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Solvability of Difference Riccati Equations by

Elementary Operations

By Seiji NISHIOKA

Abstract. We generalize Franke’s generalized Liouvillian exten-
sion and Karr’s II¥-extension, and study solvability of difference Ric-
cati equations. We define the difference field extensions of valuation
ring type and prove the following. If a difference Riccati equation
which does not turn out to be linear by iterations has a solution in
some difference field extension of valuation ring type, then one of the
iterated Riccati equations has an algebraic solution. Applying this
theorem, we conclude unsolvability of the ¢-Airy equation and the
q-Bessel equation.

1. Introduction

It is well-known that the Airy equation and the Bessel equation with
the parameter v satisfying v — % ¢ Z are unsolvable. The g-analogues
of them, ¢-Airy equation and g-Bessel equation respectively, are defined,
but their unsolvability has not been investigated. In this paper, we obtain
the following results: the ¢-Airy equation and ¢-Bessel equation with the
parameter v € Q are unsolvable.

Notation. Throughout the paper every field is of characteristic zero.
When K is a field and 7 is an isomorphism of K into itself, namely an
injective endomorphism, the pair K = (K, 7) is called a difference field. For
a € K and n € Z, the element 7"a € K is called the n-th transform of a
and is denoted by a,, if it exists. If 7K = K, we say that K is inversive. For
difference fields K = (K, 7) and K’ = (K’,7’), K'/K is called a difference
field extension if K'/K is a field extension and 7/|x = 7. In this case,
K' is called a difference overfield of K and K a difference subfield of K’.
A solution of a difference equation over K is defined to be an element of
some difference overfield of K which satisfies the equation. There exists a
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difference overfield K = (K,7) of K = (K,7) such that K is an algebraic
closure of K. We call K an algebraic closure of K (cf. [2, 9]).

In [3, 4] Franke studied the solvability of linear homogeneous difference
equations by elementary operations using the notion of ¢LE. A difference
field extension N/K is called a qLE (¢ € Zg) if there exists a chain of
inversive difference fields,

K=KocKiC---CKy=N=(N,7), K=K 1({tra;|keZ}),
where a; satisfies one of the following.
(i) 7%a; = a; + [ for some € K;_1.
(ii) 7%a; = aa; for some o € K;_.
(iii) a; is algebraic over K;_1.

When ¢ = 1, gLE is called a generalized Liouvillian extension (GLE). For
any qLE (N, 7)/(K, ), the extension (N, 7?)/(K,79) is a GLE (see [4]).

In [8] Karr defined IT¥-extensions, and obtained results on the compu-
tation of symbolic solutions to first order linear difference equations and an
analogue to Liouville’s theorem on elementary integrals. Any IT¥-extension
is a difference subfield of a GLE.

Here we introduce a new notion of difference field extension.

DEFINITION 1 (difference field extensions of valuation ring type). Let
N/K be a difference field extension, and N' = (N, 7). We say N/K is a
difference field extension of valuation ring type if there is a chain of difference
fields,

K::K:()CK:lC"-CK:n_lCICn:N,

such that for each 1 < i < n the extension K;/K;_; satisfies one of the
following.

(i) The extension K;/K;_1 is algebraic.

(ii) K; and KC;—1 are inversive, K;/K;_1 is an algebraic function field of
one variable, and there is a valuation ring O of K;/K; 1 such that
770 C O for some j € Zwy.
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The idea to use valuation rings for investigating differential equations
originated with Rosenlicht (cf. [10]). For algebraic function fields of one
variable, refer to [7, 11], for example. In section 3 we prove that any GLE
is of valuation ring type.

If a difference equation has no solution in any gLE of K, then we say
that it is unsolvable over K. Since ¢LE is of valuation ring type for 79,
roughly speaking, nonexistence of solutions in a difference field extension of
valuation ring type implies unsolvability of the difference equation.

In section 2 we prove

THEOREM 2. Let K = (K, 7x) be a difference field, and a,b,c,d € K.
Define

a b

a@®  pl) ,

A= A1 = <C d) and AZ = (TKAi—l)A = <C(1) d(1)> y 7 2 2.
Suppose bW % 0 and D £ 0 for all i > 1. Let k > 1, and suppose the
equation over IC, yk(c(k)y—i-d(k)) =a®y+b* has a solution in a difference
field extension N'/KC of valuation ring type. Let N be an algebraic closure
of N and K the algebraic closure of K in N'. Then there exists i > 1 such
that the equation over IC, yki(c(ki)y + d(ki)) = a"y + b has a solution
mn K.

REMARK. We call equations of the form, y;(cy+d) = ay+0b, difference
Riccati equations.

In section 3 we prove that the ¢-Airy equation and the ¢g-Bessel equation
with the parameter v € Q have no algebraic solutions. Then, applying the
theorem, we obtain unsolvability of these equations.

This work was supported by JSPS Research Fellowships for Young Sci-
entists and KAKENHI (20 - 4941).

2. Proof of Theorem

The following lemma is easily proved by induction.

LEMMA 3. Let L/K be a difference field extension, L = (L,T), and
a,b,c,d € K. Define the matrices A; as in Theorem 2. Let k > 1. Then we
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have the following.

(a) A; = (T LA)(12A) ... (TA)A.

(b) Define the matrices B = By = Ay, B; = (1*B;_1)B (i > 2). Then
B;, = Ay;.

(¢) Let f € L be a solution of yp(c®y +d®) = a®y +b*) . Then f € L is
a solution of yi;(c*¥)y + d#D) = oDy 4+ 5+ for all i > 1.

LEMMA 4. Let L/K be a difference field extension, both L = (L,Tr)
and K inversive, and L/K an algebraic function field of one variable. Sup-
pose there exists a valuation ring O of L/K such that Ti(’) C O for some
j € Zsg. Let L = (L,7) be an algebraic closure of L and K the algebraic
closure of K in L. Leta,b,c,d € K, and define the matrices A; as in Lemma
3. Suppose b £ 0 and ¢ £ 0 for all i > 1, and the equation over K,
y1(cy+d) = ay+0b, has a solution f in L. Then for somei > 1 the equation
over IC, yi(cWy +d®D) = aDy + b9 | has a solution in K.

PROOF. It is enough to prove this for f ¢ K. The additional assump-
tion implies c¢f + d # 0, and so we obtain

_af+b
fl_cf—i—d'

Put M = L{f) C L, where the field of £(f) is L(f, f1, fa,...). We find M

is inversive. In fact, since cf) —a = 0 implies f = 771(a/c) € K, we have

;o _dhi—b . (_T‘l(d)f—7‘1b> oL

cfi —a e)f — 7 la

As a field, M = L(f) is an algebraic function field of one variable over K,
and so MK is an algebraic function field of one variable over K.

Choose j € Zwq such that 77O C O, and choose valuation ring O’ of
MK /K such that O' N L = O. Note that 770 C O implies 770 = O.
Therefore for any ¢ > 0 the following holds.

O'NL=79(0'NL) =770 =0.

From this we obtain #{770’ | i > 0} < oo, which implies 7*0’ = O’ for
some k£ > 1. Let v be the normalized discrete valuation associated with
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O', and t € MK a prime element of @’. Then we have v(7¥t) = 1, and so
v(rFz) = v(x) for any 2 € MK.
By Lemma 3 we find that f satisfies

(1) fele® f+dW) = a®f + 00,

which yields v(f) = 0. In fact, firstly assume v(f) > O Then we have
v(frx) = v(f) > 0. This contradicts v(fx) = ( ®) f 4+ ) < 0 obtained
from the above equation (1). Secondly assume v(f) < O Then v(fx) =
v(f) < 0 contradicts

o(fr) = v(@® f + ™) —w(f) > 0.

Let ¢ be the embedding of MK into K((t)), and express f and 7%t as

= Zhiti, h; € ?, ho 75 0,

o0

qb(Tkt) = Zeiti, e; € K, e #0.

i=1

Then

i
~3 i ()
=1
Note that ¢ is a difference isomorphism of (MK, (7],,7)%) into (K((2)), o),
where o sends Y ooq a;t’ to Yoo 7F (i) (3072, eit!)’. Comparing the coeffi-
cients of t° of the equation (1), we obtain

7 (ho) (¢ hg + d®) = a® hg 4 b*).

Therefore hy € K is a solution of the equation, yk(c(k)y + d(k)) = aMy +
b(F). O

PROOF OF THEOREM 2. We prove this by induction on tr.deg N/K.
When tr.deg N/K = 0, the equation, y;(c®y 4+ d*®)) = aFly + b*) | has a
solution in K. Suppose tr.deg N/K > 1, and the theorem is true for the
transcendence degree < tr.deg N/K.
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Let N = (N, 7). There is a chain of difference fields,
/C:/CoC/ClC"'CICn_1C’Cn=N, n > 1,

such that for each 1 < i < n the extension K;/K;_; satisfies one of the
conditions (i), (ii) in Definition 1. Put

no = min{0 <1i <n | K,,/K; is algebraic}.

We find ng > 1, and that the extension K,,/Ky,—1 satisfies the condition
(ii). Choose a valuation ring O of K, /K, 1 such that 77O C O for some
j € Z~o. We have (7%)70 C 0.

Let Kno,l be the algebraic closure of K,,_1 in N, and put N ® _
_ —(k
(Nka)7 Kgf)) = (Knoﬂ_k‘KnO)» K(k) = (Kn0*17Tk’Kn071) and ’C( !, =

no—1 no—1 —

(K g1, T’ﬂfno_l). By the hypothesis we find that the equation over ICgf)),

y1(c®y + d*)) = a®y + %) | has a solution in N,

Define the matrices B = By = Ay, B; = (7*B;_1)B (i > 2). By Lemma
3 we obtain B; = Ay;. Therefore by Lemma 4 we find that there exists ig > 1
such that the equation over ICg?_l, Yio (c(kiO)y + d(ki")) = a(Fio)y 4 p(Fi0) has
(k)

no—

0 (f) (k) f 4 dFo)) = ko) f 4 ko),

a solution in K, " ;. Let f € K,,_1 be such a solution. It satisfies

which implies that the equation over K, yp, (c*%0)y+d*i0)) = q(kio)y 4 p(kio)
has a solution in Kno_l.

Since K,,_1/K is a difference field extension of valuation ring type
whose transcendence degree is less than tr.deg N/K, we find by the in-
duction hypothesis that there exists ¢; > 1 such that the equation over K,
Ykioiy (ctkioin) g 4 q(kioin)y = g(kioin)g 4 p(kioi) hag a solution in K. O

The following is concerned with the case that the matrix turns out to
be triangular by iterations.

PROPOSITION 5. Let K be an inversive difference field, and a,b,c,d €
K satisfy ad — bc # 0. Define the matrices A; as in Lemma 3, and suppose
b%) = 0 or ¢®) = 0 for some k > 1. Let f be a solution transcendental over
K of the equation over K, yi(cy + d) = ay + b, and put L = K(f). Then
the following hold.
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(i) L is inversive.

)

(ii) L/K is an algebraic function field of one variable.

(iii) There is a valuation ring O of L/K such that T*O C O.
)

(iv) L/K is of valuation ring type.
PROOF. Let £ = (L,7). Since cf; —a = 0 implies f = 77 (a/c) € K,
we obtain
dfi —b “Yd)f -7
R

cfi—a e)f — 7t ta

Therefore £ is inversive, which is the result (i). Since ¢f + d = 0 implies
f=—d/c € K, we obtain f1 € K(f), which yields L = K(f). This proves
(ii).

By Lemma 3 we have fi,(c®) f +d®) = a®) f + p(*). Put

_{f if ) = 0,

1/f if k) £ 0.

We find that g = ag + § for some «, § € K, a # 0. In fact, if c®) =0, we
have
L a(k) p(k)
gk = fr = o) + Ok

Note that we obtain det A, # 0 from det A # 0 by Lemma 3. If ¢*) £ 0,
we have b®) = 0 and

1 dk) 1 k)

R A R I o)

For the algebraic function field L = K(g) of one variable over K, let O
be the following valuation ring.

O={p/geL|p,qe Klg], degq — degp > 0}.

For any p € K[g], the k-th transform 7%p has the same degree as p. There-
fore we obtain 7O C O, which is the result (iii).
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(i),(ii) and (iii) yield (iv). O

As a corollary of this proposition, we find that if a difference Riccati
equation turns out to be linear by iterations, then any solution is an element
of a certain difference field extension of valuation ring type.

3. Application to Solvability
In this section C denotes an algebraically closed field.

3.1. Preliminaries
LEMMA 6. If L/K is a GLE, then L/K is of valuation ring type.

PrROOF. We prove this by induction on the transcendence degree
of L/K. There is nothing to prove in case tr.degL/K = 0. Suppose
tr.deg L/K > 0, and the lemma is true for the transcendence degree <
tr.deg L/K. Let £ = (L, 7). There is a chain of inversive difference fields,

K=KoCKiC--CKn=£L, K;=K_1({r"a;|keZ}),
such that a; satisfies one of the following.
(i) T7a; = a; + (3 for some § € K;_;.
(ii) Ta; = aa; for some o € K;_1.
(iii) a; is algebraic over K;_1.

Put m = min{l < i <n | tr.deg K;/K > 0}. The chain IC;,, C --- C
K, = L is a GLE and satisfies tr.deg L/K,, < tr.deg L/K. Therefore by
the induction hypothesis we find that £//C,, is of valuation ring type.

Since a,, is transcendental over K,,_; because of tr.deg K,,_1/K = 0,
there are «, 8 € K,;,—1, a # 0 such that ra,, = aa,, + 3. By Proposition 5
we find that /Cp,—1(am,)/Km—1 is of valuation ring type. Note that we have
K = Km—1{am). Therefore the chain

KCcKp1CK,CL

implies £/K is of valuation ring type. O
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PROPOSITION 7. Let K be a inversive difference field, a,b,c,d € K,
and q € Z~q. Define the matrices A; as in Lemma 3. Suppose pad) £ 0 and
A9 £ 0 for all i > 1, and the equation over K, yi(cy +d) = ay + b, has a
solution f in a qLE L/K. Let L = (L,T) be an algebraic closure of L, and
K be the algebraic closure of KC in L. Then there exists i > 1 such that the
equation over IC, yqi(c(qi)y + d1)) = a9y + @) has a solution in K.

Proor. Put £ = (L,79), £@ = (L,79;), K9 = (K, 79%), and
K@ = (K, 79|g). Since £/K is a qLE, £ /K@ is a GLE. By Lemma 6 we
find that £(@ / K@ is of valuation ring type.

Since we have f,(c@ f+d@) = a(@ f +b@ by Lemma 3, f € £9 is a so-
lution of the equation over K@, y; (C(Q)y + d(q)) = Dy +b@. Therefore by
Theorem 2 we conclude that there exists ¢ > 1 such that the equation over
KD, yi(c9y + d9)) = al9)y + (%) | has a solution g in K(q), which implies
g € K is a solution of the equation over K, yqi(c(qi)y—l—d(qi)) = a1y 4p(a) O

LEMMA 8. Let g € C* be not a root of unity, t transcendental over C,
F/C(t) a finite extension of degree n, and T an isomorphism of F into F
over C sending t to qt. Then F = C(z), 2" =t.

PROOF. Put P and P be the sets of all prime divisors of C(t)/C and
F/C respectively. As in [11] we identify a prime divisor with the maximal
ideal of the valuation ring associated with it. Define the following valuation

rings of C'(t)/C,

Oa={f/g9| f,g€C[t], t —atg} foreach ae C,
O ={f/g | f,g € Clt], degg — deg f > 0},

and let P, = O, \ OF be the prime divisor associated with O, for each
a € CU{0}.

We show that if & € C* then P, is unramified in F//C(t). Let a € C*
and assume that P, is ramified in F/C(t). Then there is P’ € P’ such that
e(P'|P,) > 1, where e(P'|P,) is the ramification index of P over P,. Let
O’ be the valuation ring associated with P’. We find that for any i € Z>o,

7

T'Po = Py € Pand 70 P’ is the prime divisor associated with the valuation
ring 'O’ of 7°F/C. We also find that e(7*P'|7°P,) > 1 for all i > 0. For
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any i > 0 there is Q; € P’ such that Q; N 7'F = 7°P’, and we have
e(QilT' Po) = e(QilT"P")e(T'P'|T'Py) > e(T'P'|7'Pa) > 1,

which implies 7°P, = P, /g is ramified in F/C(t) for any ¢ > 0. Since

q € C* is not a root of unity, the prime divisors P, /g (1 > 0) are distinct,
a contradiction. Therefore P, is unramified in F'/C(t).

Let g be the genus of F/C. By the Riemann-Hurwitz Genus Formula
we obtain

29— 2=-2n+ »_ > (e(P'|Py) — 1)

a=0,00 \ P'el’, P'NC(t)=Pq
< =2n+2(n-1)=-2,

which implies g = 0. Therefore F' = C(y) for some y € F.
Again by the Riemann-Hurwitz Genus Formula we obtain

> > (e(P'|Pa) = 1) | =2(n—1),

a=0,00 \ P'el’, P'NC(t)=Pa
which implies
> (e(P'|Py)—1)=n—1
P'el, P'NC(t)=Pa

for @« = 0,00. Therefore P, (o« = 0,00) has only one extension P/ in P,
which satisfies e(P.,|P,) = n.
t € C(y) yields the expression,

m
t:CH(y—Oéi)ki, CECX, mEZZl, o, € C, k; €7,
i=1

where «; (1 < ¢ < m) are distinct. Let @} be the prime divisor of C(y)/C
associated with the prime element y — «;, and put Q; = Q; N C(t) for each
1 < i< m. We obtain

0 ifQi= P, acCX,
ki = v (t) = e(Qi|Qi)vg,(t) = n  if Qi = Py,
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where v and vg, are the normalized discrete valuations associated with
Q) and Q; respectively, which implies n | k; for all 1 < i < m. Put z =
TR (y — ci)ki/™ € C(y). We have 2™ = t, and so [C(t, ) : C(t)] = n,
which implies F' = C(t,z) = C(z). O

3.2. g¢-Airy equation

In their [6], Hamamoto, Kajiwara and Witte introduced that each of the
basic hypergeometric solutions of the ¢-difference equation, y(qt) + ty(t) =
y(t/q), has a limit to the Airy function. Let f € K* be a solution of the
equation over (C(t),t — qt), y2 + qty1 —y = 0, and put g = f1/f. Then
g € K is a solution of the equation over (C(t),t +— qt), y1y + qty — 1 = 0,
the object here.

The outline of the proof of the unsolvability of the above equation is the
following. Step 1. Define the matrices A; as in Lemma 3, and show that
they are not triangular. Step 2. Prove that there is no algebraic solution of
the equation associated with A; for all i > 1. Step 3. Apply Proposition 7.

PROPOSITION 9. Let g € C be transcendental over Q, and t transcen-
dental over C. Put K = (C(t),t + qt), and let K = (C(t),7) be an algebraic
closure of K. Puta= —qt, b=1,c=1 and d =0, and define the matrices
A; as in Lemma 3. Then the following hold.

(1) b® #£0 and D #0 for all i > 1.

(ii) For any i > 1 the equation over K, y;(cDy 4+ d®) = a®y + @ has
no solution in K.

Proor. We have

[—qt 1 - (PP +1 Pt

and for any ¢ > 2,
(i—1) G-1)  (i=1)
—qtay + by ay
A, =(1tA;_1)A = i i i )
(TAi1) (_qtcg DI CRINCS)

i—1) 4 (1) _qitb(i—1)+d(i—1)>

il _ [(—q'tal
Ai = (" A)Aiy = ( al—1 pli—1)
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which imply b®) = agifl) and ¢ = (=Y for all i > 2, and d®) = agpz) for
all # > 3. From these we obtain

al) = —qita(i_l) + = = —qita(i_l) + a(i_2), for any ¢ > 3.

Note A; € M(C|[t]). We find

o i(it1)

(2) a = (=1)’¢" 2z t' + (a polynomial of deg < i — 2)

by induction, and so dega'® = i. This implies a # 0, by which we
conclude b # 0 and ¢ # 0 for all i > 1, the result (i).

Assume that there exists ig > 1 such that the equation over K,
Yio (c0)y + dl0)) = ql0)y 4 p(i0) has a solution f in K. Put k = 3ip > 3.
By Lemma 3, f € K is a solution of the equation over K, yk(c(k)y +
d®y = a®y 4+ %), Put £ = K(f) c K. Since both of the assump-
tions, ¢ fr — a® = 0 and ¢® f + d*®) = 0, yield det A, = 0, which
contradicts det A = —1 by Lemma 3, we find that £ is inversive, and
L =C@)(f, fi,-- s fo—1). Put n = [L : C(t)] < co. Then from Lemma
8 we obtain L = C(z) with 2" = t. Note that x is transcendental over C,
f € C(x), A € Ma(C[2"]), and (TF)" = q € C, which implies =¥ € C. Put
r=TreC”.

Express f = P/Q, where P, Q € C|x] are relatively prime. The equation
fe(c® £+ dR)) = o) f 4 bk yields

3) Py(® P +dMQ) = Qx(a®P+MQ) (#0),

where both sides of this are not equal to 0. We find by induction that
aWP +bDQ and ¢ P + dDQ are relatively prime. In fact we obtain that
aP 4+ bQ = —qtP + @ and cP + dQQ) = P are relatively prime from the
hypothesis, P and @) are relatively prime, the case i = 1. Let ¢ > 2 and
suppose the statement is true for ¢ — 1. Since we have

aDP 4+ b0Q = (=¢'ta™ V) + )V P 4 (=gt 4 d-1)Q
_ *qlt(a(lil)P + b(l*l)Q) + (C(ifl)P + d(l*l)Q)
and a"VP +p-DQ = WP + dDQ, we conclude that PP + b Q and
P+ dDQ are relatively prime by the induction hypothesis.

Therefore a®) P + b*)Q and ¢®) P + d®Q are relatively prime. From
the equation (3) we obtain deg,(a® P + b*)Q) = deg, P, = deg, P. Since
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deg, a’® P = nk+deg, P > deg, P, we find deg, a¥) P = deg, b(*)Q, which
implies deg, ) — deg, P = n.
Express

fzzez‘(E) , e €C e, #0.

We will show f € C(t). Assume there exists ¢ > n such that n { ¢ and e; # 0,
and put In +m (0 < m < n) be the minimum number of them. Note

deg, a® = kn, deg, b® =deg, ¥ = (k—1)n, deg, d® = (k —2)n.
The first term of
a®) £ 4 pk)

1 n 1 In 1 In+m
:a(k) en <_> +""|’€ln <_) +€ln+m <_> + - _|_b(k7)
X X X

whose exponent is not divisible by n has the exponent, —kn+ (In+m). The
first term of

Fr(e® f +d®)
B en 1\" em 1 In Clntm 1 In+m
“\\z) T T \T) Taee \z) T
n In In+m
« {C(m <en <l> beeten <l) e (l) - ) + d(k)}
X xr X

whose exponent is not divisible by n has the exponent > (2—k)n+ (In+m),
which is impossible. Therefore we obtain f = Y.5°, en;(1/2™)?, and so
fec1/z")=Clt).

Then we have L = C(t)(f, f1,-.., fx—1) C C(t), which implies n = [L :
Ct)] =1,z =tand r = q. We find a¥ € Z[g,t] by induction, and
so b ) ) ¢ Zlgq,t]. We will show e; € Z[q,1/q] for any j > 1 by
induction. We have

o nersen= (S5 0Y) (5 (D) <)

i=1 =1
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and
(k) (k) — (k) B (k)
(5) a\Vf+b a ;_lel<t> + b\,

Note that the equation (2) yields

k(k+1)

a® = (=1)k¢— =z t* 4 (a polynomial of deg < k — 2),

b(k) = agkil) — (_1)k_1qwtk_l

+ (a polynomial of deg < k — 3).

Comparing the terms of exponent —k + 1 of the equation (4) = (5), we
obtain

k(k+1) 1 (e=D(k+2)
2

0= (-1 = e+ (-1)"g =,

which implies e; = ¢~ € Z[q,1/q].
Let j > 2 and suppose the statement is true for the numbers < j — 1.
On the one hand the term of exponent —k + j of (5) has the coefficient,

g k(tD)
(=1)%q = e; + (an element of Z[q][e1, e, . . -,63‘—1])

E(k+1)

€ (-1)*q 2 e+ Zlg,1/q).

On the other hand the term of exponent —k + j of (4) is the same one of

-1 i Jj—1 i
(Z% (5) ) (““); (5) +d<’“>) & Zla,1/4)(1/9) € C(1/0).

i=1
Therefore we obtain

k(k+1)

(—1)fq 2 ej € Z[g,1/q),

which implies e; € Z[g,1/q].

Let ¢: Q[g,1/q] — Q be a ring homomorphism sending ¢ to 1, and
extend it to the ring homomorphism ¢: Q[q, 1/q]((1/t)) — C((1/t)) sending
S hi(1/t) to D000 @(h;)(1/t). This ¢ is a difference homomorphism

of (Q[g,1/q]((1/t)),t +— qt) to (C((1/t)),id), and so we obtain

() (@(™)(f) + d(dP)) = p(a®)(f) + S(b*)).
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We find ¢(f) € C(t). In fact since f € C(1/t), there are s € Zxq
and mgy € Zx>q such that Fy(m,s) = 0 for all m > mg, where Fy(m,s) is
the Hankel determinant det(emitj)o<ij<s of f (refer to [1] for the Hankel
determinant). Therefore for any m > mg we obtain

Fgop (m, 5) = det(d(emtits))o<ij<s = d(det(emyitj)o<ij<s)
= ¢(Fy(m,s)) =0,

which implies ¢(f) € C(1/t) = C(¢).
Express ¢(f) = P'/Q’, where P', Q" € C]t] are relatively prime, and put

a = d)(a(k)), b = d)(b(k)), d = a(c(k)) and d' = E(d(k)). Note

¢ = 3™ = g(a¥ V) = Gy = g6W) = v,
d = 6(d") = 5(a"?) = (@) = §(a® + ¢*ta® V) = o’ + 0,

and &' = (—1)*71t*=1 4 (a polynomial of deg < k — 3) # 0. Then we obtain
the following from P'(¢P'+d'Q") = Q'(d' P + V' Q"),

(6) P/2 + tP/Q/ — Q/Q-

This equation yields P’ | Q% and Q' | P’?, which imply deg P’ = deg Q' = 0.
Comparing the degree of the equation (6), we find 1 = 0, a contradiction.
Therefore we obtain (ii). O

COROLLARY 10. Let g € C be transcendental over Q, t transcendental
over C, K = (C(t),t — qt), and k € Z=g. Then the equation over K,
Y1y + gty — 1 = 0, has no solution in any kLE of K.

PROOF. Assume the equation has a solution in a kLE N'/K. Put a =
—qt, b = ¢ =1 and d = 0. Define the matrices A; as in Lemma 3. By
Proposition 9 we have b® £ 0 and ¢ #£ 0 for all ¢ > 1.

Let N be an algebraic closure of A/, and K the algebraic closure of
K in N. By Proposition 7 we find that there exists 7 > 1 such that the
equation over K, yii(c*)y + d*)) = a*)y 4+ b)) has a solution in K,
which contradicts Proposition 9. [
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3.3. g-Bessel equation
Seeing [5], we find one of the g-Bessel functions, J£3) (z;q), and the
equation,

gu(qz) + (22 /4= ¢ — ¢ ")gu(z) + gu(zq™ ") =0,

where g, (z) = JP (2q¥/%; ¢%). This section deals with the Riccati equation
associated with it.

PROPOSITION 11. Let g € C be transcendental over Q, and t transcen-
dental over C. Put K = (C(t),t — qt), and let K = (C(t),7) be an algebraic
closure of K. Puta = —(t?/4—q" —q7"),b=—1,c=1 and d = 0, where
v € Q, and define the matrices A; as in Lemma 8. Then the following hold.

(1) 8@ £ 0 and ¢ # 0 for all i > 1.

(ii) For any i > 1 the equation over K, yi(c(i)y + d(i)) = aDy + b9, has
no solution in IC.

PrOOF. Put p=¢"+q7¥ € C. We have

_fa —1 _(aa—1 —ay
=i o) (),

and for any ¢ > 2,

(i-1) (i-1) (i-1)

aa +b —a

A= (rA;, A= [ "L 1 1 7
(TAi—1) (acgz_1)+dgz_1) _651—1)>

| D) i) 1) glieD)
Ai:(THA)Ai_F(‘“—l“ ¢ ai-1b )d )

ali—1) pli—1

which imply b(") = —aﬁi’l) and ¢ = a(~Y for all ¢ > 2, and d) = —a&iiZ)
for all 7 > 3. From these we obtain

al) = ai_la(i_l) PG ai_la(i_l) — a(i_Q), for any 7 > 3.
Note A; € Ms(C[t]). We find

= Di

M a9 =il

t* 4 (a polynomial of deg < 2i — 2)
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by induction, and so dega® = 2. This implies a(? # 0, by which we
conclude b® # 0 and ¢ # 0 for all i > 1, the result (i).

Assume that there exists i9g > 1 such that the equation over K,
Yio (c0)y + dl0)) = q(0)y 4 p(i0) has a solution f in K. Put k = 3ip > 3.
By Lemma 3, f € K is a solution of the equation over K, yi(c®y + d®)) =
a®y +b®) . Put £ = K(f) ¢ K. We find that £ is inversive, and
L =C)(f f1,---, fk—1). Put n = [L : C(t)] < co. Then from Lemma
8 we obtain L = C(z) with 2™ = ¢. Note that x is transcendental over C,
feC(x), A; € Ma(C[z"]), and (ZF)" = q € C, which implies ZF € C. Put
r=7oeCx.

Express f = P/Q, where P, @ € C[x] are relatively prime. The equation
fe(c® f +d®)) = a®) f 4+ pF) yields

(8) PP P +dPQ) = Qu(a®P +bWQ) (#0).

We find by induction that a® P+b®Q and ¢ P4+d® Q are relatively prime.
In fact we obtain that aP 4+ bQ = aP — @ and cP + dQ) = P are relatively
prime, the case i = 1. Let ¢ > 2 and suppose the statement is true for ¢ — 1.
Since we have

dDP +09Q = (a;_1aY — NP 4 (g;_1b0D —qt=D)Q
= a; 1 (@ VP +7NQ) — (VP 4 dVQ)
and a"VP +p0-DQ = O P + dDQ, we conclude that o) P + b)(Q and
P 4+ dDQ are relatlvely prime by the induction hypothesis.

Therefore a® P 4+ 5% Q and ¢® P + d¥Q are relatively prime. From
the equation (8) we obtain deg, (a®) P 4+ b*)Q) = deg, P, = deg, P. Since
deg, a®) P = 2kn + deg, P > deg, P, we find that deg, ak)p = deg,, bR Q,
which implies deg,, @) — deg, P = 2n.

Express

f= Z&( ) . & €C, e #0.

We obtain f € C(t) by the same way as in the proof of Proposition 9, and
so L=C(t),n=1,z=tand r = ¢q. Note a'?,0®) ® d® c Q[q,p,t]. We
will show e; € Q[q¢,1/q, p] for any j > 2 by induction. We have

o wenreen (S5 () (50 () o)
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and
(k) (k) — 4 N (k)
(10) a®f+b a Z&(t) + o).
=2
The equation (7) yields
g(k=Dk
alf) = (—1)k4—kt2k + (a polynomial of deg < 2k — 2),
g(b=Dk
bk = (—1) Ft%k_l) + (a polynomial of deg < 2k — 4).

Comparing the terms of exponent —2k + 2 of the equation (9) = (10), we
obtain

L q(k—l)kz
4k

L gk Dk

0=(-1) ez + (—1) ET

which implies eq = —4.
Let j > 3 and suppose the statement is true for the numbers < j — 1.
On the one hand the term of exponent —2k + j of (10) has the coefficient,

(k—1)k
q
0"

LqEDk
€ (-1) I +Qlg,1/q,p).

e; + (an element of Q[q,p, ez, e€3,...,€-1])

On the other hand the term of exponent —2k + j of (9) is the same one of

S (VY (oS (1) 4 aw
(ZQTG))( >ay) + )e@[q,l/q,p]«l/t))cc«l/t)).
Therefore we obtain
(k—1)k
(*1)qu€j € Qlg, /g, ),

which implies e; € Q[q,1/q, p].
Let v = vy /vy, where 11 € Z and vy € Z~( are relatively prime. Then
we have

Qlg,1/q,p] C Q[q%, 1/q%]-
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Let ¢: Q[q(l/”Q), 1/q(1/1’2)] — Q be a ring homomorphism sending ¢(}/*2) to
1, and extend it to the ring homomorphism ¢: Q[q11/2),1/¢(1/¥2)]((1/t))
Q((1/t)) sending Y22 hi(1/t)" to S22 #(h;)(1/t)". This ¢ is a difference
homomorphism of (Q[¢(1/*2),1/¢(1/¥2)]((1/t)),t — qt) to (Q((1/t)),id), and
so we obtain

SN (@(M)S(f) + d(d™M)) = d(a™)(f) + S (™).

We find ¢(f) € C(t) by seeing the Hankel determinant. Express ¢(f) =
P'/Q', where P',Q’ € C[t] are relatively prime, and put o’ = ¢(a®), v =
d(b*), ¢ = ¢(c®)) and d' = $(d®). Note

¢ = 3(e) = 5(a*V) = 3" = —50M) = v,

d = 3(d®) = 5(=af"?) = (=a"?) = §(aM) — a0 )

/ t2 /
= —— 420
a + < 1 + > )
and b # 0. Then we obtain the following from P'(¢'P'+d' Q') = Q'(a'P’' +
v'aQ’),

(11) —Pl2+ <_§ +2> P/Q/ — Ql2-

This equation yields P’ | Q% and Q' | P’?, which imply deg P’ = deg Q' = 0.
Comparing the degree of the equation (11), we find 2 = 0, a contradiction.
Therefore we obtain (ii). O

COROLLARY 12. Let g € C be transcendental over Q, t transcendental
over C, K = (C(t),t — qt), and k € Zso. Then the equation over K,
ny =—t3/4—q" —q )y —1, where v € Q, has no solution in any kLE of
K.
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