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A Limit Theorem on Maximum Value of Hedging with

a Homogeneous Filtered Value Measure∗

By Yuji Umezawa

Abstract. We study a hedging problem for an European contin-
gent claim in a certain incomplete market model by using a homoge-
neous filtered value measure. We consider the minimal hedging risk
in discrete time model and its continuous limit. As a result, we show
that this limit is described by the unique viscosity solution of a kind
of Hamilton-Jacobi-Bellman equation.

1. Introduction

The problem of hedging the risk of contingent claims in incomplete mar-

kets is important in financial mathematics. While it is still possible to stay

on the safe side by using the classical superhedging strategy, the cost is

often too high and one cannot actually do such hedging in many practical

situations. In such situations, one of the most adequate way is to hedge the

exposure from these claims in a way that the resulting risk remains within

the prescribed limits. That is, one tries to compose the hedging strategies

by using available assets in order to minimize the hedging error which is

measured by some risk measure.

One of the right way to measure such risk is to use coherent risk mea-

sures, or more general convex risk measures. The concept of coherent risk

measure is proposed by Artzner et al.[1], to assess the risk of such finan-

cial positions by an axiomatic approach. Föllmer and Schied[14] defined

the class of convex risk measures by relaxing the axiom of homogeneity.

Cheridito et al.[6] introduced coherent/convex risk measures for stochastic

processes. Many authors such as Artzner et al.[2], Detlefsen, Scandolo[13],

and Kusuoka, Morimoto[16] introduced the concept of dynamic risk mea-

sure in discrete settings. Delbaen[12] proposed the concept of dynamic risk
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measure in a continuous setting. On hedging by using coherent or convex

risk measures, many authors such as Barrieu and El Karoui[4][5], Cherny

and Madan[9], Nakano[18], Roorda[19], and Umezawa[21] studied hedging

strategies by using a coherent/convex risk measure in single-period settings.

Recently, Cherny[8] gives results in discrete multi-period setting.

In this paper, we study a hedging for an European contingent claim

by using a homogeneous filtered value measure in a multi-period setting.

We first consider the minimizing problem of hedging risk in discrete multi-

period time market model. The discussion of this part is similar to that

of Cherny[8]. Next we consider its continuous limit. As a result, we prove

that this limit is describe by the unique viscosity solution of some Hamilton-

Jacobi-Bellman equation.

The structure of this paper is as follows. In the rest of this section, we

introduce the notion of homogeneous filtered value measure[16], and state

the claim of our main theorem. In Section 2, we consider a discrete time

model and show a kind of Bellman’s principle. In Section 4, we give the

proof of our main theorem. In Appendix, we give a brief introduction and

results on the theory of viscosity solution.

1.1. Definition

Let L be the set of all probability measures on the Borel space (R,B(R)),

L∞ the set of ν ∈ L which satisfies ν(R \ [−M,M ]) = 0 for some M > 0,

and M the set of all probability measures on ([0, 1],B[0, 1]). For ν ∈ L, we

denote the distribution function of ν by Fν , i.e., Fν(z) = ν((−∞, z]), z ∈
R. We define Z : [0, 1) × L → R by Z(x, ν) = inf{z; Fν(z) > x}, x ∈
[0, 1), ν ∈ L. For α ∈ (0, 1], We define ηα : L∞ → R by

ηα(ν) = α−1

∫ α

0
Z(x, ν)dx, ν ∈ L∞,(1)

and η0 : L∞ → R by

η0(ν) = inf{z ∈ R | ν((−∞, z]) > 0}, ν ∈ L∞.(2)

Definition 1.1. We say that the mapping η : L∞ → R is a mild value

measure if there exists a subset M0 ⊂ M such that

η(ν) = inf
m∈M0

∫ 1

0
ηα(ν)m(dα), ν ∈ L∞.
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Definition 1.2. Let η : L∞ → R be a mild value measure and

(Ω,F , P ) a standard probability space.

(1) For any X ∈ L∞(Ω,F , P ) and any sub σ-algebra G ⊂ F , we define a

G-measurable random variable η(X|G) by η(X|G) = η(P (X ∈ dx|G)), where

P (X ∈ dx|G) is a regular conditional probability law of X given a sub σ-

algebra G.

(2) For any X ∈ L∞(Ω,F , P ) and a filtration {Fk}nk=0, we inductively define

a {Fk}-adapted process {Uk}nk=0 by

Un = η(X|Fn),

Uk−1 = η(Uk|Fk−1), k = n, n− 1, . . . , 1.(3)

We call Uk, k = 0, 1, . . . , n a homogeneous filtered value measure for X ∈
L∞ at k. Also we denote U0 by η(X|{Fk}nk=0).

The basic properties of a mild value measure and a homogeneous filtered

value measure are shown in [16].

1.2. Main theorem

Let Z = {z1, z2, . . . , zN} ⊂ RM , equipped with the discrete topology,

and B(Z) the Borel algebra with respect to this. We consider a probability

P̂ on (Z,B(Z)) define by P̂ [{zj}] = pj , j = 1, 2, . . . , N , where pj > 0, j =

1, 2, . . . , N and
∑N

j=1 pj = 1. Also we consider M -dimensional random

variables Ẑ and Ŷ (n), n ∈ N on (Z,B(Z)) defined by

Ẑ(z) = (Ẑ1(z), Ẑ2(z), . . . , ẐM (z)) = z, z ∈ Z,(4)

Ŷ (n)(z) = (Ŷ
(n)
1 (z), Ŷ

(n)
2 (z), . . . , Ŷ

(n)
M (z)),

Ŷ
(n)
i (z) = exp(Ẑi(z)

√
T

n
+ bi

T

n
), i = 1, 2, . . . ,M, n ∈ N,(5)

where bi, i = 1, 2, . . . ,M and T are positive numbers. We denote by P̂
the set of all probability measures on (Z,B(Z)). We identify P̂ as the

hyperplane {(q1, q2, . . . , qN )| qj ≥ 0, j = 1, 2, . . . , N,
∑N

j=1 qj = 1} on

RN .

Let (Ω,F , P ) be the direct product probability space of countably infi-

nite copies of (Z,B(Z), P̂ ). We consider M -dimensional random variables
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Zk and Y
(n)
k = (Y

(n)
1,k , . . . , Y

(n)
M,k), k, n ∈ N on (Ω,F) defined by

Zk(ω) = Ẑ(ωk),(6)

Y
(n)
k (ω) = Ŷ (n)(ωk),(7)

where ω = (ω1, ω2, . . . ) ∈ Ω. We give a filtration {Fk}k=0,1,2,... on (Ω,F) by

F0 = σ(∅,Ω),

Fk = σ(Z1, Z2, . . . , Zk), k = 1, 2, . . . .(8)

Note that the process (Y
(n)
· ) is {Fk}-adapted, and Y

(n)
k , k = 1, 2, . . . is

independent of Fl, l = 1, 2, . . . , k− 1 for each n ∈ N. We denote by P the

set of all probability measures which is absolutely continuous with respect

to P .

We consider an {Fk}-adapted M -dimensional process {S(n)
k }k=1,2,... ,n for

each n ∈ N defined by

S
(n)
k = (S

(n)
1,k , S

(n)
2,k , . . . , S

(n)
M,k), k = 1, 2, . . . , n

S
(n)
i,k = Si,0

k∏
l=1

Y
(n)
i,l , i = 1, 2, . . .M.(9)

where S0 = (S1,0, S2,0, . . . , SM,0) ∈ (0,∞)M is a constant vector. S
(n)
k is

interpreted as the price vector of M risky assets at time k. We call a {Fk}-
predictable M dimensional process ξ = (ξk)k=1,2... a self-financing strategy,

and denote by SF the set of all self-financing strategy. Then we define a

random variable V
(n)
k (v, ξ) for v ≥ 0, and ξ ∈ SF by V

(n)
0 (v, ξ) = v and

V
(n)
k (v, ξ) = v +

k∑
l=1

ξl · (S(n)
l − S

(n)
l−1).(10)

V
(n)
k (v, ξ) represents the discount value of self-financing portfolio (v, ξ) at

time k.

Hereafter we use the following type of mild value measure:

η(ν) =

∫ 1

0
ηα(ν)µ(dα), ν ∈ L∞, µ ∈ M,(11)
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and fix it. We define Q̂ by

Q̂ = {Q̂ ∈ P̂| EQ̂[X̂] ≥ 0, for all random variables X̂ on (Z,B(Z))

such that η(νX̂) ≥ 0 holds.},

where νX̂ is the probability distribution on X̂.

Let Ĉ([0,∞)M : R) be the set of functions g : [0,∞)M → R such that

|g(x) − g(x′)| ≤ K|x− x′|, x, x′ ∈ [0,∞)M ,

|g(x)| ≤ K(1 + |x|2m), x ∈ [0,∞)M ,(12)

hold for some K > 0, m ∈ N. Take f ∈ Ĉ([0,∞)M : R) and fix it.

We assume the following in what follows.

Assumption 1.3. M + 1 < N .

Remark. This assumption indicates that the market model which we

consider here is incomplete.

Assumption 1.4. the set Q̂ ∩
⋂M

i=1{Q̂ ∈ P̂ | EQ̂[Ẑi] = 0} contains at

least one inner point, where we consider the relative topology of the usual

topology on RN to the hyperplane P̂.

Let us define Γ ∈ RM×M by

Γ = {γ = (γii′)i,i′=1,2,... ,M | γii′ = EQ̂[ẐiẐi′ ],

for some Q̂ ∈ Q̂ ∩
M⋂
i=1

{Q̂ ∈ P̂ | EQ̂[Ẑi] = 0}.}.

Note that γ ∈ Γ is nonnegative definite. Also we can easily see that Γ is

compact with respect to the usual topology on RM×M .

Our main theorem is the following.

Theorem 1.5. We have limn→∞ supξ∈SF η(V
(n)
n (v, ξ) + f(S

(n)
n )|

{Fk}nk=0) = v + U(0, S0), where U : [0, T ] × [0,∞)M → R is the unique

viscosity solution of the following Hamilton-Jacobi-Bellman equation:

∂U

∂t
+ inf

γ=(γii′ )i,i′∈Γ

M∑
i,i′=1

1

2
γii′xixi′

∂2U

∂xi∂xi′
= 0,

U(T, x) = f(x), x ∈ [0,∞)M ,(13)
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satisfying U(t, ·) ∈ Ĉ([0,∞)M : R) for each t ∈ [0, T ].

We give a proof of Theorem 1.5 in Section 4.

Example 1.6. We consider the case where M = 1, N = 3, and η =

ηα, α ∈ (0, 1). We also assume that EP̂ [Ẑ] =
∑3

j=1 pjzj = 0. In this case,

we have Q̂ = {Q̂ ∈ P̂ | q̂j = Q̂[Ẑ = zj ] ≤ pj/α, j = 1, 2, 3}.
We see that the condition “ Q̂ ∈ Q̂∩{Q̂ ∈ P̂ | EQ̂[Ẑ] = 0} ” is equivalent

to the following:

q̂1 ∈ [q, q], q̂2 = − z3

z2 − z3
− z1 − z3

z2 − z3
q̂1, q̂3 =

z2

z2 − z3
+

z1 − z2

z2 − z3
q̂1,

where

q = 0 ∨ −αz3 − p2(z2 − z3)

α(z1 − z3)
∨ −z2

z1 − z2
,

q =
p1

α
∧ −z3

z1 − z3
∧ −αz2 + p3(z2 − z3)

α(z1 − z2)
.

Also we have Γ = [q(z1 − z2)(z1 − z3)− z2z3, q(z1 − z2)(z1 − z3)− z2z3]. We

can easily see that q < q. Hence Assumption 1.4 holds.

2. Discrete model

Throughout this paper, we use the following notation:

xy = (x1y1, x2y2, . . . , xMyM ) ∈ RM ,(14)

for x = (x1, x2, . . . , xM ), y = (y1, y2, . . . , yM ) ∈ RM .

We consider some maximization problem on hedging with a homoge-

neous filtered value measure in a discrete time market model. The fol-

lowing setting is parallel to that of Section 1. Let (Ω,F , P ) be a stan-

dard probability space with a filtration {Fk}k=0,1,... ,n. Also, let be Yk =

(Y1,k, . . . , YM,k), k = 1, 2, . . . , n be identically distributed M -dimensional

random variables such that Yk is {Fk}-measurable and independent of

Fl, l = 1, 2, . . . , k − 1. We assume that Yi,k(ω) > 0, ω ∈ Ω, Y =

min
i=1,2,... ,M

ess.inf
ω

Yi,1(ω) > 0, and Y = max
i=1,2,... ,M

ess.sup
ω

Yi,1(ω) < ∞. We de-

note by P the set of all probability measures on (Ω,F) which are absolutely

continuous with respect to P .
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We define M dimensional {Fk}-adapted process {Sk}k=1,2,... ,n by

Sk = (S1,k, S2,k, . . . , SM,k),

Si,k = Si,0

k∏
l=1

Yi,l, i = 1, 2, . . .M,(15)

where S0 = (S1,0, S2,0, . . . , SM,0) ∈ (0,∞)M is a constant vector.

We call an M dimensional {Fk}-predictable process ξ = (ξk)k=1,2,... a

self-financing strategy, and denote by SF the set of all self-financing strat-

egy. Then we define a random variable Vk(v, ξ) for v ∈ (0,∞), ξ ∈ SF by

V0(v, ξ) = v and Vk(v, ξ) = v +
k∑

l=1

ξl · (Sl − Sl−1), k ∈ N.

As in section 1, we use the following type of mild value measure:

η(ν) =

∫ 1

0
ηα(ν)µ(dα), ν ∈ L∞, µ ∈ M,(16)

and fix it. Let Φµ : [0, 1] → [0, 1], µ ∈ M be a mapping defined by

Φµ(x) =

∫
[1−x,1]

(1 − 1 − x

α
)µ(dα), x ∈ [0, 1),

Φµ(1) = 1.(17)

We can easily see that 0 ≤ Φµ(x) ≤ x, since {1−(1 − x/α)} ≤ {1−(1−x)} =

x holds for any α ∈ (0, 1]. We also define

Q = {Q ∈ P | EQ[X] ≥ 0 for all X ∈ L∞(Ω,F1, P )

such that η(νX) ≥ 0 hold }.(18)

We assume the following.

Assumption 2.1. Q∩
⋂M

i=1{Q ∈ P | EQ[Yi,1] = 1} �= ∅.

Let us denote η(νX) by η̄(X) for X ∈ L∞(Ω,F , P ), where νX is the

distribution of X. Obviously we have η̄(X) = infQ∈QEQ[X], X ∈
L∞(Ω,F , P ). Also we see that Q = {Q ∈ P | Q[A] ≥ Φµ(P [A]), A ∈ F}
by Theorem 4.73 in [15]. We denote

ψg(x, y) = η̄((xy) · (Y1 − 1) + g(xY1)), 1 = (1, 1, . . . , 1) ∈ RM ,(19)
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for x ∈ [0,∞)M , y ∈ RM , and g ∈ Ĉ([0,∞)M : R). Since

|{(xy) · (Y1 − 1) + g(xY1)} − {(x′y′) · (Y1 − 1) + g(x′Y1)}|
≤ K{(Y + 1)|xy − x′y′| + Y |x− x′|},

x, x′ ∈ [0,∞)M , y, y′ ∈ RM , for some K > 0, and η̄ is monotone, i.e.,

η̄(X) ≤ η̄(X ′), for X,X ′ ∈ L∞(Ω) such that X ≤ X ′, then we have

|ψg(x, y) − ψg(x
′, y′)| ≤ K{(Y + 1)|xy − x′y′| + Y |x− x′|}.

Hence (x, y) �→ ψg(x, y) is continuous. Next we define

φg(x) = sup
y∈RM

ψg(x, y).(20)

Note that φg(x) < +∞, x ∈ [0,∞)M . Indeed, there exists Q̄ ∈ Q ∩
M⋂
i=1

{Q ∈ P | EQ[Yi,1] = 1} by Assumption 2.1, and then we see that φg(x) ≤

EQ̄[g(xY1)] ≤ K(1 + |x|2m), for some K > 0. Also we have

φg(x) = sup
y∈RM

inf
Q∈Q

EQ[(xy) · (Y1 − 1) + g(xY1)]

= inf
Q∈Q

sup
y∈RM

EQ[(xy) · (Y1 − 1) + g(xY1)]

= inf
Q∈Q∩

⋂ M
i=1{Q∈P | EQ[Yi,1]=1}

EQ[g(xY1)],

by Takahashi’s Minimax Theorem in [20]. Since |g(xY1)−g(x′Y1)| ≤ KY |x−
x′| and |g(xY1)| ≤ K(1 + Y

2m|x|2m) holds for x, x′ ∈ [0,∞)M and g ∈
Ĉ([0,∞)M : R), where K > 0 is a constant which is independent of x, x′, Q,

the mapping φg : [0,∞)M → R belongs to Ĉ([0,∞)M : R). Then we can

define an operator H on Ĉ([0,∞)M : R) by Hg = φg. Also we inductively

define Hkg = H(Hk−1g), k = 1, 2, . . . and H0g = g for g ∈ Ĉ([0,∞)M : R).

Now we fix n ∈ N. We define random variables Lk(v, ξ), k = 0, 1, . . . , n,

v ∈ (0,∞), and ξ ∈ SF inductively by Ln(v, ξ) = Vn(v, ξ) + f(Sn) and

Lk−1(v, ξ) = η(Lk(v, ξ)|Fk−1), k = n, n− 1, . . . , 1,(21)

where f ∈ Ĉ([0,∞)M ;R). Obviously Lk(v, ξ), k = 0, 1, . . . , n equals the

homogeneous value measure for Vn(v, ξ) + f(Sn) at k.
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We prove the following theorem, which is our main result in this section.

Theorem 2.2 (Bellman’s Principle). We have

sup
ξ′∈SF

Lk(v, (ξ1, ξ2, . . . , ξk, ξ
′
k+1, ξ

′
k+2, . . . , ξ

′
n)))

= Vk(v, ξ) + Hn−kf(Sk), k = 0, 1, . . . , n,

for any v ∈ (0,∞) and ξ ∈ SF .

We show a lemma to prove Theorem 2.2.

Lemma 2.3. For any g ∈ Ĉ([0,∞)M : R) and ε > 0, there exists a

Borel measurable function γε(x) = γεg(x) = (γε1(x), γε2(x), . . . , γεM (x)) on

[0,∞)M such that Hg(x)− ε ≤ η̄((xγε(x)) · (Y1 −1)+ g(xY1)) , x ∈ [0,∞)M

holds.

Proof. First we define a multivalued mapping Γε : ([0,∞)M ,

B[0,∞)M ) ⇒ (RM ,B(RM )) by Γε(x) = {y ∈ RM | Hg(x) − ε ≤ ψg(x, y)}.
Obviously the set on the right side is nonempty, so it is sufficient to show

that this multivalued mapping is measurable, i.e.,

Γ−w,ε(A) = {x ∈ [0,∞)M | Γε(x) ∩A �= ∅} ∈ B[0,∞)M ,(22)

for any closed set A ⊂ RM . If Γε is measurable, there exists a measurable

selection γε(x) ∈ Γε(x) and this mapping satisfies the condition. Also,

we may assume that A is compact. Indeed, if Γ−w,ε(A′) ∈ B[0,∞)M for

any compact set A′, we see that Γ−w,ε(A) =
∞⋃

m=1

Γ−w,ε(A ∩ [−m,m]M ) ∈

B[0,∞)M .

We show that Γ−w,ε(A) is closed for any compact set A. Take a sequence

(xm)m∈N of Γ−w,ε(A) such that limm→∞ xm = x ∈ [0,∞)M . Then there

exists a ym ∈ Γε(xm) ∩A for each m. Since A is compact, we can choose a

subsequence (ym(l))l∈N of (ym)m∈N such that ym(l) converges to some y ∈ A

as l → ∞. Taking liml→∞ in both sides of the equation Hg(xm(l)) − ε ≤
ψg(xm(l), ym(l)), we have Hg(x) − ε ≤ ψg(x, y) because ψg and Hg are

continuous. This implies that y ∈ Γε(x) ∩A and x ∈ Γ−w,ε(A). �
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Now we give the proof of Theorem 2.2. First we show that

Lk(v, ξ) ≤ Vk(v, ξ) + Hn−kf(Sk),

by mathematical induction on k. Obviously, the claim holds when k = n.

Suppose that the claim holds for some k, Then we have

Lk−1(v, ξ) = η(Lk(v, ξ)|Fk−1)

≤ η(Vk(v, ξ) + Hn−kf(Sk)|Fk−1)

= Vk−1(v, ξ) + η((Sk−1ξk) · (Yk − 1) + Hn−kf(Sk−1Yk)|Fk−1)

≤ Vk−1(v, ξ) + Hn−(k−1)f(Sk−1).

Hence we have the claim.

Next we show that there exists ξε ∈ SF for ε > 0 such that

Vk(v, ξ) + Hn−kf(Sk) −
kε

n
≤ Lk(v, (ξ1, ξ2, . . . , ξk, ξ

ε
k+1, ξ

ε
k+2, . . . , ξ

ε
n)), k = n, n− 1, . . . , 1

for any ξ ∈ SF . Applying Lemma 2.3 for g = f , we see that there exists

some Borel measurable function γε on [0,∞)M such that

(Hf)(x) − ε

n
≤ η̄((xγε(x)) · (Y1 − 1) + f(xY1)),

for x ∈ [0,∞)M . Then, ξεn = γε(Sn−1) is an {Fn−1}-measurable random

variable such that

Vn−1(v, ξ) + (Hf)(Sn−1) −
ε

n
≤ Vn−1(v, ξ) + η̄((xγε(x)) · (Y1 − 1) + f(xY1))|x=Sn−1

≤ Vn−1(v, ξ) + η((Sn−1ξ
ε
n) · (Yn − 1) + f(Sn−1Yn)|Fn−1)

≤ η(Vn(v, ξ) + f(Sn)|Fn−1)

≤ Ln−1(v, ξ1, ξ2, . . . , ξn−1, ξ
ε
n).

Using induction, we can construct ξε such that the condition holds by the

same way. This completes the proof of Theorem 2.2.
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3. Proof of Theorem 1.5

3.1. Preparations

Let (Ω,F , P ) be the probability space defined in Section 1.2. For k ∈ N,

we denote by Lk the set of measurable mappings ρ : Ω×Z → R which satisfy

the following:

ρ(·, z) is {Fk−1} measurable for each z ∈ Z,
N∑
j=1

ρ(ω, zj)pj = 1, ω ∈ Ω,

∑
j∈J

ρ(·, zj)pj ≥ Φµ(
∑
j∈J

pj), J ⊂ {1, 2, . . . ,M}, zj ∈ Z, j ∈ J.

Also we denote by Q(n), n ∈ N the set of probability measures Q ∈ P which

satisfy the following:

E[
dQ

dP
|Fn] =

n∏
k=1

ρk(·, Zk), ρk ∈ Lk,

∫
Ω
ρk(ω

′, Zk(ω))Y
(n)
i,k (ω)P (dω) = 1, ω′ ∈ Ω, k = 1, 2, . . . , n.

Let us denote X
(n)
i,k =

k∏
l=1

Y
(n)
i,l for n ∈ N, i = 1, 2, . . . ,M, and k =

1, 2, . . . , n. We also denote X
(n)
k = (X

(n)
1,k , X

(n)
2,k . . . X

(n)
M,k), k = 1, 2, . . . , n.

We define a
(n)
ij = exp(zij

√
T/n+ biT/n), i = 1, 2, . . . ,M, j = 1, 2, . . . , N ,

where zj = (z1j , z2j , . . . , zMj) ∈ Z.

Our purpose in this subsection is to prove the following.

Lemma 3.1.

(1) (H(n))kg(x) = inf
Q∈Q(n)

EQ[g(xX
(n)
k )], n ∈ N, g ∈ Ĉ([0,∞)M : R),

where H(n), n ∈ N are operators on Ĉ([0,∞)M : R) that correspond to H

in Section 3.

(2) sup
n∈N

sup
Q∈Q(n)

EQ[ max
k=1,2,... ,n

|X(n)
k |2m] < ∞, m ∈ N.

(3) There exists a positive number L, which only depends on M , such that
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EQ[|X(n)
k+l −X

(n)
k |4] ≤ L(lT/n)2 holds for any k, l = 0, 1, . . . , n, k + l ≤ n,

and Q ∈ Q(n).

Proof. We show assertion (1). We see by Theorem 4.73 in [15] that

η̄(X) = inf
Q∈Q(n)

1

EQ[X], for X ∈ L∞(Ω,F1, P ), where

Q(n)
1 = {Q ∈ P | Q[A] ≥ Φµ(P [A]), A ∈ F1}

= {Q ∈ P | E[
dQ

dP
|F1] = ρ1(·, Z1) ∈ L1}(23)

Then we have H(n)g(x) = inf
Q∈Q(n)

1

EQ[g(xY
(n)
1 )], where Q(n)

1 = Q(n)
1 ∩⋂M

i=1{Q ∈ P | E[ρ1(ω
′, Z1)Y

(n)
i,1 ] = 1, ω′ ∈ Ω}, by a way similar to that

in Section 2. We can easily see that Q(n) ⊂ Q(n)
1 . We show the inverse

implement. Take Q ∈ Q(n)
1 and define Q̃ ∈ P(n) by E[dQ̃/dP |Fn] =∏n

k=1 ρ̃k(·, Zk), where ρ̃k(ω, z) = E[
dQ

dP
|F1](ω), ω ∈ Ω, z ∈ Z, k =

1, 2, . . . , n. Then we see that Q̃ ∈ Q(n) and EQ[g(xY
(n)
1 )] = EQ̃[g(xY

(n)
1 )].

This implies that H(n)g(x) = inf
Q∈Q(n)

EQ[g(xY
(n)
1 )].

Suppose that (H(n))lg(x) = inf
Q∈Q(n)

EQ[g(xX
(n)
l )], l ≤ k, g ∈

Ĉ([0,∞)M ) holds for some k ∈ {1, 2, . . . , n− 1}. First we show that

(H(n))k+1g(x) ≤ inf
Q∈Q(n)

EQ[g(xX
(n)
k+1)].(24)

Take Q ∈ Q(n) and ρl ∈ Ll, l ≤ n such that E[dQ/dP |Fn] =
∏n

l=1 ρl(·, Zl)

holds. We define Qω̃ ∈ P for each ω̃ ∈ Ω by E[dQω̃/dP |Fn] =
∏n

l=1 ρ
′
l(·, Zl),

where ρ′l(ω, z) = ρ′k+1(ω̃, z), ω ∈ Ω, z ∈ Z. Then we see that Qω̃ ∈ Q(n)

and

EQ[g(xX
(n)
k+1)|Fk](ω̃) = EQ[g(yY

(n)
k+1)|Fk](ω̃)|

y=xX
(n)
k

= EQω̃
[g(yY

(n)
1 )]|

y=xX
(n)
k

≥ H(n)g(xX
(n)
k ).

Also we have

EQ[g(xX
(n)
k+1)] = EQ[EQ[g(xX

(n)
k+1)|Fk]]

≥ EQ[H(n)g(xX
(n)
k )] ≥ (H(n))kH(n)g(x) = (H(n))k+1g(x).
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This implies that (24) holds.

Next we show that

(H(n))k+1g(x) ≥ inf
Q∈Q(n)

EQ[g(xX
(n)
k+1)].(25)

Take ε > 0. Then we see by assumption that there exist Q̄0, Q̄j ∈ Q(n) j =

1, 2, . . . , N such that

(H(n))k+1g(x) ≥ EQ̄0
[(H(n))kg(xY

(n)
1 )] − ε

2
,

(H(n))kg(xa
(n)
j ) ≥ EQ̄j

[g(xa
(n)
j X

(n)
k )] − ε

2
.(26)

Take ρ0
l , ρ

j
l ∈ Ll, l = 1, 2, . . . , n, j = 1, 2, . . . ,M , such that E[

dQ̄0

dP
|Fn] =

n∏
l=1

ρ̄0
l (·, Zl), E[

dQ̄j

dP
|Fn] =

n∏
l=1

ρ̄jl (·, Zl) hold. Then we define Q̄ ∈ P by

E[
dQ̄

dP
|Fn] =

n∏
l=1

ρ̄k(·, Zk), where

ρ̄1 = ρ̄0
1,

ρ̄l =

N∑
j=1

ρ̄jl−11{Z1=zj}, l = 2, 3, . . . , n.(27)

We see that Q̄ ∈ Q(n) and

(H(n))k+1g(x) ≥ EQ̄[g(xX
(n)
k+1)] − ε ≥ inf

Q∈Q(n)
EQ[g(xX

(n)
k+1)] − ε.(28)

Since ε > 0 is arbitrary, we have (25). This shows the assertion (1).

Next we show the assertion (2). Since X
(n)
i,n is martingale under Q ∈

Q(n), it is sufficient to show that supn∈N supQ∈Q(n) EQ[|X(n)
i,n |2m] < ∞, for

each i = 1, 2, . . . ,M . Take Q ∈ Q(n) and fix ω ∈ Ω. We denote qω,k,j =

Q[Zk = zj |Fk−1](ω), k = 1, 2, . . . , n, j = 1, 2, . . . , N . We see that

1 = EQ[Y
(n)
i,k |Fk−1](ω) =

N∑
j=1

qω,k,j(a
(n)
il )
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= 1 + EQ[Zi,k|Fk−1](ω)

√
T

n
+ bi

T

n

+

N∑
j=1

qω,k,j{exp (zij

√
T

n
+ bi

T

n
) − (1 + zij

√
T

n
+ bi

T

n
)}.

Then we have

EQ[|Y (n)
i,k |2m|Fk−1](ω)

= 1 + 2mEQ[Zi,k|Fk−1](ω)

√
T

n
+ 2mbi

T

n

+

N∑
j=1

qω,k,j{exp (2mzij

√
T

n
+ 2mbi

T

n
) − (1 + 2mzij

√
T

n
+ 2mbi

T

n
)},

and

EQ[|Y (n)
i,k |2m|Fk−1](ω)

≤ 1 +
N∑
j=1

{2m| exp (zij

√
T

n
+ bi

T

n
) − (1 + zij

√
T

n
+ bi

T

n
)|

+ | exp (2mzij

√
T

n
+ 2mbi

T

n
) − (1 + 2mzij

√
T

n
+ 2mbi

T

n
)|}.

for k = 1, 2, . . . , n. We denote by b(n) the right term of this inequality. Note

that b(n) is independent of k, ω and Q. We see that lim
n→∞

n(b(n) − 1) exists

and |n(b(n) − 1)| ≤ b, n ∈ N, for some b > 0. Then we have

EQ[|X(n)
i,n |2m|] ≤ EQ[|X(n)

i,n−1|2mEQ[|Y (n)
i,n |2m|Fn−1]]

≤ (1 +
b

n
)EQ[|X(n)

i,n−1|2m] ≤ · · · ≤ (1 +
b

n
)n, Q ∈ Q(n).

This implies that lim sup
n→∞

sup
Q∈Q(n)

EQ[|X(n)
i,n |2m] ≤ eb. Hence we have the

assertion.

We show that assertion (3) holds. We see that there exists some c > 0

such that EQ[|Y (n)
i,k+1 − 1|4|Fk](ω) ≤ c(

T

n
)2, for each i ≤ M, k ≤ n − 1, Q

and ω by an argument similar to that of (2). Then using the result of (2),

we have EQ[|X(n)
i,k+1 − X

(n)
i,k |4|] ≤ c(T/n)2EQ[|X(n)

i,k |4] ≤ c′(T/n)2 for some

c′ > 0. Hence we have assertion (3) by Burkholder’s Inequality. �
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3.2. Proposition on limit of value

Let P̄ be the set of probability measures P̄ on (C[0,∞)M ,B[C[0,∞)M ])

such that the following is satisfied:

The coordinate function w(·) = (w1(·), . . . , wM (·)) is a positive

martingale with respect to {Bt}t∈[0,T ] under P̄ , where we define

{Bt}t∈[0,T ] by Bt = σ(w(u);u ≤ t), 0 ≤ t ≤ T.

P̄ (wi(0) = 1, i = 1, 2, . . . ,M) = 1.

〈wi, wi′〉·, i, i′ ∈ {1, 2, . . . ,M} are absolutely continuous

with respect to Lebesgue measure, and

(
1

wi(u)wi′(u)

d〈wi, wi′〉
dt

(u))i,i′=1,2,... ,M ∈ Γ, u ∈ [0, T ], P̄ a.s.

Our purpose in this subsection is to prove the following.

Proposition 3.2. Take g ∈ Ĉ([0,∞)M : R) and an arbitrary subse-

quence (n̄) of (n)n∈N.

(1) There exist a subsequence (n̄(k))k∈N of (n̄) and a continuous mapping

Wg : [0, T ] × [0,∞)M → R such that

Wg(t, x) = lim
k→∞

(H(n̄(k)))n̄(k)−[n̄(k)t/T ]g(x),

for any (t, x) ∈ [0, T ] × [0,∞)M , where [x] represents the greatest integer

that is not greater than x. Also this convergence is uniform on any compact

subsets on [0, T ] × [0,∞)M .

(2) Wg(t, ·) belongs to Ĉ([0,∞)M : R) for each t ∈ [0, T ].

(3) There exists P̄t,x ∈ P̄ such that Wg(t, x) = EP̄t,x [g(xw(T − t))] holds for

any (t, x) ∈ [0, T ] × [0,∞)M ,

(4) Wg(t, x) = lim
k→∞

(H(n̄(k)))[
n̄(k)t′

T
]Wg(t+t′, ·)(x), for t, t′ ∈ [0, T ] with t+t′ ∈

[0, T ] and x ∈ [0,∞)M .

(5) Wg is a viscosity subsolution of Hamilton-Jacobi-Bellman equation (13).
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We need two lemmas to prove Lemma 3.2. Let us define X(t, ω;n)

= (X1(t, ω;n), X2(t, ω;n), . . . , XM (t, ω;n)), t ∈ [0, T ], ω ∈ Ω, n ∈ N by

X(t, ω;n) ≡ nt− T [nt/T ]

T
X

(n)
[nt/T ]+1

+
T ([nt/T ] + 1) − nt

T
X

(n)
[nt/T ], t �= T,

X(T, ω;n) ≡ X(n)
n ,(29)

i.e., X(t;n) is the linear interpolation of X
(n)
· .

Lemma 3.3. Let g ∈ Ĉ([0,∞)M : R). Then we have

|(H(n))k
′
g(x) − (H(n))kg(x)| ≤ K̄|x|

√
T

n
|k′ − k|, k, k′ ∈ {0, 1, . . . , n},

for some K̄ > 0 which does not depend on n ∈ N.

Proof. We may assume that k′ > k. Let K > 0 be a constant such

that |g(x)| ≤ K(1+ |x|2m), |g(x)−g(x′)| ≤ K|x−x′|, x, x′ ∈ [0,∞)M holds.

By virtue of Lemma 3.1(3), we have

|EQ[g(xX
(n)
k′ )] − EQ[g(xX

(n)
k )]| ≤ EQ[|g(xX(n)

k′ ) − g(xX
(n)
k )|]

≤ K|x|EQ[|X(n)
k′ −X

(n)
k |4] 1

4 ≤ K̄|x|
√

T

n
|k′ − k|

for Q ∈ Q(n). Hence we have the assertion. �

Lemma 3.4. Let (Q(n))n∈N, Q(n) ∈ Q(n) be an arbitrary sequence. We

define a probability measure P (n) on (C[0,∞)M ,B[C[0,∞)M ]) by P (n) =

Q(n) ◦ X(·;n)−1 for each n ∈ N. Then the sequence (P (n))n∈N is tight.

Moreover any cluster point of (P (n))n∈N belongs to P̄.

Proof. We can easily see that

EP (n)
[|w(t) − w(t′)|4] = EQ(n)

[|X(t′;n) −X(t;n)|4]
≤ K|t′ − t|2, t.t′ ∈ [0, T ],

for some K > 0 by Lemma 3.1. Hence (P (n))n∈N is tight.
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Let P̄ be a cluster point of (P (n))n∈N. Obviously we see that the co-

ordinate function w(·) = (w1(·), w2(·), . . . , wM (·)) is a positive martingale

with respect to {Bt}t∈[0,T ] under P̄ , and P̄ (wi(0) = 1, i = 1, 2, . . . ,M) = 1.

For each n ∈ N and ω̃ ∈ Ω, we define a probability measure Q̂
(n)
ω̃,k ∈

Q̂, k = 0, 1, . . . , n − 1 by Q̂
(n)
ω̃,k[Â] = EP̂ [ρ

(n)
k (ω̃, Ẑ)1Â], where

E[dQ(n)/dP |Fn] =
∏n

l=1 ρ
(n)
l (·, Zi). Let (gii′)i,i′=1,2,... ,M ∈ C([0, T ] ×

C[0,∞)M )M×M be a matrix valued function such that each gii′ , i, i′ =

1, 2, . . . ,M is bounded {Bt}-adapted function, and (gii′(u,w)) ∈ RM×M is

nonnegative definite for all (u,w) ∈ [0, T ] × C[0,∞)M . For n ∈ N, k =

1, 2, . . . , n we have

EP (n)
[

M∑
i,i′=1

gii′(
kT

n
)(wi(

kT

n
+

T

n
) − wi(

kT

n
))(wi′(

kT

n
+

T

n
) − wi′(

kT

n
))]

= EQ(n)
[

M∑
i,i′=1

gii′(
kT

n
,X(·;n))EQ(n)

[(X
(n)
i,k+1 −X

(n)
i,k )(X

(n)
i′,k+1 −X

(n)
i′,k)|Fk]]

= EQ(n)
[

M∑
i,i′=1

gii′(
kT

n
,X(·;n))Xi,kXi′,k

EQ̂
(n)
ω,k [(Ŷ

(n)
i − 1)(Ŷ

(n)
i′ − 1)]

T/n

T

n
]

≤ EP (n)
[max

Q̂

M∑
i,i′=1

gii′(
kT

n
)wi(

kT

n
)wi′(

kT

n
)
EQ̂[(Y

(n)
i − 1)(Y

(n)
i′ − 1)]

T/n

T

n
],

where Q̂ runs Q̂ ∩
⋂M

i=1{Q̂ ∈ P̂ | EQ̂[Ŷ
(n)
i ] = 1}. Then we see that

∫ t

s

M∑
i,i′=1

gii′(u,w)d〈wi, wi′〉u

≤
∫ t

s
(max
γ∈Γ

M∑
i,i′=1

γii′gii′(u,w)wi(u)wi′(u))du,

for t, s ∈ [0, T ]. Also we have

∫ t

s

M∑
i,i′=1

gii′(u,w)d〈wi, wi′〉u
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≥
∫ t

s
(min
γ∈Γ

M∑
i,i′=1

γii′gii′(u,w)wi(u)wi′(u))du,

for t, s ∈ [0, T ], by the same way. Hence we deduce that P̄ ∈ P̄. This

completes the proof. �

Now we show Proposition 3.2. Let K > 0 be a positive number such that

|g(x)− g(x′)| ≤ K|x− x′|, x, x′ ∈ [0,∞)M and |g(x)| ≤ K(1 + |x|2m), x ∈
[0,∞)M hold. We denote W

(n)
g (t, x) = (H(n))n−[nt/T ]g(x). Then using

Lemma 3.3, we see that

|W (n)
g (t, x) −W (n)

g (t, x′)| ≤ K|x− x′|,
|W (n)

g (t, x)| ≤ K(1 + |x|2m),

|W (n)
g (t, x) −W (n)

g (t′, x)| ≤ K|x|
√

T

n
|[nt
T

] − [
nt′

T
]|,(30)

for some K > 0 which is independent of n ∈ N.

(1): We see that the family {W (n̄)
g (t, ·)}n∈N, t∈[0,T ] ⊂ Ĉ([0,∞)M : R) is uni-

formly bounded and equicontinuous on any compact set of [0,∞)M . Then

using Ascoli-Arzela’s theorem we see that there exists a continuous function

W1,g,t on [0, 1]M for each t ∈ [0, T ] and a subsequence (n̄1) of (n̄), which

does not depend on t, such that

sup
x∈[0,1]M

|W (n̄1)
g (t, x) −W1,g,t(x)| → 0, n̄1 → ∞.(31)

Also we see by the same way that there exists a continuous function W2,g,t

on [0, 2]M for each t ∈ [0, T ] and a subsequence (n̄2) of (n̄1), which does not

depend on t, such that

sup
x∈[0,2]M

|W (n̄2)
g (t, x) −W2,g,t(x)| → 0, n̄2 → ∞.(32)

Obviously W1,g,t = W2,g,t on [0, 1]M , for each t ∈ [0, T ].

Then for each l ∈ N, we can inductively define continuous functions

Wl+1,g,t on [0, l + 1]M for t ∈ [0, T ] and subsequences (n̄l+1) of (n̄l), which

does not depend on t, such that W1,g,t = W2,g,t = · · · = Wl+1,g,t on [0, l]M .
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We also define continuous functions Wg,t on [0,∞)M for

t ∈ [0, T ] by Wg,t(x) = Wl,g,t(x) on [0, l]M . Obviously Wg,t is well-defined,

and we see that the sequence (n̄(k)), n̄(k) = n̄k(k), k ∈ N satisfies

limk→∞W
(n̄(k))
g (t, x) = Wg,t(x) for (t, x) ∈ [0, T ] × [0,∞)M . Using (30),

we have

|Wg,t(x) −Wg,t′(x
′)| ≤ K|x− x′| + K|x|

√
|t− t′|(33)

for (t, x), (t′, x′) ∈ [0, T ] × [0,∞)M . This implies that the mapping (t, x) →
Wg,t(x) is continuous. Then we can define a continuous mapping Wg :

[0, T ]×[0,∞)M by Wg(t, x) = Wg,t(x). Obviously, Wg and (n̄(k))k∈N satisfy

the assertion.

(2): We can easily show the assertion by letting k → ∞ on both sides of

the inequalities (30).

(3): Fix (t, x) ∈ [0, T ]× [0,∞)M . Hereafter we simply write (n)n∈N instead

of (n̄(k))k∈N for convention. We see by Lemma 3.1 that there exists Q
(n)
l ∈

Q(n) for each n, l such that W
(n)
g (t, x) ≥ EQ

(n)
l [g(xX

(n)
n−[nt/T ])] ≥ W

(n)
g (t, x)−

1/l. Let P
(n)
l = Q

(n)
l ◦ X(·;n)−1. Since (P

n)
l )n,l∈N is tight by Lemma

3.4, then there exist a cluster point Pt,x ∈ P̄. Obviously Pt,x satisfies the

condition.

(4): Fix t, t′ ∈ [0, T ], x ∈ [0,∞)M . First we claim that

|(H(n))[nt
′/T ]W (n)

g (t + t′, ·)(x) − (H(n))[nt
′/T ]Wg(t + t′, ·)(x)| → 0,(34)

as n → ∞. Fix ε > 0. Since the convergence W
(n)
g (t + t′, ·) → Wg(t +

t′, ·), n → ∞ is uniform on
M∏
i=1

[0, xiR], for each R > 0, there exists n(R) ∈ N

such that

sup
y∈

∏ M
i=1[0,xiR]

|W (n)
g (t + t′, y) −Wg(t + t′, y)| < ε/2,

for n > n(R). We denote

F (n) = W (n)
g (t + t′, ·)(xX(n)

[nt′/T ]) −Wg(t + t′, ·)(xX(n)
[nt′/T ]),(35)
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for n ∈ N. Then for each Q(n) ∈ Q(n), n > n(R) we have

|EQ(n)
[F (n)]|

≤ EQ(n)
[|F (n)|1{|X(n)

[nt′/T ]
|≤R}] + EQ(n)

[|F (n)|1{|X(n)

[nt′/T ]
|>R}]

≤ ε

2
+ EQ(n)

[|F (n)|2] 1
2Q(n)[|X(n)

[nt′/T ]| > R]
1
2

≤ ε

2
+

K

R
EQ(n)

[1 + |X(n)
[nt′/T ]|

2m]
1
2EQ(n)

[|X(n)
[nt′/T ]|

2]
1
2

≤ ε

2
+

K ′

R
,

where K,K ′ are positive numbers which do not depend on R,n, and Q(n).

Let R = ε/2K ′ and n0 = n(ε/2K ′). Then we have |EQ(n)
[F (n)]| < ε and

|(H(n))[nt
′/T ]W (n)

g (t + t′, ·)(x) − (H(n))[nt
′/T ]Wg(t + t′, ·)(x)| ≤ ε,

for n > n0. Hence we have the claim.

Also we see that |W (n)
g (t, x) −Wg(t, x)| → 0, as n → ∞ and,

|(H(n))[
nt′
T

]W (n)
g (t + t′, ·)(x) −W (n)

g (t, x)|
= |(H(n))n−[n(t+t′)/T ]+[nt′/T ]g(x) − (Hn)n−[nt/T ]g(x)|

≤ K|x|
√

T

n
|[nt

′

T
] + [

nt

T
] − [

n(t + t′)

T
]| → 0,

as n → ∞. We have the assertion from these results.

(5): Take (t̄, x̄) ∈ [0, T ) × [0,∞)M . Let Û ∈ C∞([0, T ] × [0,∞)M ) be a

function such that Û(t̄, x̄) = Wg(t̄, x̄) and Û ≥ Wg on some neighbour-

hood V of (t̄, x̄) hold. We can easily see by (2) that Wg(t, x) ≤ K(1+ |x|2m)

for some K > 0, m ∈ M. Then we may assume that Û(t, x) ≥ Wg(t, x), and

|Û(t, x)| + |(∂Û/∂t)(t, x)| +
∑

i,i′ |xixi′(∂2Û/∂xi∂xi′)(t, x)| ≤ K(1 + |x|2m),

for any (t, x) ∈ [0, T ] × [0,∞)M . Let γ̄ = (γ̄i,i′) ∈ Γ be the element such

that

M∑
i,i′=1

1

2
γ̄i,i′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄) = min

γ∈Γ

M∑
i,i′=1

1

2
γi,i′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)

= min
Q̂

M∑
i,i′=1

1

2
EQ̂[ẐiẐi′ ]x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄),
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where Q̂ runs Q̂ ∩
⋂M

i=1{Q̂ ∈ P̂ | EQ̂[Ẑi] = 0}.
Also, let Q̂(n) ∈ Q̂ ∩

⋂M
i=1{Q̂ ∈ P̂ | EQ̂[Ŷ

(n)
i ] = 1}, n ∈ N be measures

that attain the minimal of

min
Q̂

M∑
i,i′=1

1

2

EQ̂[(Ŷ
(n)
i − 1)(Ŷ

(n)
i′ − 1)]

T/n
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄), n ∈ N,

where Q̂ runs Q̂ ∩
⋂M

i=1{Q̂ ∈ P̂ | EQ̂[Ŷ
(n)
i ] = 1} for each n ∈ N. Note

that we can naturally regard Q̂(n) as a probability measure on (Ω,F1) for

each n ∈ N. Take ρ(n) ∈ L1 such that dQ̂(n)/dP = ρ(n)(·, Z1) holds. We

define Q̄(n) ∈ Q(n) by E[
dQ̄(n)

dP
|Fn] =

n∏
k=1

ρ̄
(n)
k (·, Zk), where ρ̄

(n)
k = ρ(n), k =

1, 2, . . . , n,, and P̄ (n) = Q̄(n) ◦X(·;n)−1 for n ∈ N. We see that there exists

a cluster point P̄ ∈ P of {P̄ (n)}n∈N and d〈wi, wi′〉u = γ̄i,i′wi(u)wi′(u)du, P̄ -

a.s., by an argument similar to that of the proof of Lemma 3.4. Then we

have

Û(t̄, x̄) = Wg(t̄, x̄) = lim
k→∞

(H(n))[nh/T ]Wg(t̄ + h, ·)(x̄)

≤ lim sup
k→∞

EP̄ (n)
[Wg(t̄ + h, x̄w(

T

n
[
nh

T
])]

= EP̄ [Wg(t̄ + h, x̄w(h))] ≤ EP̄ [Û(t̄ + h, x̄w(h))].

Then we see by Ito’s formula that

0 ≤ EP̄ [

∫ h

0
(
∂Û

∂t
+

M∑
i,i′=1

1

2
γ̄i,i′xixi′

∂2Û

∂xi∂xi′
)(t̄ + u, x̄w(u))du].(36)

Dividing both sides by h > 0 and letting h → ∞, we have

0 ≤ (
∂Û

∂t
+

M∑
i,i′=1

1

2
γ̄i,i′xixi′

∂2Û

∂xi∂xi′
)(t̄, x̄)

= (
∂Û

∂t
+ min

γ∈Γ

M∑
i,i′=1

1

2
γi,i′ x̄ix̄i′

∂2Û

∂xi∂xi′
)(t̄, x̄).

This completes the proof.
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3.3. Conclusion

Now we prove Theorem 1.5, which is our main result in this paper. Take

an arbitrary subsequence (n̄) of (n)n∈N and define Wf as in Proposition 3.2.

Using Proposition 3.2 (3), We have inf P̄∈P̄ EP̄ [f(xw(T − t))] ≤ Wf (t, x) for

(t, x) ∈ [0, T ]× [0,∞)M . On the other hand, we have the inverse inequality

by Theorem A.2, Proposition A.4, and Proposition 3.2 (3). Then we have

Wf (t, x) = inf
P̄∈P̄

EP̄ [f(xw(T − t))].

Since the subsequence (n̄) is arbitrary, U(t, x) = lim
n→∞

(H(n))n−[nt/T ]T/nf(x)

exists for any t ∈ [0, T ], x ∈ [0,∞)M , and equals inf
P̄∈P̄

EP̄ [f(xw(T − t))].

Then we see that U is a viscosity solution of (13) because U(t, x) =

Wf (t, x) = EP̄ [f(xw(T − t))] is both a supersolution and subsolution. Also

the uniqueness holds by Corollary A.2. Hence we have the assertion from

Theorem 2.2. This completes the proof.

Appendix A. Some remarks on a Bellman equation and viscosity

solution

We recall the definition and some property of viscosity solution in this

appendix. The reader also refer to [10] for detail.

Definition A.1. We say that a continuous function U : [0, T ] ×
[0,∞)M → R is a viscosity supersolution (resp. subsolution) of Hamilton-

Jacobi-Bellman equation (13), if

(
∂Û

∂t
+ inf

γ∈Γ

M∑
i,i′=1

1

2
γi,i′xixi′

∂2Û

∂xi∂xi′
)(t̄, x̄) ≤ 0 (resp. ≥ 0)

holds for any (t̄, x̄) ∈ [0, T ]×[0,∞)M and Û ∈ C∞([0, T ]×[0,∞)M ) such that

Û(t̄, x̄) = U(t̄, x̄) and Û−U takes its local maximum (resp. local minimum)

value 0 at (t̄, x̄). Also we say that a function U : [0, T ] × [0,∞)M → R is a

viscosity solution if it is both a viscosity supersolution and subsolution.

We will need the following comparison theorem for a viscosity superso-

lution and a subsolution due to [17].
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Theorem A.2. Let U and U be a viscosity supersolution and a subso-

lution of Hamilton-Jacobi-Bellman equation (13). If the following inequali-

ties:

sup
[0,T )×[0,∞)M

U(t, x)/(|x|2 + 1)m < ∞,

inf
[0,T )×[0,∞)M

U(t, x)/(|x|2 + 1)m > −∞, m > 0,

U(T, x) ≤ U(T, x), x ∈ [0,∞)M ,

hold, then we have U(t, x) ≤ U(t, x), (t, x) ∈ [0, T )×[0,∞)M . In particular,

the viscosity solution U of Hamilton-Jacobi-Bellman equation (13) satisfying

U ∈ Ĉ([0,∞)M : R) is unique.

Before we state a proposition on Hamilton-Jacobi-Bellman equation

(13), we prove a lemma.

Lemma A.3. There exists Cm > 0 for each m ∈ N such that

EP̄ [ max
u∈[0,t]

|w(u) − 1|2m] ≤ Cmtm,

EP̄ [ max
u∈[0,T ]

|w(u)|2m] ≤ Cm, t ∈ [0, T ], P̄ ∈ P̄.

Proof. We see by Burkholder’s inequality that

EP̄ [ max
u∈[0,t]

|w(u) − 1|2m] ≤ cEP̄ [

M∑
i=1

〈wi〉mu ]

≤ cEP̄ [(

∫ t

0
max
γ∈Γ

M∑
i=1

γii|wi(u)|2du)m] ≤ cγmEP̄ [(

∫ t

0
|w(u)|2du)m](37)

≤ ctmEP̄ [

∫ t

0
|w(u)|2mdu] ≤ c + ctmEP̄ [

∫ t

0
max
s∈[0,u]

|w(u) − 1|2mdu]

where all c stand for positive numbers (not necessarily equal) which do

not depend on P̄ ∈ P̄ and t. Then we have the assertion by Gronwall’s

inequality. �
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Let Ū(t, x) = inf
P̄∈P̄

EP̄ [f̃(xw(T − t))]. Using Lemma A.3, We can easily

see that Ū ∈ Ĉ([0,∞)M : R). Now we show the following.

Proposition A.4. Ū(t, x) is a viscosity supersolution of (13).

Proof. First we denote by Λ a set of control which is composed of

pairs {(Ω,F , P ; {Ft}t∈[0,T ]), X} such that the following satisfied:

(Ω,F , P ; {Ft}t∈[0,T ]) is a filtered probability space,

X = (X1, X2, . . . , XM ) is a continuous positive martingale

with respect to {Ft}t∈[0,T ] under P,

P (Xi(0) = 1, i = 1, 2, . . . ,M) = 1.

〈Xi, Xi′〉·, i, i′ ∈ {1, 2, . . . ,M} are absolutely continuous

with respect to Lebesgue measure, and

(
1

Xi(u)Xi′(u)

d〈Xi, Xi′〉
dt

(u))i,i′=1,2,... ,M ∈ Γ, u ∈ [0, T ], P a.s.(38)

We define Qtg(x), t ∈ [0, T ), x ∈ [0,∞)M , and g ∈ C̄([0,∞)M : R) by

Qtg(x) = inf
P̄∈P̄

EP̄ [g(xw(t))].(39)

Then we can easily see that Qtg(x) = inf
λ∈Λ

EP [g(xXt)] since PX−1 ∈ P̄.

Step 1. We show that Qt+t′g(x) ≥ QtQt′g(x), t, t′ ∈ [0, T ], x ∈
[0,∞)M . We define a filtration {B̂u}u∈[0,T ] on (C[0,∞)M ,B[C[0,∞)M ]) and

a M -dimensional {B̂u}-adapted process X̂u = (X̂1,u, X̂2,u, . . . , X̂M,u), u ∈
[0, T ], by

B̂u =

{
Bt+u, 0 ≤ u ≤ T − t,

BT , T − t < u ≤ T .

X̂i,u(w) =

{
wi(t + u)/wi(t), 0 ≤ u ≤ T − t,

wi(T )/wi(t), T − t < u ≤ T .
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Since (C[0,∞)M ,B[C[0,∞)M ], P̄ ) is standard probability space for each

P̄ ∈ P̄, there exists a regular conditional measure P̄t(w,B) : C[0,∞)M ×
B[C[0,∞)M ] → [0, 1], t ∈ [0, t]. Then we can easily see that

((C[0,∞)M ,B[C[0,∞)M ], P̄t(w, ·) ; {B̂u}u∈[0,T ]), X̂) ∈ Λ,

and

EP̄ [g(xw(t + t′))] = EP̄ [EP̄ [g(xw(t + t′))|Bt]]

= EP̄ [

∫
g(xw(t′)X̂t′)P̂t(w, dw

′)] ≥ EP̂ [Qt′g(xw(t))] ≥ QtQt′g(x),

for P̄ ∈ P̄. Hence we have the assertion.

Step 2. Take (t̄, x̄) ∈ [0, T ) × [0,∞)M and fix it. Let Û ∈ C∞([0, T ] ×
[0,∞)M ) be a function such that Û(t̄, x̄) = U(t̄, x̄) and Û ≤ Uon some

neighbourhood V of (t̄, x̄) hold. We may assume that Û(t, x) ≤ U(t, x) and,

|Û(t, x)| + |∂Û
∂t

(t, x)| +
∑
i,i′

|xixi′
∂2Û

∂xi∂xi′
(t, x)| ≤ K(1 + |x|2m),(40)

for any (t, s) ∈ [0, T ] × [0,∞), because U ∈ Ĉ([0,∞)M : R).

From here to the end of this proof, c > 0 will stand for positive numbers

(not necessarily equal) which do not depend on P̄ ∈ P̄, t ∈ [0, T ], γ ∈ Γ,

and R > 0. First we claim that there exists M(R) > 0 for each R > 0 such

that M(R) does not depend on P̄ ∈ P̄, t ∈ [0, T ], γ ∈ Γ, and

|EP̄ [

∫ t−t̄

0

∂Û

∂t
(t̄ + u, x̄w(u))du

+

∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄ + u, x̄w(u))d〈wi, wi′〉u]

− {∂Û
∂t

(t̄, x̄)(t− t̄) + EP̄ [
M∑

i,i′=1

1

2
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)〈wi, wi′〉t−t̄]}|

≤ c(t− t̄)

R
+ cM(R)(t− t̄)3/2,
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for t > t̄. To show this claim, we estimate

I1 + I2

= EP̄ [|
∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′Fii′(u,w)d〈wi, wi′〉u|1{ max

u∈[0,t−t̄]
|w(u)| > R}]

+ EP̄ [|
∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′Fii′(u,w)d〈wi, wi′〉u|1{ max

u∈[0,t−t̄]
|w(u)| ≤ R}],(41)

where Fi,i′(u,w) =
∂2Û

∂xi∂xi′
(t̄+u, x̄w(u))− ∂2Û

∂xi∂xi′
(t̄, x̄), i, i′ = 1, 2, . . . ,M,

R > 0, P̄ ∈ P̄, and

J1 + J2 = EP̄ [

∫ t−t̄

0
|G(u,w)|du1{ max

u∈[0,t−t̄]
|w(u)| > R}]

+ EP̄ [

∫ t−t̄

0
|G(u,w)|du1{ max

u∈[0,t−t̄]
|w(u)| ≤ R}],(42)

where G(u,w) =
∂Û

∂t
(t̄ + u, x̄w(u)) − ∂Û

∂t
(t̄, x̄), R > 0, P̄ ∈ P̄. We

have the claim by Lemma A.3, Hölder’s inequality, Tchebychev’s inequality,

Burkholder’s inequality, and Lipschitz continuity of all derivatives of Û on

a bounded interval. Also we have

|EP̄ [

∫ t−t̄

0
(min
γ∈Γ

M∑
i,i′=1

1

2
γii′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)wi(u)wi′(u))du]

− (t− t̄)(min
γ∈Γ

M∑
i,i′=1

1

2
γii′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄))| ≤ c|t− t̄|3/2.

by Lemma A.3 and Hölder’s inequality.

Step 3. We see by Ito’s formula that

Û(t̄, x̄) = U(t̄, x̄) = Q(T − t̄)f̃(t̄, x̄)

≥ Q(t− t̄)Q(T − t̄)f̃(x) = Q(t− t̄)U(t, ·)(x)
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= inf
P̄∈P̄

EP̄ [U(t, x̄w(t− t̄))] ≥ inf
P̄∈P̄

EP̄ [Û(t, x̄w(t− t̄))]

= Û(t̄, x̄) + inf
P̄∈P̄

EP̄ [

∫ t−t̄

0

∂Û

∂t
(t̄ + u, x̄w(u))du

+

∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄ + u, x̄w(u))d〈wi, wi′〉u].

Then we have

0 ≥ −c(M(R) + 1)(t− t̄)3/2 − c(t− t̄)

R
+

∂Û

∂t
(t̄, x̄)(t− t̄)

+ (t− t̄)(min
γ∈Γ

M∑
i,i′=1

1

2
γii′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)), t̄ < t ≤ T, R > 0,

by the consequence of step 2. Dividing both sides of the above inequality

by t− t̄ > 0 and letting t → t̄, we have

0 ≥ − c

R
+

∂Û

∂t
(t̄, x̄) + min

γ∈Γ

M∑
i,i′=1

1

2
γii′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄),

for all R > 0. Hence we have the assertion. This completes the proof. �
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