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Tropical Jacobians in R2

By Shuhei Yoshitomi

Abstract. By tropical Abel-Jacobi theorem, the Jacobian of a
tropical curve is isomorphic to the Picard group. A tropical curve in
R2 corresponds to an immersion from a tropical curve to R2. In this
paper, we show that any principal divisor on a tropical curve is the
restriction of a principal divisor on the ambient plane R2.

1. Introduction

The main result of this paper is comparison of the Picard group of a

tropical curve X embedded to R2 and a potentially larger group obtained

by quotienting the divisor group by the equivalence generated by rational

functions that extend to the ambient plane. We show that these two groups

are equal. In other words, any principal divisor on X is induced from

tropical curves in R2.

Let C be a tropical curve in R2. Let X → R2 be the corresponding

immersion from a tropical curve X to the affine space R2 with no crossing

points. (So, if C is reduced, the immersion X → C is bijective.) The

Jacobian Jac(X) is defined in [4].

Theorem 1.1 (Tropical Abel-Jacobi, [4]). The Abel’s map µ :

Div0(X) → Jac(X) factors through the Picard group Pic0(X):

Div0(X) ��

����������

µ ������������
Pic0(X)

φ
��

Jac(X)

and φ is a bijection.

Definition. A tropical curve C in R2 is reduced if every edge is of

weight 1. C is smooth if every vertex is 3-varent and of multiplicity 1.

(Hence any smooth tropical curve is reduced.)
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Definition. The genus of a reduced tropical curve C in R2 is the first

Betti number b1(C).

For example, a tropical elliptic curve C is a smooth tropical curve of

genus 1 (Figure 1).

Definition. A divisor D of C is principal if there are tropical curves

L,L′ in R2 such that

∆(L) = ∆(L′),

D = C · L− C · L′,

where ∆ denotes the Newton polygon and C · L denotes the stable inter-

section. Divisors D,D′ of C are linearly equivalent (D ∼ D′) if D − D′ is

principal.

Theorem 1.2. Let C be a reduced tropical curve in R2. Let X → R2

be the corresponding immersion of a tropical curve. Let D be a divisor on

C. Let D̃ be the corresponding divisor on X. Then D is principal if and

only of D̃ is principal.

C Λ Newt(C)

Fig. 1. Tropical elliptic curve
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Let T(C) be the quotient group

T(C) = Div0(C)/ ∼ .

Theorem 1.2 is equivalent to the following statement.

Theorem 1.3. Let C be a reduced tropical curve of genus g in R2.

Then T(C) is the g-dimensional real torus, and T(C) ∼= Pic0(X).

Also we show the following statement in the case of genus 1.

Theorem 1.4. Let C be a reduced tropical curve of genus 1 in R2. Let

Λ be the cycle in C. Let O be any point of Λ. Then the map

ϕ : Λ −→ T(C)

P �→ P −O

is bijective.

Acknowledgements. The author thanks Professor Yujiro Kawamata for

helpful advice. He thanks the referee for his comments, which led to im-

provements of the paper.

2. Preliminaries

The affine space R2 is equipped with interior product

(u1, u2) · (v1, v2) = u1v1 + u2v2

and exterior product

(u1, u2) × (v1, v2) = u1v2 − v1u2.

A primitive vector in R2 is an integral vector u = (u1, u2) such that u1, u2

are relatively prime. Let v ∈ Z2 be an integral vector. Then there are a

primitive vector u and a number m ∈ Z>0 such that v = mu. The number

m is called the lattice length of v. We write m = |v|.
Let C be a 1-dimensional weighted simplicial complex of rational slopes

in R2 (that is a subset of R2 written as a union of line segments equipped

with weights of edges). Each finite edge E ⊂ C has two vertices. Let V ∈ E
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be one of the vertices. Let wt(E) ∈ Z>0 be the weight of E. The weighted

primitive vector of E starting at V is defined to be the integral vector uE
for the direction from V to E such that |uE | = wt(E).

A ray E of C is an infinite edge. Any ray E has only one vertex.

Definition. A vertex V of C satisfies the balancing condition if the

sum of all weighted primitive vectors starting at V equals 0:

∑
E�V

uE = 0.

A tropical curve in R2 is a 1-dimensional weighted simplicial complex of

rational slopes such that each vertex satisfies the balancing condition.

The union C1 ∪ C2 of two tropical curves is a tropical curve. Indeed

if V ∈ C1 ∩ C2 is an intersection point of two edges, V is considered as a

4-valent vertex of C1 ∪ C2.

Let C be a tropical curve in R2. Let U1, . . . , Ur be all connected com-

ponents of R2 \C. Let N be a 1-dimensional simplicial complex with vertex

set Ver(N) = {w1, . . . , wr}, wi ∈ Z2.

Definition. N is a Newton complex of C if it satisfies the following

conditions for any i �= j.

i) If Ui ∩ Uj = ∅, then [wi, wj ] /∈ Edge(N).

ii) If Ui ∩ Uj = E for some E ∈ Edge(C), then [wi, wj ] ∈ Edge(N), and

wj −wi has lattice length wt(E), direction orthogonal to E from Ui to Uj .

Proposition 2.1. Let C,C1, C2 be tropical curves in R2.

1) The Newton complex Newt(C) of C exists uniquely up to parallel trans-

lation. The convex hull

∆(C) = Conv(Newt(C))

is called the Newton polygon of C.

2) ∆(C1 ∪ C2) equals the Minkowski sum ∆(C1) + ∆(C2).

Proof. 1) Let w1 = (0, 0), and suppose w1, . . . , wk−1 are constructed.

Rearranging Uk, . . . , Ur, we may assume Ui ∩ Uk = Ek for some i < k and
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some Ek ∈ Edge(C). Let uk be the primitive vector of direction orthogonal

to Ek from Ui to Uk. Let wk be the vector defined as follows.

wk − wi = wt(Ek)uk.(1)

If U1, . . . , Uk are adjacent at a common vertex V , we have the balancing

condition

k∑
i=1

wt(Ei)ui = 0,

where E1 is the boundary of Uk and U1, and u1 is the primitive vector of

direction orthogonal to E1 from Uk to U1. So we have

w1 − wk = wt(E1)u1.

So this construction does not depend on the choice of Uk.

2) The set of the rays of C1 ∪ C2 corresponds to the set of the rays of

C1 and C2. So the set of the edges of Newt(C1 ∪ C2) in the boundary of

∆(C1 ∪ C2) corresponds to the set of the edges of Newt(C1) and Newt(C2)

in the boundary of ∆(C1) and ∆(C2). �

Newt(C) can be considered as a dual object of C, with correspondence

from Ui to wi (Figure 2). A vertex V ∈ C corresponds to a polygon TV ⊂

C Newt(C)

Fig. 2. Newton complex
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∆(C) as follows.

i) Ui1 , . . . , Uik are adjacent at V ,

ii) TV = Conv{wi1 , . . . , wik}.

Proposition 2.2 (Global balancing condition). Let C be a tropical

curve in R2. Let Λ be a simple closed curve in R2 intersecting edges of C,

say E1, . . . , EN , transversely. Then

N∑
i=1

uEi = 0,

where uEi is the weighted primitive vector of Ei starting at the vertex inside

Λ.

Proof. For each vertex Vj ∈ C inside Λ, the balancing condition∑
k

ujk = 0

holds. Thus ∑
j,k

ujk = 0.

On the left side, two weighted primitive vectors of the same edge inside Λ

are canceled. Thus we have the required equation. �

A tangent vector (v, P ) in R2 is a vector v ∈ R2 with a starting point

P ∈ R2. We fix a point P0 ∈ R2. The moment of (v, P ) is the exterior

product

moment(v, P ) =
−−→
P0P × v.

Proposition 2.3 (Moment condition). Under the assumption of

Proposition 2.2,

N∑
i=1

moment(uEi , VEi) = 0,
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P PP ′ P ′

E1 E′
1

VE1

VE′
1

Fig. 3. Moment condition inside Λ. Note that moment(uE1 , VE1) �= moment(uE′
1
, VE′

1
).

where (uEi , VEi) is the weighted primitive tangent vector of Ei starting at

the vertex inside Λ. (See Figure 3.)

Proof. For each vertex Vj ∈ C inside Λ, the balancing condition∑
k

ujk = 0

holds. Thus ∑
j,k

−−→
P0Vj × ujk = 0.

On the left side, two weighted primitive vectors of the same edge inside Λ

are canceled as follows.

−−→
P0Vj × ujk +

−−−→
P0Vj′ × uj′k′ =

−−→
P0Vj × ujk +

−−−→
P0Vj′ × (−ujk)

=
−−→
Vj′Vj × ujk

= 0.

Thus we have the required equation. �

Definition. The multiplicity of a vertex V ∈ C is

Mult(V ;C) = 2 · area(TV ).
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The intersection multiplicity of V ∈ C1 ∩ C2 is

µV =
1

2
(Mult(V ;C1 ∪ C2) − Mult(V ;C1) − Mult(V ;C2)) .

(If V is not a vertex of C, we put Mult(V ;C) = 0.)

We have a divisor

C1 · C2 =
∑

V ∈C1∩C2

µV V.

This is called the stable intersection of C1 and C2.

By [6], the stable intersection is characterized as the limit of the transver-

sal intersection. If V ∈ C1 ∩ C2 is a transversal intersection point, we have

µV = |uE × uF |,

where E ⊂ C1 and F ⊂ C2 are edges passing through V .

A tropical Bezout’s theorem is proved in [6]. Now we show another

proof.

Theorem 2.4 (Tropical Bezout). Let C1, C2 be tropical curves in R2.

Then the following formula holds.

deg(C1 · C2) = area(∆(C1) + ∆(C2)) − area(∆(C1)) − area(∆(C2)),

where ∆(C1) + ∆(C2) is the Minkowski sum.

Proof. The statement follows from Proposition 2.1. �

For example, let c, d ≥ 1, and suppose ∆(C1) = Conv{(0, 0), (c, 0),

(0, c)}, ∆(C2) = Conv{(0, 0), (d, 0), (0, d)} (C2 is said to be projective of

degree d). Then ∆(C1) + ∆(C2) = Conv{(0, 0), (c + d, 0), (0, c + d)}, and

deg(C1 · C2) = 1
2(c + d)2 − 1

2c
2 − 1

2d
2 = cd.

3. Reduced Tropical Curves

Let C be a reduced tropical curve.
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Lemma 3.1. Let u ∈ Z2 be a primitive vector. Then for given ε > 0,

there is a primitive vector v ∈ Z2 such that

u× v = 1, |θ(u) − θ(v)| < ε,

where θ(u) denotes the angle of u.

This lemma is easy.

Lemma 3.2. Let E be an edge of C, and let P, P ′, Q,Q′ be points of E

such that
−−→
PP ′ =

−−→
QQ′. Then P ′ − P ∼ Q′ −Q.

Proof. (Figure 4) We may assume that P ′, Q lie on the interval [P,Q′],
and that Q′ lies in the interior Int(E). Let v1, v2, v3 be primitive vectors

such that

|uE × vi| = 1 (i = 1, 2, 3),(2)

θ(uE) − ε < θ(v1) < θ(uE) < θ(v2) < θ(uE) + ε < θ(v3).

Then we have a triangle, with vertices P and R1, R2 ∈ R2, such that

−−→
PRi has direction vi (i = 1, 2),
−−−→
R1R2 has direction v3,

Q′ ∈ [R1, R2].

Take ε > 0 small enough so that this triangle is disjoint from C \ E.

Now we take two tropical curves L,M as follows. L consists of one

vertex P and three rays L0, L1, L2 ⊂ R2, with R1 ∈ L1, R2 ∈ L2. L0

is parallel to E. wt(L1) = wt(L2) = 1. (The balancing condition at P

follows from equation (2).) M consists of one finite edge M0 ⊂ R2, four

rays M1,M2,M3,M4 ⊂ R2, and two vertices V1, V2 ∈ R2. M0 is parallel to

[R1, R2], and passes through Q. V1 ∈ [P,R1], V2 ∈ [P,R2]. For i = 1, 2, Mi

has vertex Vi and passes through Ri. M3,M4 are parallel to E. wt(M0) =

wt(M1) = wt(M2) = 1.

Move L by
−−→
PP ′, and denote it by L′. Move M by

−−→
QQ′, and denote it by

M ′. Note that the intersection of L′ and C at P ′ has multiplicity 1. Now

we have

(C · L− P ) − (C · L′ − P ′) = (C ·M −Q) − (C ·M ′ −Q′).
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P
P ′

Q Q′

R1

R2

P
P ′

L Q Q′
M

Fig. 4.

Thus P ′ − P is linearly equivalent to Q′ −Q. �

Corollary 3.3. Let E be any edge, and suppose that all interior

points of E are linearly equivalent. Then all points of E are linearly equiv-

alent.

Lemma 3.4. Let E be a ray of C. Then all points of E are linearly

equivalent.

Proof. (Figure 5, left) Let P,Q ∈ Int(E). Take a primitive vector v

so that

|uE × v| = 1, |θ(uE) − θ(v)| < ε.
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R1

R2

R3

R4

M4

E
P

Q

θ2

θ1

P

Fig. 5.

There is a parallelogram R1R2R3R4 such that

−−−→
R3R1,

−−−→
R4R2 have direction v,

−−−→
R2R1,

−−−→
R4R3 have direction w := uE − v,

P ∈ [R1, R3], Q ∈ [R2, R4].

Take ε > 0 small enough so that this parallelogram is disjoint from C \ E.

Let M1 be a tropical curve, consisting of one vertex R1 and three rays

L0, L1, L2 ⊂ R2, such that L0 has direction uE , R3 ∈ L1, R2 ∈ L2, wt(L0) =

wt(L1) = 1. Move M1 by
−−−→
R1Ri, and denote it by Mi(i = 2, 3, 4). Then we

have

C ·M1 + C ·M4 −Q = C ·M2 + C ·M3 − P.

Thus P ∼ Q. �

Definition. An edge E ⊂ C is trivial if C \ Int(E) is disconnected.

Lemma 3.5. Let E be a trivial edge of C. Then all points of E are

linearly equivalent.

Proof. (Figure 5, right) Let P ∈ Int(E). Since C \ Int(E) is dis-

connected, E is a boundary of two unbounded convex open sets U1, U2 of
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R2 \ C. For i = 1, 2, let θi be the angle of any unbounded direction of Ui.

For δ, ε > 0, let

Wi =

{
P + a + w | a,w ∈ R2, |a| < δ, P + a ∈ E,

|θ(w) − θi| < ε

}
,

W = W1 ∪W2.

Take δ, ε > 0 small enough so that W intersects C \E only at points of rays

of C.

Let v be a primitive vector such that uE × v = 1. Take w,w′ ∈ Z2 so

that

w − w′ = v,

|θ(w) − θ1| < ε,

|θ(w′) − θ1| < ε.

Let L be a tropical curve consisting of three rays L0, L1, L2 ⊂ R2 such that

L1 ∪ L2 ⊂ W,

uL1 = w,

|θ(L2) − θ2| < ε,

L1 ∩ E = P.

Moving L on the direction of L0, the intersection point P changes to other

point Q ∈ E, but all other intersection points of L and C are stable except

for points of rays of C. We have

(uE × w)P ∼ (uE × w)Q.

Similarly,

(uE × w′)P ∼ (uE × w′)Q.

Thus P ∼ Q. �



Tropical Jacobians in R
2 147

4. Parameter Space of Tropical Plane Curves

Let L be a tropical curve with Newton complex N . We fix a vertex

V0 = (b1, b2) of L. Let E1, . . . , El be all finite edges of L. Let ai be the

lattice length of Ei. Then all tropical curves with Newton complex N are

parametrized by a1, . . . , al > 0 and b1, b2 ∈ R. Let P(N ,R2) ⊂ Rl+2 be the

parameter space.

Proposition 4.1. P(N ,R2) is connected.

Proof. Let Γ1, . . . ,Γg be all convex cycles of L. Let Ei(j,1), . . . ,

Ei(j,sj) be all edges of Γj . Let uj,k be the primitive vector of Ei(j,k) of

positive direction. Then the equation

ai(j,1)uj,1 + · · · + ai(j,sj)uj,sj = 0(3)

is satisfied for any L ∈ P(N ,R2). Let Hj ⊂ Rl+2 be the linear subspace

defined by equation (3). Then

P(N ,R2) = {(a1, . . . , al, b1, b2)|a1, . . . , al > 0} ∩ (H1 ∩ · · · ∩Hg).

Thus P(N ,R2) is a relatively open convex cone in Rl+2, which is con-

nected. �

For tropical curves L,L′, the notation Newt(L′) ⊂ Newt(L) means that

any edge of Newt(L′) is an edge of Newt(L).

Definition. A tropical curve L′ is a degeneration of L if ∆(L′) = ∆(L)

and Newt(L′) ⊂ Newt(L).

The set of all degenerations of L is parametrized by P(N ,R2). If a

Newton polygon ∆ is fixed, all tropical curves have a common degeneration,

which is a tropical curve consisting of one vertex. The set of the Newton

polygons is countably infinite. Therefore, the space P(R2) of all tropical

curves is a disjoint union of countably many closed cones in affine spaces.

Corollary 4.2. Tropical curves L,L′ ∈ P(R2) lie in the same con-

nected component if and only if ∆(L) = ∆(L′).
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5. Proof of Theorem 1.4

Let Λ be the cycle in C. (C is a graph with first Betti number b1(C) = 1.

So there is a unique cycle.) Λ is equipped with the positive direction defined

as follows. For any edge E ⊂ Λ with vertices V1, V2, the direction from V1

to V2 is positive if and only if

−−→
V1V2 × uE′ < 0,

where E′ is any edge of any tropical curve L that intersects E transversely,

and uE′ is the weighted primitive vector of E′ starting at the vertex inside

Λ.

Let O be any point of Λ. We consider the map π : R → Λ with the

following properties.

i) π(0) = O.

ii) π is increasing with respect to the positive direction of Λ.

iii) π is compatible with the lattice length. i.e. If π[a, b] (a, b ∈ R) is

contained in an edge of primitive vector u, then

length(π[a, b]) = |u|(b− a).

From Lemma 3.4 and Lemma 3.5, T(C) is generated by {P −O|P ∈ Λ}.
Λ has the group structure induced by π. The following lemma 5.1 says that

the map

ϕ : Λ −→ T(C)

is a surjective homomorphism.

Proof of that ϕ is a homomorphism. Let a, b ∈ R. We have π(a+

b)−π(b) = π(a)−O from lemma 5.1. π(a+b)−O = (π(a)−O)+(π(b)−O).

Thus ϕ(a + b) = ϕ(a) + ϕ(b). �

Lemma 5.1. If π(a) = P , π(a′) = P ′, π(b) = Q, π(b′) = Q′, a′ − a =

b′ − b, then P ′ − P ∼ Q′ −Q.

Proof. (Figure 6) We may assume that a′ − a > 0 is small enough so

that P, P ′ lie on the same edge E, and Q,Q′ on F . We may also assume

that E,F are adjacent at a common vertex R, and E �= F . From Lemma



Tropical Jacobians in R
2 149

L

P

P ′′

P ′

Q
Q′′

Q′

Fig. 6.

3.2, we may assume that P, P ′, Q,Q′ are interior points of edges, and [P,Q′]
has rational slope.

Let L be the line passing through P,Q′. Then

E · L = |uE × uL|P,

F · L = |uF × uL|Q.

Let P ′′, Q′′ be points of E,F such that

−−→
PP ′′ =

1

|uE × uL|
−−→
PP ′,

−−−→
Q′Q′′ =

1

|uF × uL|
−−→
Q′Q.

Then

|−−→PP ′′ × uL| =
|−−→PP ′′|
|uE |

|uE × uL|

=
|−−→PP ′|
|uE |
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=
|−−→Q′Q|
|uF |

(because a′ − a = b′ − b)

= |−−−→Q′Q′′ × uL|,

which means that [P ′′, Q′′] is parallel to L. Thus

|uE × uL|(P ′′ − P ) ∼ |uF × uL|(Q′ −Q′′).

The interval [P, P ′] is divided into |uE × uL|-number of intervals with the

same length. From lemma 3.2, we have P ′ − P ∼ |uE × uL|(P ′′ − P ). Thus

P ′ − P ∼ Q′ −Q. �

Let E1, . . . , EN be all edges of Λ ordered by the positive direction. Let

λ : C → Λ be the canonical surjection. For a tropical curve L ∈ P(R2), we

define σ(L) ∈ Λ as follows.

C · L = P1 + · · · + Pr,

σ(L) = λ(P1) + · · · + λ(Pr).

Lemma 5.2. σ : P(R2) → Λ is locally constant.

Proof. σ is continuous by definition of the stable intersection. Let

{Lt|0 ≤ t ≤ 1} be a continuous family of tropical curves with Newton

complex N such that C intersects Lt transversely for any t. Let Pijt ∈ Ei

be the points such that Ei · Lt =
∑

j Pijt. Then there are edges Lijt ⊂ Lt,

and vectors uij ∈ R2 such that

i) Ei ∩ Lijt = Pijt,

ii) uij is the weighted primitive vector of Lijt starting at the vertex inside

Λ.

Let µij be the multiplicity µPijt (which is constant for t). For L0 and L1,

we have the moment condition inside Λ:∑
i,j

moment(uij/µij , Pij0) = 0,
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∑
i,j

moment(uij/µij , Pij1) = 0.

From these, ∑
i,j

(−−−−−→
Pij0Pij1 × uij/µij

)
= 0.

Since uEi × uij = −µij , this means∑
i,j

(λ(Pij0) − λ(Pij1)) = 0.

Thus σ(L0) = σ(L1). �

Proof of the injectivity of ϕ. Suppose

P −Q = C · L− C · L′,

P,Q ∈ Λ,

∆(L) = ∆(L′).

From Corollary 4.2 and Lemma 5.2, we have σ(L) = σ(L′). Thus P = Q. �

6. Proof of Theorem 1.3

Let H be the subgroup of Div0(C) generated by all (P ′ −P )− (Q′ −Q)

that satisfies the assumption of Lemma 3.2. We have a homomorphism

Div0(C)/H −→ T(C).

Let E1, . . . , EN be all finite edges of C. Let Vi, V
′
i be the vertices of Ei.

We have a homomorphism

πi : R −→ Div0(C)/H

c �→ m(P − Vi),

where m > 0 is any integer such that

c

m
≤ length([Vi, V

′
i ]),
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and P ∈ Ei is the point such that

c

m
= length([Vi, P ]).

This is well-defined by definition of H. So we have a homomorphism

π : RN −→ Div0(C)/H.

Let F = Kerπ. The composite map

RN/F −→ Div0(C)/H −→ T(C)

is surjective because of Lemma 3.4.

We fix a vertex O ∈ C. Let λ : C → RN/F be the map such that

i) π(λ(P )) = P −O for P ∈ Ei,

ii) every ray of C is contracted by λ.

Let λ̃i : Ei → RN be a lift of λ|Ei : Ei → RN/F with the following condition.

λ̃i(P ) = λ̃i(Vi) + δei,

where

δ = length([Vi, P ]).

Lemma 6.1. F is a free abelian group of rank g.

Proof. Let Λ1, . . . ,Λg be cycles generating H1(C,Z). Let Vj1, . . . ,

Vjsj be all vertices of Λj , and take Vj0 = Vjsj . Let ajk ∈ RN be the vector

such that π(ajk) = Vjk − Vj,k−1. Let F ′ be the abelian group generated by

a1, . . . , ag, where aj =
∑

k ajk. Then we have F ′ ⊂ F . The canonical map

λ′ : C −→ RN/F ′

induces a homomorphism

λ′′ : Div0(C)/H → RN/F ′.

So we have F ′ = F . �
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For a tropical curve L ∈ P(R2), we define σ(L) ∈ RN/F as follows.

C · L = P1 + · · · + Pr,

σ(L) = λ(P1) + · · · + λ(Pr).

The map

σ : P(R2) −→ RN/F

is continuous by definition of the stable intersection.

Given a continuous path γ : [0, 1] → P(R2), let

σ̃γ : [0, 1] → RN

be a lift of σ|γ : [0, 1] → RN/F , and let

v(γ) = σ̃γ(1) − σ̃γ(0).

Let W ⊂ RN be the set of all v(γ).

Lemma 6.2. W is a linear subspace in RN .

Proof. W is a subgroup of RN . Indeed, v(γ) + v(γ′) ∈ W , because

σ(L ∪ L′) = σ(L) + σ(L′).
Recall that each component of P(R2) is a closed cone in an affine space.

Given a Newton complex N , let

P(N , C) =
{
L ∈ P(R2)|Newt(C ∪ L) = N

}
.

Every element of W is written as v(γ1) + · · · + v(γs) for linear paths

γj : [0, 1] → P(Nj , C)

and Newton complexes N1, . . . ,Ns. For 0 ≤ t ≤ 1, we have

t (v(γ1) + · · · + v(γs)) = v(γ1,t) + · · · + v(γs,t),

where γj,t : [0, t] → P(Nj , C) is a restriction of γj . So W is a linear subspace

in RN . �
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By Corollary 4.2, W is the kernel of the surjection RN/F → T(C). So

we have an isomorphism

RN/(F + W ) ∼= T(C).

Note that RN/W is a vector space generated by e1, . . . , eN . Theorem

1.3 follows from the following lemma.

Lemma 6.3. Suppose that X := C \ (E1 ∪ · · · ∪Eg) is a maximal tree

in C. Then 〈e1, . . . , eg〉 is a basis of RN/W over R.

Proof of that 〈e1, . . . , eg〉 is a generator. For g + 1 ≤ j ≤ N ,

there is a piecewise linear curve M ⊂ R2 containing two rays such that X∩M
is a single point of Ej . The following lemma says that ej ∈ Q〈e1, . . . , eg〉 in

RN/W . �

In the proof of the following lemma, the notation [P,Q,∞) means the

ray with vertex P that contains Q.

Lemma 6.4. Let S, T be rays in R2 such that

S ∩ C = ∅, T ∩ C = ∅.

Let P0, . . . , Pr, P
′
0, . . . , P

′
r ∈ R2 be rational points such that

P0, P
′
0 ∈ S, Pr, P

′
r ∈ T,

[Pi, P
′
i ] ∩ C = ∅,

−−−−→
Pi−1Pi and

−−−−→
P ′
i−1P

′
i have the same direction.

Then there are integers m1, . . . ,mr > 0 such that

r∑
i=1

mi (C · [Pi−1, Pi]) ∼
r∑

i=1

mi

(
C · [P ′

i−1, P
′
i ]
)
.
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Proof. Let L be the tropical curve with vertex Pi, consisting of three

rays L0, L1, L2 such that

Pi−1 ∈ L1, Pi+1 ∈ L2,

[Pi, P
′
i ] is parallel to L0.

Let wi = wt(L1), vi = wt(L2). Move L by
−−→
PiP

′
i , and denote it by L′.

Comparing C · L and C · L′, we have

C · (wi[Pi, Pi−1,∞) ∪ vi[Pi, Pi+1,∞))

∼ C ·
(
wi[P

′
i , P

′
i−1,∞) ∪ vi[P

′
i , P

′
i+1,∞)

)
for 1 ≤ i ≤ r − 1. Similarly,

C · (w0[P0, S) ∪ v0[P0, P1,∞)) ∼ C ·
(
w0[P

′
0, S) ∪ v0[P

′
0, P

′
1,∞)

)
,

C · (wr[Pr, Pr−1,∞) ∪ vr[Pr, T )) ∼ C ·
(
wr[P

′
r, P

′
r−1,∞) ∪ vr[P

′
r, T )

)
.

Taking a suitable linear combination and canceling lines, we have the state-

ment. �

Proof of that 〈e1, . . . , eg〉 are linearly independent. Suppose

a1e1 + · · · + ageg = v(γ),

γ : [0, 1] −→ P(R2).

For 1 ≤ j ≤ g, there is a piecewise linear closed curve Λ in X ∪ Ej . Let

Ei(0), . . . , Ei(s) be all edges of Λ, and take Ei(0) = Ej . Let εk ∈ {1,−1}
be the sign of Ei(k) with respect to the positive direction of Λ: The sign is

positive if the coordinate of RN is increasing. Let h : RN → R be the linear

map defined by

h = ε0ěi(0) + · · · + εsěi(s),

where ěi denotes the dual basis. Then we have

h(σ̃γ(1)) − h(σ̃γ(0)) = h(v(γ)) = ε0aj .
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To complete the proof, we show that the map h ◦ σ̃γ : [0, 1] → R is constant

for any continuous path γ.

We may assume that C intersects Lt := γ(t) transversely for any t.

There are points Pkmt ∈ Ei(k), edges Lkmt ⊂ Lt, and vectors ukm ∈ R2 such

that

i) Ei(k) · Lt =
∑

m Pkmt,

ii) Ei(k) ∩ Lkmt = Pkmt,

iii) ukm is the weighted primitive vector of Lkmt starting at the vertex inside

Λ.

Let µkm be the multiplicity µPkmt
(which is constant for t). For L0 and L1,

we have the moment condition inside Λ:∑
k,m

moment(ukm/µkm, Pkm0) = 0,

∑
k,m

moment(ukm/µkm, Pkm1) = 0.

From these, ∑
k,m

(−−−−−−→
Pkm0Pkm1 × ukm/µkm

)
= 0.

Let uk be the primitive vector of Ei(k) starting at Vi(k). Since uk × ukm =

−εkµkm, we have ∑
k,m

h
(
λ̃i(k)(Pkm0) − λ̃i(k)(Pkm1)

)
= 0.

Thus h(σ̃γ(0)) = h(σ̃γ(1)). �
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