω). Therefore, ω ∈ Nft(ω) ⊂ Nft(ω

′). But this contradicts

to the way of the selection of ω. Hence, we have ft(ω) = ft(ω0).

On the other hand, we have ω|ft(ω0) = ω0|ft(ω0) since ω ∈ Nft(ω0).

Therefore,

πft(ω) = ω|ft(ω) = ω|ft(ω0) = ω0|ft(ω0) = πft(ω0) = x0. �

Corollary 4.10. Ff
t = σ{Nft(ω) | ω ∈ Ω}.

4.3. Conditional expectations given a follower filtration

We keep assuming that f is an idempotent F-follower process throughout

this subsection.

Theorem 4.11. Let Y be a random variable and X be an Fft-mea-

surable random variable. Then, E
P[Y | Ff

t ] = X iff E
P[11Nft

(ω0)Y ] =

E
P[11Nft

(ω0)X] for all ω0 ∈ Ω.
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Proof. The only-if part is trivial. So we assume the right hand side.

Let

G := {A ∈ Ff
t |

∫
A
Y dP =

∫
A
XdP}.

Then, all we need to show is G = Ff
t .

By the assumption, for any ω0 ∈ Ω, we have Nft(ω0) ∈ G. Now seeing

Equation 4.2 and noticing that the following relations are satisfied for any

ω1, ω2 ∈ Kft(ω0),

(1) Nft(ω1) ⊂ Nft(ω0),

(2) Nft(ω1) = Nft(ω2) or Nft(ω1) ∩Nft(ω2) = ∅,

we have the following equation where all unions are disjoint-sum:

Nft(ω0) = π−1
ft

(πft(ω0)) ∪
(⋃{

Nft(ω) | ω ∈ Kft(ω0)
})
.

Therefore, by the assumption, we have

H := {π−1
ft

(πft(ω0)) | ω0 ∈ Ω} ⊂ G.

Again, the elements of H are disjoint each other, and obviously ∪H = Ω.

So, any element of Ff
t = σ(πft) can be represented as a disjoint sum of the

elements of H, which concludes Ff
t ⊂ G. �

Now we define a process Y appeared in Equation 4.1. As a proxy of

Brownian motion, we define a process M by Mt(ω) :=
∑

s∈]0,t]T
Xs(ω) for

t ∈ T , where {Xt}t∈T+ is a Bernoulli process defined by

Xt(ω) =

{√
δ if ω(t) = H

−
√
δ if ω(t) = T.

(4.3)

Then, we define the process Y by

Yt(ω) := y0 + νt+ σMt(ω)(4.4)

where y0, ν and σ ≥ 0 are constants.
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Proposition 4.12. Let g : R → R be a given function. Then, for any

s ≥ t,

E
P[g(Ys) | Ff

t ] = h(s− ft, Yft)(4.5)

where the function h : T × R → R is defined by

h(0, y) := g(y),

h(t+, y) := ph(t, y + νδ + σ
√
δ) + (1− p)h(t, y + νδ − σ

√
δ).

Proof. By Theorem 4.11, since h(s−ft, Yft) is Ff
t -measurable, all we

need to show is for all ω0 ∈ Ω,

E
P[11Nft

(ω0)g(Ys)] = E
P[11Nft

(ω0)h(s− ft, Yft)].

Thinking about the shape of the set Nft(ω0), we can prove it by showing

for all C ∈ R,

E
P[11Nft

(ω0)g(Yft+u + C)] = E
P[11Nft

(ω0)h(u, Yft + C)](4.6)

by induction on u ∈ [0, s− ft]T .

When u = 0, it is trivial. Assume Equation 4.6 holds at u ∈ [0, s− ft[T .

Then, we have

E
P[11Nft

(ω0)g(Yft+u+ + C)]

=E
P[EP[11Nft

(ω0)g(Yft+u+ + C) | Fft+u]]

=E
P[p11Nft

(ω0)g(Yft+u + νδ + σ
√
δ + C)

+ (1− p)11Nft
(ω0)g(Yft+u + νδ − σ

√
δ + C)]

=E
P[11Nft

(ω0)

(
ph(u, (Yft + C) + νδ + σ

√
δ)

+ (1− p)h(u, (Yft + C) + νδ − σ
√
δ)
)
]

=E
P[11Nft

(ω0)h(u+, Yft + C)].

Therefore, Equation 4.6 holds at u+ as well, which completes the proof. �

Corollary 4.13. Let g be a given function. Then, for any s ≥ t,

E
P[g(Ys) | Ff

t ] = E
P[g(Ys) | ft, Yft ].(4.7)
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Note 4.14. Practically, Corollary 4.13 is enough to price defaultable

securities under a follower-process based model since we can make it as

accurate as possible by making δ smaller.

Suppose p = 1
2 . Then, as δ → 0, the process M converges to a standard

Brownian motion in distribution by the Central Limit Theorem, and the

process Y will satisfy the equation Yt = y0 + νt + σBt. The function h

defined in Proposition 4.12 will be specified with an appropriate partial

differential equation, and Equation 4.7 may hold at this continuous case.

Appendix A.

This appendix consists of the known results that are necessary for the

discussions in the main text.

A process X = {Xt}t∈T is called F-progressive if for every t ∈ T ,

X|[0,t]T ×Ω is B[0, t]⊗Ft-measurable. A random set is called F-progressive if

its indicator function is F-progressive.

Every right continuous F-adapted process is F-progressive (See [RW00]

Lemma VI.3.3).

Definition A.1 [Optional Processes]. The optional σ-field with re-

spect to F is the σ-field OF defined on T × Ω such that

OF := σ{X | X = {Xt}t∈T is an F-adapted càdlàg process. }.(A.1)

An element of OF is called an F-optional set. A process X = {Xt}t∈T is

called F-optional if the map (t, ω) $→ Xt(ω) is OF-measurable.

Every F-optional process is an F-progressive process, and every F-

optional set is an F-progressive set.

The following is one of the standard σ-fields generated by arbitrary

random times. See Definition XX.25 in [DMM92].

Definition A.2. Let τ be a random time. The σ-field Fτ is defined

by

Fτ := σ{Zτ | Z = {Zt}t∈T is an F-optional process. }.
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The σ-field Fτ consists of events which depend on what happens up to

and including time τ .

Proposition A.3. Every random time τ is Fτ -measurable.

Proof. Let Z be a process defined by Z(t, ω) = t for all t ∈ T and

ω ∈ Ω. Then Z is obviously optional and Zτ = τ . �

Theorem A.4 [[DMM92] Théorème XX.27]. Let τ1 and τ2 be two

random times such that τ1 ≤ τ2. If τ1 is Fτ2-measurable, we have Fτ1 ⊂
Fτ2.

Theorem A.5 [[RW00] Lemma VI.17.5]. If τ is an F-stopping time,

then

Fτ =
{
A ∈ F∞ | (∀u ∈ T )A ∩ {τ ≤ u} ∈ Fu

}
.(A.2)

Especially, if there exists a constant t ∈ T such that for any ω ∈ Ω,

τ(ω) = t, then Fτ = Ft.
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martingales, volume 2: Itô calculus, 2nd ed., Cambridge University
Press, 2000.

[Yor78] Yor, M., Grossissement d’une filtration et semi-martingales: théoremes
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