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Tame-blind Extension of Morphisms of Truncated

Barsotti-Tate Group Schemes

By Yuichiro Hoshi

Abstract. The purpose of the present paper is to show that mor-
phisms between the generic fibers of truncated Barsotti-Tate group
schemes over mixed characteristic complete discrete valuation rings
extend in a “tame-blind” fashion — i.e., under a condition which
is unaffected by passing to a tame extension — to morphisms be-
tween the original truncated Barsotti-Tate group schemes. The “tame-
blindness” of our extension result allows one to verify the analogue of
the result of Tate for isogenies of Barsotti-Tate groups over the ring
of integers of the p-adic completion of the maximal tamely ramified
extension.
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0. Introduction

The purpose of the present paper is to show that morphisms between the

generic fibers of truncated Barsotti-Tate group schemes over mixed charac-

teristic complete discrete valuation rings extend in a “tame-blind” fashion

— i.e., under a condition which is unaffected by passing to a tame exten-

sion — to morphisms between the original truncated Barsotti-Tate group

schemes.

Throughout this paper, let R be a complete discrete valuation ring, k

the residue field of R, and K the field of fractions of R. Assume that
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K is of characteristic 0, and k is of characteristic p > 0. Let K be an

algebraic closure of K, ΓK
def
= Gal(K/K), and vp the valuation of K such

that vp(p) = 1. Moreover, write eK for the absolute ramification index of

K.

By a result of Tate obtained in [10], for (p-)Barsotti-Tate groups (i.e.,

p-divisible groups) G and H over R, every Zp[ΓK ]-equivariant morphism

Tp(G) → Tp(H) of p-adic Tate modules arises from a morphism G → H of

Barsotti-Tate groups over R (cf. [10], Theorem 4). Now one can consider

the question of whether or not such a result can be generalized to finite

level, i.e., whether or not for finite flat commutative group schemes G and

H over R, any morphism G⊗R K → H ⊗R K of the generic fibers extends

to a morphism G → H of the original group schemes over R. For instance,

a result of Raynaud obtained in [8] yields an affirmative answer to this

question if eK < p− 1 (cf. [8], Corollaire 3.3.6, 1). On the other hand, one

verifies immediately that this extension question cannot be resolved in the

affirmative without some further assumption. Indeed, let K be the finite

extension of the field Qp of p-adic rational numbers obtained by adjoining

a primitive p-th root of unity to Qp, G the kernel µp of the endomorphism

of the multiplicative group scheme Gm over R given by raising to the p-th

power, and H the constant group scheme Z/(p) of order p over R. Then

it is easily verified that although there exists an isomorphism µp ⊗R K
∼→

Z/(p) ⊗R K of group schemes over K, there is no nontrivial morphism of

group schemes over R from µp to Z/(p).

In the present paper, we consider the following “Extension Problem”:

(Extension Problem) : Find a sufficient condition for a mor-

phism between the generic fibers of finite flat commutative group

schemes over R to extend to a morphism between the original

group schemes over R.

In particular, in the present paper, we consider the following “Tame-blind

Extension Problem”:

(Tame-blind Extension Problem) : Find a sufficient condi-

tion in “Extension Problem” which depends only on vp(eK).

Our main result yields a solution to this “Tame-blind Extension Prob-

lem” in the case where the morphisms in question are morphisms of trun-

cated Barsotti-Tate group schemes (cf. Theorem 3.4). Let εFon
K

def
= 2 +
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vp(eK). Note that εFon
K is an upper bound of the invariant “vp(DR/W (k)) +

1/(p− 1)” (cf. Definition 2.4) considered in [2] (cf. e.g., [2], Théorème 1):

Theorem 0.1. Let G and H be truncated (p-)Barsotti-Tate group

schemes over R, fK : G⊗RK → H⊗RK a morphism of group schemes over

K, and n a natural number. Assume that one of the following conditions is

satisfied:

(i) The cokernel of the morphism G(K) → H(K) determined by fK is

annihilated by pn, and 4εFon
K + n < lv(H), where lv(H) is the level of

H.

(ii) The kernel of the morphism G(K) → H(K) determined by fK is

annihilated by pn, and 4εFon
K + n < lv(G), where lv(G) is the level

of G.

Then the morphism fK extends uniquely to a morphism over R.

The outline of the proof of Theorem 0.1 is as follows: Let X ⊆ G×R H

be the scheme-theoretic closure in G ×R H of the graph of the morphism

fK . Then it is verified that to prove Theorem 0.1, it is enough to show that

the composite X ↪→ G ×R H
pr1→ G is an isomorphism. First, by faithfully

flat descent, we reduce to the case where the residue field k is perfect. Next,

we prove the assertion that the composite in question is an isomorphism by

means of p-adic Hodge theory for finite flat group schemes.

The following result follows immediately from Theorem 0.1 (cf. Corol-

lary 3.5, (iii)):

Corollary 0.2. Let G and H be truncated Barsotti-Tate group

schemes over R, and IsomR(G,H) (resp. IsomK(G ⊗R K,H ⊗R K)) the

set of isomorphisms of G (resp. G ⊗R K) with H (resp. H ⊗R K) over R

(resp. K). Then if 4εFon
K < lv(G), lv(H), then the natural morphism

IsomR(G,H) −→ IsomK(G⊗R K,H ⊗R K)

is bijective.

Note that a number of results related to the above “Extension Problem”

such as the result of Raynand referred to above have been obtained by

various authors. Examples of such results are as follows:
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Let G and H be finite flat commutative group schemes over R,

and fK : G⊗R K → H ⊗R K a morphism of group schemes over

K. Then if one of the following conditions (B), (L) is satisfied,

then the morphism fK extends to a morphism G → H of the

original group schemes over R:

(B) There exists a morphism f ′
K : G ⊗R K → H ⊗R K of group schemes

over K such that fK = pε
Bon
K ◦ f ′

K , where εBon
K is the smallest natural

number which is ≥ logp(peK/(p− 1)) (cf. [1], Theorem A).

(L) G is a truncated Barsotti-Tate group scheme of height h, and there

exists a morphism f ′
K : G⊗R K → H ⊗R K of group schemes over K

such that fK = pε
Liu
K,h ◦f ′

K , where εLiu
K,h is the natural number appearing

in the statement of [5], Theorem 1.0.5, as “c1”, which depends on eK
and h (cf. [5], Theorem 1.0.5).

The conditions in the statement of Theorem 0.1 are more stringent than

the above two conditions (B) and (L) in the sense that the class of group

schemes appearing in the conditions in the statement of Theorem 0.1 are

strictly smaller than the class of group schemes appearing in the above two

conditions. On the other hand, the conditions in the statement of Theorem

0.1 are “tame-blind”, i.e.,

whereas the invariants εBon
K and εLiu

K,h that appear in the above

two conditions depend on eK , our invariant εFon
K depends only

on vp(eK).

It seems to the author that one of the reasons why the above two con-

ditions (B) and (L) depend on eK (i.e., as eK/pvp(eK) grows, the conditions

become more stringent) is as follows:

In the arguments of [1], [5], which appear to build on Tate’s

original argument, one must measure various integral structures

by means of a “ruler graduated in units of size 1/eK”. Thus, as

the size 1/eK of the units decreases (i.e., as eK/pvp(eK) grows), it

becomes more difficult to control the extent to which the integral

structures in question converge.
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︷ ︸︸ ︷1/eK

︸︷︷︸
1/eK′

Fig. 1. Rulers graduated in units of sizes 1/eK , 1/eK′

From this point of view, the argument established in the present paper

is an argument that does not rely on the use of a “ruler graduated in units

of size 1/eK”.

The “tame-blindness” of our extension result allows one to verify the

analogue of the result of Tate referred to above for isogenies of Barsotti-

Tate groups over the ring of integers of the p-adic completion of the maximal

tamely ramified extension (cf. Corollary 3.8). Note that this analogue does

not follow from the above results in [1] and [5]:

Corollary 0.3. Let Ktm (⊆ K) be the maximal tamely ramified ex-

tension of K, (Ktm)∧ (resp. K̂) the p-adic completion of Ktm (resp. K),

(Rtm)∧ the ring of integers of (Ktm)∧, and Γ(Ktm)∧
def
= Gal(K̂/(Ktm)∧).

(Thus, by restricting elements of Γ(Ktm)∧ to the algebraic closure of (Ktm)∧

in K̂, one obtains a natural isomorphism of Γ(Ktm)∧ with the correspond-

ing absolute Galois group of (Ktm)∧.) Let G and H be Barsotti-Tate groups

over (Rtm)∧, Tp(G) (resp. Tp(H)) the p-adic Tate module of G (resp. H),

and Isog(Rtm)∧(G,H) (resp. IsogΓ(Ktm)∧
(Tp(G), Tp(H))) the set of morphisms

φ of Barsotti-Tate groups over (Rtm)∧ (resp. Zp[Γ(Ktm)∧ ]-equivariant mor-
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phisms φ) from G (resp. Tp(G)) to H (resp. Tp(H)) such that φ induces an

isomorphism Tp(G) ⊗Zp Qp
∼→ Tp(H) ⊗Zp Qp. Then the natural morphism

Isog(Rtm)∧(G,H) −→ IsogΓ(Ktm)∧
(Tp(G), Tp(H))

is bijective.

The present paper is organized as follows: In §1, we study the relation-

ship between discriminants and cotangent spaces of finite flat group schemes.

In §2, we review truncated p-adic Hodge theory for finite flat group schemes

as established in [2] and prove lemmas needed later by means of this theory.

In §3, we prove the main theorem and some corollaries which follow from

the main theorem.

Acknowledgement . The author would like to thank Professor Shinichi

Mochizuki for suggesting the topic, and helpful discussions and comments.

He would also like to thank the referee for useful suggestions and comments.

He is particularly grateful to the referee for the suggestion concerning re-

moving the hypothesis of the perfectness of the residue field from the main

results in an earlier version of this paper.

This work was supported by Grant-in-Aid for Young Scientists (B)

(20740010).

Notations and Terminologies.

Numbers. Z is the ring of rational integers, Q is the field of rational

numbers, and Q>0 is the (additive) monoid of positive rational numbers. If

l is a prime number, then the notation Zl (resp. Ql) will be used to denote

the l-adic completion of Z (resp. Q).

Group schemes. In the present paper, by a finite flat group scheme over

a scheme S we shall mean a commutative group scheme over S which is

finite and flat over S, and by a finite flat subgroup scheme of a finite flat

group scheme G over S we shall mean a closed subgroup scheme of G which

is finite and flat over S.

Let G be a finite flat group scheme over a connected scheme S, and

φ : G → S the structure morphism of G. Then we shall refer to the rank of

the locally free OS-module φ∗OG as the rank of G over S. We shall denote

by rankS(G) the rank of G over S.
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Let G be a finite flat group scheme over a scheme S, and n a natural

number. Then we shall denote by nG : G → G the endomorphism of G given

by multiplication by n. Note that nG is a morphism of group schemes over

S.

Let G be a finite flat group scheme over a scheme S. Then we shall write

GD the Cartier dual of G, i.e., the finite flat group scheme over S which

represents the functor over S

T � Homgp/T (G×S T,Gm,T ) .

Note that for a morphism of finite flat group schemes f : G → H over S, it

is easily verified that if f is faithfully flat, then the morphism of finite flat

group schemes fD : HD → GD over S induced by f is a closed immersion;

moreover, if f is a closed immersion, then the morphism fD : HD → GD is

faithfully flat. Indeed, since GD, HD are finite and flat over S, it follows

from [3], Corollaire 11.3.11, that by base-changing, we may assume that S

is the spectrum of a field. On the other hand, since f is a closed immersion,

it is verified that the morphism Γ(GD,OGD) → Γ(HD,OHD) determined

by fD is injective. Thus, it follows from [11], Theorem in 14.1, that fD is

faithfully flat.

Let G be a group scheme over a scheme S, eG : S → G the identity

section of G, and M an OS-module. Then we shall write t∗G(M)
def
=

e∗GΩ1
G/S ⊗OS

M and refer to t∗G(M) as the M-valued cotangent space of

G; moreover, we shall write tG(M)
def
= HomOS

(e∗GΩ1
G/S ,M) and refer to

tG(M) as the M-valued tangent space of G.

1. Discriminants and Cotangent Spaces

In this §, we study the relationship between discriminants and cotangent

spaces of finite flat group schemes.

Throughout this paper, let R be a complete discrete valuation ring, k

the residue field of R, and K the field of fractions of R. Assume that K is

of characteristic 0, and k is of characteristic p > 0. Let K be an algebraic

closure of K, and vp the valuation of K such that vp(p) = 1. Moreover,

write eK for the absolute ramification index of K.

In this §, assume, moreover, that the residue field k is perfect.

Definition 1.1. Let G be a finite flat group scheme over R.



30 Yuichiro Hoshi

(i) We shall denote by discR(G) ⊆ R the ideal of R obtained as the

discriminant of the finite flat R-algebra Γ(G,OG) over R. Moreover,

we shall write DR(G)
def
= vp(discR(G)).

(ii) We shall write dG
def
= dimk(t

∗
G(k)) and refer to dG as the dimension of

G.

Lemma 1.2 (Finiteness of cotangent spaces). Let G be a finite flat

group scheme over R. Then the R-module t∗G(R) is of finite length and

generated by exactly dG elements.

Proof. The assertion that t∗G(R) is of finite length follows from the

étaleness of G⊗RK over K; moreover, the assertion that t∗G(R) is generated

by exactly dG elements follows from the definition of dimension. �

Definition 1.3.

(i) Let M �= {0} be a nontrivial R-module of finite length. Then there

exists a unique element

(a1, · · · , adimk(M⊗Rk)) ∈ Q
⊕dimk(M⊗Rk)
>0

such that aieK ∈ Z; ai ≤ aj if i ≤ j; and, moreover, there exists an

isomorphism

M 	
dimk(M⊗Rk)⊕

i=1

R/(πaieK ) ,

where π ∈ R is a prime element of R. We shall write

|M |R def
=

dimk(M⊗Rk)∑
i=1

ai ∈ Q>0 ,

and

|{0}|R def
= 0 .

Moreover, for an integer n, we shall write MR = n (resp. MR ≤ n;

resp. MR < n; resp. MR ≥ n; resp. MR > n) if ai = n for any i =

1, · · · ,dimk(M ⊗R k) (resp. adimk(M⊗Rk) ≤ n; resp. adimk(M⊗Rk) < n;

resp. a1 ≥ n; resp. a1 > n).
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(ii) Let G be a finite flat group scheme over R. Then it follows from

Lemma 1.2 that t∗G(R) is of finite length. We shall write |t∗G|
def
=

|t∗G(R)|R. Moreover, for an integer n, we shall write t∗G = n (resp.

t∗G ≤ n; resp. t∗G < n; resp. t∗G ≥ n; resp. t∗G > n) if t∗G(R)
R

= n (resp.

t∗G(R)
R
≤ n; resp. t∗G(R)

R
< n; resp. t∗G(R)

R
≥ n; resp. t∗G(R)

R
> n).

Proposition 1.4. (Discriminants and cotangent spaces). Let G be a

finite flat group scheme over R. Then the following holds:

DR(G) (= (vp(discR(G))) = rankR(G) · |t∗G| .

Proof. By the transitivity of discriminant, we may assume without

loss of generality that G is connected. Then it follows from [7], Lemma 6.1,

that there exists an isomorphism of R-algebras

Γ(G,OG) 	 R[t1, · · · , tdG ]/(Φ1, · · · ,ΦdG) ,

where the ti’s are indeterminates, and (Φ1, · · · ,ΦdG) is a regular R[t1, · · · ,
tdG ]-sequence. Thus, it follows from [6], Theorem 25.2, that there exists a

natural exact sequence of R[t1, · · · , tdG ]-modules

(Φ1, · · · ,ΦdG)
d−→

dG⊕
i=1

Γ(G,OG) · dti −→ Ω1
G/R −→ 0 .

Therefore, the assertion follows from [7], Corollary A. 13, together with the

definition of t∗G(R). �

Lemma 1.5 (Isomorphisms of finite flat group schemes). Let G and H

be finite flat group schemes over R, and f : G → H a morphism of group

schemes over R. Then f is an isomorphism if and only if the following two

conditions are satisfied:

(i) The morphism G ⊗R K → H ⊗R K over K induced by f is an iso-

morphism.

(ii) |t∗H | ≤ |t∗G|.
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Proof. By the definition of discriminant, we have that DR(G) ≤
DR(H). Thus, this follows immediately from Proposition 1.4. �

Lemma 1.6 (Exactness of sequences of cotangent spaces). If a se-

quence of finite flat group schemes over R

0 −→ G1 −→ G2 −→ G3 −→ 0

is exact, then the sequences of R-modules

0 −→ t∗G3
(R) −→ t∗G2

(R) −→ t∗G1
(R) −→ 0 ;

0 −→ tG1(K/R) −→ tG2(K/R) −→ tG3(K/R) −→ 0

are also exact. In particular, for a morphism of finite flat group schemes

f : G → H over R, if f is a closed immersion (resp. faithfully flat mor-

phism), then the morphism t∗H(R) → t∗G(R) induced by f is surjective (resp.

injective), and the morphism tG(K/R) → tH(K/R) induced by f is injective

(resp. surjective).

Proof. To prove Lemma 1.6, it is immediate that it is enough to show

that the sequence

0 −→ t∗G3
(R) −→ t∗G2

(R) −→ t∗G1
(R) −→ 0

is exact.

By the transitivity of discriminant, together with Proposition 1.4, we

obtain that

DR(G2) = rankR(G2) · |t∗G2
| = rankR(G1) ·DR(G3) + rankR(G3) ·DR(G1)

= rankR(G2) · (|t∗G1
| + |t∗G3

|) ;

thus, we obtain that |t∗G2
| = |t∗G1

|+ |t∗G3
|. On the other hand, by definition,

the exact sequence of group schemes appearing in the statement of Lemma

1.6 induces an exact sequence of R-modules

t∗G3
(R) −→ t∗G2

(R) −→ t∗G1
(R) −→ 0 .

Therefore, by the above equality |t∗G2
| = |t∗G1

| + |t∗G3
|, the first arrow

t∗G3
(R) → t∗G2

(R) is injective. This completes the proof of the assertion

that the sequence in question is exact. �
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2. Review of Truncated p-Adic Hodge Theory

In this §, we review truncated p-adic Hodge theory for finite flat group

schemes as established in [2] and prove lemmas needed later by means of

this theory.

We maintain the notation of the preceding §. Moreover, write ΓK
def
=

Gal(K/K), R for the ring of integers of K, and Ω
def
= Ω1

R/R
.

In this §, assume, moreover, that the residue field k is perfect.

Definition 2.1.

(i) Let S be a connected scheme. Then we shall say that a finite flat

group scheme G over S is a p-group scheme if its rank over S is a

power of p.

(ii) Let n, h be natural numbers. Then we shall say that a finite flat group

scheme G over R is of p-rectangle-type of level n with height h if G(K)

is isomorphic to
⊕

h Z/(pn) as an abstract finite group (cf. Figure 2).

Moreover, we shall denote by lv(G) the level of G, and by ht(G) the

height of G.

Remark 2.2.

(i) Any connected finite flat group scheme over R is a p-group scheme.

= Z/(p)height

level

︸ ︷︷ ︸




Fig. 2. The group of K-valued points of a group scheme of p-rectangle-type
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(ii) If G is of p-rectangle-type, then the Cartier dual GD of G is also of

p-rectangle-type. Moreover, lv(G) = lv(GD) and ht(G) = ht(GD).

The following lemma follows immediately from definition, together with

Lemma 1.2:

Lemma 2.3 (Bound for the lengths of cotangent spaces). Let G be a

finite flat group scheme over R of p-rectangle-type. Then t∗G ≤ lv(G). In

particular, |t∗G| ≤ dG · lv(G).

Definition 2.4. We shall write

εFon
K

def
= 2 + vp(eK) .

Note that since as is well-known that

vp(DR/W (k)) ≤ 1 − (1/eK) + vp(eK) ,

where W (k) ⊆ R is the ring of Witt vectors with coefficients in k, and

DR/W (k) ⊆ R is the different of the extension R/W (k) (cf. e.g., [9], Chapter

III, Remarks following Proposition 13), we obtain that

vp(DR/W (k)) + 1/(p− 1) ≤ εFon
K ,

i.e., εFon
K is an upper bound of the invariant vp(DR/W (k))+1/(p−1) considered

in [2] (cf. e.g., [2], Théorème 1).

The following proposition follows from [2], Corollaire to Théorème 3,

together with [2], Théorème 1′:

Proposition 2.5 (Existence of functorial morphisms). Let G be a p-

group scheme over R. Then there exists a functorial morphism of R[ΓK ]-

modules

φG : G(K) ⊗Zp R −→ t∗GD(R) ⊕ tG(Ω) ,

where the kernel and cokernel are annihilated by pε
Fon
K ; moreover, there exists

a natural isomorphism of R[ΓK ]-modules

(K/a)(1)
∼−→ Ω ,
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where

a
def
= { a ∈ K | −vp(DR/W (k)) − 1/(p− 1) ≤ vp(a) } ⊆ K .

Lemma 2.6 (Bound for the orders of kernels and cokernels). Let G and

H be p-group schemes over R, f : G → H a morphism of group schemes over

R, and n a natural numbers. Then the following hold:

(i) If the kernel of the morphism G(K) → H(K) induced by f is annihi-

lated by pn, then the cokernel (resp. kernel) of the morphism

t∗H(R) −→ t∗G(R) (resp. t∗GD(R) −→ t∗HD(R))

induced by f is annihilated by pε
Fon
K +n.

(ii) If the cokernel of the morphism G(K) → H(K) induced by f is anni-

hilated by pn, then the kernel (resp. cokernel) of the morphism

t∗H(R) −→ t∗G(R) (resp. t∗GD(R) −→ t∗HD(R))

induced by f is annihilated by pε
Fon
K +n.

Proof. First, we prove assertion (i). Now we have a commutative

diagram:

HD(K) ⊗Zp R
via fD

−−−−→ GD(K) ⊗Zp R

φ
HD

� �φ
GD

t∗H(R) ⊕ tHD(Ω) −−−−→
via fD

t∗G(R) ⊕ tGD(Ω) .

Since the cokernel of the top horizontal arrow (resp. right-hand vertical

arrow) is annihilated by pn (resp. pε
Fon
K ), the respective cokernels of the

morphisms

t∗H(R) −→ t∗G(R) ; tHD(Ω) −→ tGD(Ω)

determined by f are annihilated by pε
Fon
K +n. Thus, the kernel of the mor-

phism t∗
GD(R) → t∗

HD(R) determined by f is annihilated by pε
Fon
K +n. This



36 Yuichiro Hoshi

= R/(p)

︷ ︸︸ ︷

︷ ︸︸ ︷

︸ ︷︷ ︸

εFon
K

εFon
K

lv(G)

dG




· · · · ·

Fig. 3. t∗G(R)

completes the proof of assertion (i). Moreover, by taking “(−)D”, assertion

(ii) follows from assertion (i). �

Lemma 2.7 (Orders of generators of cotangent spaces). Let G be a

finite flat group scheme of p-rectangle-type over R which is not étale, and

(a1, · · · , adG) ∈ Q
⊕dG
>0 the sequence defined in Definition 1.3, (i), for the

R-module t∗G(R) of finite length. Then, for any i = 1, · · · , dG, 0 < ai ≤ εFon
K

or lv(G) − εFon
K ≤ ai ≤ lv(G) (cf. Figure 3).

Proof. Since the cokernel of the morphism

φGD : AG
def
= GD(R) ⊗Zp R −→ TG

def
= t∗G(R) ⊕ tGD(Ω)

is annihilated by pε
Fon
K , the morphism φGD determines injections

pε
Fon
K · TG ↪→ AG/Ker(φGD) ↪→ TG .

Therefore, Lemma 2.7 follows from the fact that the kernel of φGD is anni-

hilated by pε
Fon
K . �

Definition 2.8. Let G be a finite flat group scheme over R, M a

module, and n a natural number.
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Fig. 4. d◦G

(i) We shall write

d◦G
def
= dimk((p

εFon
K · t∗G(R)) ⊗R k) (≤ dG)

(cf. Figure 4). Note that it follows from Proposition 2.5 and Lemma

2.7 that if G is of p-rectangle-type of level > 2εFon
K , then d◦G + d◦

GD =

ht(G).

(ii) We shall say that x ∈ M is n-primitive if the following conditions are

satisfied:

pnx = 0 and x �∈ p ·M .

Note that for an R-module M of finite length, M has no n-primitive

element if and only if M = 0 or MR > n.

Remark 2.9. For a finite flat group scheme G of p-rectangle-type of

level > 2εFon
K over R which is not étale, the following conditions are equiva-

lent:

(i) t∗G > εFon
K .
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(ii) t∗G ≥ lv(G) − εFon
K .

(iii) d◦G = dG.

(iv) t∗G(R) has no εFon
K -primitive element.

Indeed, the assertion that (i) is equivalent to (ii) (resp. (iii); resp. (iv))

follows from Lemma 2.7 (resp. Lemma 2.7; resp. the definition of εFon
K -

primitive element).

Lemma 2.10 (Facts concerning modified dimensions). Let G and H be

finite flat group schemes of p-rectangle-type over R, f : G → H a morphism

of group schemes over R, and n a natural number. Then the following hold:

(i) If the kernel of the morphism G(K) → H(K) is annihilated by pn,

and 3εFon
K + n ≤ lv(G), lv(H), then d◦G ≤ d◦H and d◦

GD ≤ d◦
HD .

(ii) If the cokernel of the morphism G(K) → H(K) is annihilated by pn,

and 3εFon
K + n ≤ lv(G), lv(H), then d◦H ≤ d◦G and d◦

HD ≤ d◦
GD .

Proof. First, we prove assertion (i). Let L
def
= min{lv(G), lv(H)}.

Then it follows from Lemma 2.6 that the respective cokernels of the mor-

phisms

(pε
Fon
K · t∗H(R)) ⊗R R/(pL−2εFon

K ) −→ (pε
Fon
K · t∗G(R)) ⊗R R/(pL−2εFon

K ) ;

(pε
Fon
K · tHD(K/R)) ⊗R R/(pL−2εFon

K ) −→ (pε
Fon
K · tGD(K/R)) ⊗R R/(pL−2εFon

K )

induced by f are annihilated by pε
Fon
K +n; moreover, it follows from Lemma

2.7 that (pε
Fon
K ·t∗G(R))⊗RR/(pL−2εFon

K ) (resp. (pε
Fon
K ·t∗H(R))⊗RR/(pL−2εFon

K );

resp. (pε
Fon
K · tGD(K/R)) ⊗R R/(pL−2εFon

K ); resp. (pε
Fon
K · tHD(K/R)) ⊗R R/

(pL−2εFon
K )) is a free R/(pL−2εFon

K )-module of rank d◦G (resp. d◦H ; resp. d◦
GD ;

resp. d◦
HD). Therefore, since εFon

K + n ≤ L− 2εFon
K , we obtain that d◦G ≤ d◦H

and d◦
GD ≤ d◦

HD . This completes the proof of assertion (i). Moreover, by

taking “(−)D”, assertion (ii) follows from assertion (i). �

Lemma 2.11 (Isomorphisms of group schemes of p-rectangle-type).

Let G and H be finite flat group schemes of p-rectangle-type of level ≥ 3εFon
K
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over R, and f : G → H a morphism of group schemes over R. Assume that

t∗G(R) is free over R/(plv(G)), and t∗H > εFon
K . Then f is an isomorphism if

and only if the morphism G ⊗R K → H ⊗R K over K induced by f is an

isomorphism.

Proof. The “only if” part of the assertion is immediate; thus, we

prove the “if” part of the assertion. Since the morphism G⊗RK → H⊗RK

over K induced by f is an isomorphism, we obtain that lv(G) = lv(H) and

dG = dH (cf. Remark 2.9; Lemma 2.10). Thus, it follows from Lemma

2.3 that |t∗H | ≤ lv(G) · dG. On the other hand, since |t∗G| = lv(G) · dG, we

obtain that |t∗H | ≤ |t∗G|. Therefore, it follows from Lemma 1.5 that f is an

isomorphism. �

Next, let us review the notion of truncated Barsotti-Tate group schemes:

Definition 2.12 (cf. e.g., [4], Définition 1.1). Let S be a connected

scheme. Then we shall say that a finite flat group scheme G over S is

truncated (p-)Barsotti-Tate (of level ≥ 2) if there exist natural numbers n

and h such that the following condition is satisfied:

n ≥ 2 and G is of rank pnh. Moreover, for any natural number

m ≤ n, the morphism G → Im(pmG ), where Im(pmG ) is the scheme-

theoretic image of pmG , determined by pmG is faithfully flat (thus,

Ker(pmG ) is flat over S), and the finite flat group scheme Ker(pmG )

over S is of rank pmh.

For a truncated Barsotti-Tate group scheme G over S, and a natural

number m, we shall write G[pm]
def
= Ker(pmG ).

Remark 2.13.

(i) Any truncated Barsotti-Tate group scheme is of p-rectangle-type.

(ii) If G is truncated Barsotti-Tate, then the Cartier dual GD of G is also

truncated Barsotti-Tate.

Finally, we verify the following two facts concerning truncated Barsotti-

Tate group schemes:
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Proposition 2.14 (Existence of certain Barsotti-Tate groups). Let G

be a truncated Barsotti-Tate group scheme over R. Then there exists a

Barsotti-Tate group G over R such that G is isomorphic to Ker(plv(G) : G →
G).

Proof. This follows from [4], Théorème 4.4, (e). �

Lemma 2.15 (Freeness of cotangent spaces of truncated Barsotti-Tate

group schemes). Let G be a truncated Barsotti-Tate group scheme over R.

Then t∗G(R) is free over R/(plv(G)).

Proof. This follows from Proposition 2.14, together with [2], Propo-

sition 10. �

3. Proof of the Main Theorem

In this §, we prove the main theorem, i.e., Theorem 3.4 below. We

maintain the notation of the preceding §.

Lemma 3.1 (Split injections of R-

modules). Let M and N be R-modules of finite length, f : M → N a mor-

phism of R-modules, and m a natural number. Then the following hold:

(i) If M and N are free over R/(pm), and the morphism M⊗Rk → N⊗Rk

induced by f is injective, then f is injective, and the image of f is a

direct summand of N .

(ii) Assume that the following conditions are satisfied:

(1) The morphism M ⊗R R/(pm) → N ⊗R R/(pm) is injective, and

its image is a direct summand of N ⊗R R/(pm).

(2) The morphism pm ·M → pm ·N is injective, and its image is a

direct summand of pm ·N .

Then f is injective, and the image of f is a direct summand of N .

Proof. Assertion (i) is immediate; thus, we prove assertion (ii). By

assumptions (1), (2), it is immediate that f is injective. By means of this

injectivity of f , we regard M as an R-submodule of N . First, observe that,
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by [6], Theorem 7.14, to prove assertion (ii), it is enough to show that for

any natural number r, the natural inclusion πr · M ↪→ (πr · N) ∩ M is an

isomorphism, where π ∈ R is a prime element of R.

If r ≤ meK , then it follows from assumption (1) that the natural inclu-

sion πr · M ↪→ (πr · N) ∩ M is an isomorphism. Assume that meK < r.

Since (πr ·N)∩M ⊆ (pm ·N)∩M ⊆ pm ·M , we obtain that (πr ·N)∩M ⊆
(πr−meK · (pm ·N))∩ (pm ·M). Now since (πr−meK · (pm ·N))∩ (pm ·M) ⊆
πr−meK · (pm ·M) = πr ·M by assumption (2), it follows that (πr ·N)∩M ⊆
πr ·M . This completes the proof of assertion (ii). �

Lemma 3.2 (Split injections of tangent spaces). Assume that the

residue field k is perfect. Let G and H be finite flat group schemes over

R, and f : G → H a morphism of group schemes. Assume that the follow-

ing three conditions are satisfied:

(i) The morphism G⊗RK → H⊗RK determined by f is an isomorphism.

(ii) G is of p-rectangle-type, and 2εFon
K < lv(G). (Thus, by (i), H is also

of p-rectangle-type, and 2εFon
K < lv(H).)

(iii) The morphism

tG(K/R) ⊗R R/(pε
Fon
K +1) −→ tH(K/R) ⊗R R/(pε

Fon
K +1)

(cf. Figure 5) determined by f is injective, and its image is a direct

summand of tH(K/R) ⊗R R/(pε
Fon
K +1).

Then the morphism

NG
def
= tG(K/R) ⊗R R/(plv(G)−εFon

K ) −→ NH
def
= tH(K/R) ⊗R R/(plv(G)−εFon

K )

(cf. Figure 6) determined by f is injective, and its image is a direct sum-

mand of NH .

Proof. It follows from Lemmas 2.7, together with (ii), that pε
Fon
K ·NG

and pε
Fon
K ·NH are free over R/(plv(G)−2εFon

K ); moreover, by (iii), the morphism

(pε
Fon
K ·NG) ⊗R k −→ (pε

Fon
K ·NH) ⊗R k
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Fig. 6. NG
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determined by f is injective. Thus, it follows from Lemma 3.1, (i), that the

morphism pε
Fon
K ·NG → pε

Fon
K ·NH is injective, and its image is a direct sum-

mand. On the other hand, again by (iii), the morphism NG⊗RR/(pε
Fon
K ) →

NH ⊗RR/(pε
Fon
K ) is injective, and its image is a direct summand. Therefore,

the assertion follows from Lemma 3.1, (ii). �

Lemma 3.3 (Non-existence of εFon
K -primitive elements of the cotangent

spaces of certain group schemes). Assume that the residue field k is perfect.

Let G and H be truncated Barsotti-Tate group schemes over R, X a finite

flat group scheme over R, G×RH → X a morphism of group schemes which

is faithfully flat, and n a natural number. Assume that the following four

conditions are satisfied:

(i) The composite

fG : G −→ G×R H −→ X ,

where the first arrow is the morphism induced by the identity section

of H, determines an isomorphism G(K)
∼→ X(K).

(ii) The kernel of the morphism H(K) → X(K) induced by the composite

fH : H −→ G×R H −→ X ,

where the first arrow is the morphism induced by the identity section

of G, is annihilated by pn.

(iii) The image of the morphism

tG(K/R) ⊗R R/(plv(G)−εFon
K ) −→ tX(K/R) ⊗R R/(plv(G)−εFon

K )

(cf. Figure 6) determined by fG is a direct summand of tX(K/R) ⊗R

R/(plv(G)−εFon
K ).

(iv) 4εFon
K +n < lv(H). (Note that since lv(H)−n ≤ lv(G) by assumptions

(i), (ii), it follows that 4εFon
K < lv(G).)

Then t∗X(R) has no εFon
K -primitive element.

Proof. Assume that there exists an εFon
K -primitive element ω ∈ t∗X(R).

Then by the following steps, we obtain a contradiction.
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Fig. 7. MX

(Step 1) We shall write

MG
def
= HomR(tG(K/R) ⊗R R/(plv(G)−εFon

K ),K/R) ⊗R R ⊆ t∗G(R) ;

MX
def
= HomR(tX(K/R) ⊗R R/(plv(G)−εFon

K ),K/R) ⊗R R ⊆ t∗X(R)

(cf. Figure 7).

Then the following hold:

(1-i) The surjection

MX −→ Im(f∗
G : MX → MG)

determined by fG splits.

(1-ii) Ker(plv(G)−εFon
K : t∗X(R) → t∗X(R)) = MX .

(1-iii) pε
Fon
K · t∗X(R) ⊆ MX .

Proof. Assertion (1-i) follows from assumption (iii). Assertion (1-ii)

follows from the existence of the exact sequence

0 −→ MX −→ t∗X(R) −→ HomR(plv(G)−εFon
K · tX(K/R),K/R) ⊗R R −→ 0
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(cf. the definition of MX). Assertion (1-iii) follows assertion (1-ii), together

with Lemma 2.3. �

(Step 2) There exists an element ωH ∈ t∗H(R) such that

plv(H)−εFon
K ωH = f∗

H(ω).

Proof. Since pε
Fon
K ω = 0, we obtain that pε

Fon
K f∗

H(ω) = 0, i.e., f∗
H(ω) ∈

Ker(pε
Fon
K : t∗H(R) → t∗H(R)) = plv(H)−εFon

K · t∗H(R) (cf. Lemma 2.15). Thus,

such an element exists. �

(Step 3) There exists h ∈HD(K) ⊗Zp R such that the image of h via

the morphism

φHD : HD(K) ⊗Zp R −→ t∗H(R) ⊕ tHD(Ω)

(cf. Proposition 2.5) is (pε
Fon
K ωH , 0); moreover, there exists x ∈XD(K)⊗ZpR

such that the image of x via the morphism XD(K)⊗Zp R → HD(K)⊗Zp R

induced by fH is pnh.

Proof. This follows from the fact that the cokernel of φHD (resp. the

morphism XD(K) → HD(K) induced by fH) is annihilated by pε
Fon
K (resp.

pn [cf. assumption (ii)]). �

(Step 4) We shall write (η, τ)
def
= φXD(x) ∈ t∗X(R)⊕tXD(Ω), and ω1

def
=

ω − plv(H)−2εFon
K −nη ∈ t∗X(R). Then the following hold:

(4-i) ω1 �∈ p · t∗X(R); in particular, ω1 �= 0.

(4-ii) plv(G)−lv(H)+2εFon
K +nω1 = 0. (Note that since lv(H) − n ≤ lv(G) by

assumption (ii), 0 ≤ 2εFon
K ≤ lv(G) − lv(H) + 2εFon

K + n.)

(4-iii) The image f∗
H(ω1) of ω1 in t∗H(R) vanishes.

Proof. Assertion (4-i) follows from the assumption that ω is εFon
K -

primitive, together with the assumption that 1 ≤ lv(H) − 2εFon
K − n (cf.

assumption (iv)). Assertion (4-ii) follows from the assumption that ω is

εFon
K -primitive, together with plv(G) · t∗X(R) = 0 (cf. assumption (i), also
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Lemma 2.3). Assertion (4-iii) follows from the fact that the images of ω and

plv(H)−2εFon
K −nη in t∗H(R) are plv(H)−εFon

K ωH (cf. Steps 2 and 3). �

(Step 5) f∗
G(ω1) ∈ plv(H)−2εFon

K −n · t∗G(R).

Proof. Since plv(G)−lv(H)+2εFon
K +nf∗

G(ω1) = 0 (cf. Step 4, (4-ii)),

f∗
G(ω1) ∈ Ker(plv(G)−lv(H)+2εFon

K +n : t∗G(R) → t∗G(R)) = plv(H)−2εFon
K −n ·t∗G(R)

(cf. Lemma 2.15). �

(Step 6) f∗
G(ω1) �∈ p2εFon

K +1 · t∗G(R).

Proof. Since plv(G)−lv(H)+2εFon
K +nω1 = 0 (cf. Step 4, (4-ii)), it follows

from Step 1, (i-ii), together with assumption (iv), that ω1 ∈ MX ⊆ t∗X(R)

(cf. Step 1). Moreover, since the morphism t∗X(R) → t∗G(R)⊕t∗H(R) induced

by the faithfully flat morphism G×R H → X is injective (cf. Lemma 1.6),

it follows from Step 1, (1-i), together with Step 4, (4-iii), that we obtain an

isomorphism

MX 	 Ker(fG
∗ : MX → MG) ⊕ Im(fG

∗ : MX → MG) ,

and

ω1 = (0, f∗
G(ω1)) ∈ Ker(f∗

G : MX → MG) ⊕ Im(f∗
G : MX → MG) 	 MX .

Therefore, it follows from Step 4, (4-i), that f∗
G(ω1) �∈ p · Im(f∗

G : MX →
MG); moreover, since

p2εFon
K +1 · t∗G(R) ⊆ pε

Fon
K +1 · Im(f∗

G : t∗X(R) → t∗G(R)) ⊆ p · Im(f∗
G : MX → MG)

(cf. Lemma 2.6, (i), together with Step 1, (1-iii)), we obtain that f∗
G(ω1) �∈

p2εFon
K +1 · t∗G(R). �

By Steps 5 and 6, together with the assumption that 2εFon
K +1 ≤ lv(H)−

2εFon
K − n, we obtain a contradiction. This completes the proof of Lemma

3.3. �

Theorem 3.4 (Extension of morphisms between generic fibers I). Let

G and H be truncated Barsotti-Tate group schemes over R, fK : GK
def
=

G⊗R K → HK
def
= H ⊗R K a morphism of group schemes over K, and n a

natural number. Assume that one of the following conditions is satisfied:
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(i) The cokernel of the morphism GK(K) → HK(K) determined by fK is

annihilated by pn, and 4εFon
K +n (= 4(2+vp(eK))+n — cf. Definition

2.4) < lv(H). (Note that since lv(H) ≤ lv(G) + n, it follows that

4εFon
K < lv(G).)

(ii) The kernel of the morphism GK(K) → HK(K) determined by fK is

annihilated by pn, and 4εFon
K + n < lv(G).

Then the morphism fK extends uniquely to a morphism over R.

Proof. By taking “(−)D” if necessary, we may assume that condi-

tion (i) is satisfied. Moreover, if HD is étale over R, then the assertion is

immediate; thus, we may assume that HD is not étale over R.

First, let us claim that to prove Theorem 3.4, it is enough to show

Theorem 3.4 in the case where the residue field k is perfect. Indeed, this

claim may be verified as follows: Let B ⊆ k be a p-basis of k, B ⊆ R a lift

of B ⊆ k, R′ the p-adic completion of R[tp
−∞

; t ∈ B] (⊆ K), and K ′ the

field of fractions of R′. Then R′ is a complete discrete valuation ring with

perfect residue field, R′ is faithfully flat over R, and, moreover, eK = eK′ .

Let fK′ : G⊗R K ′ → H ⊗R K ′ be the morphism determined by fK , and Z

(resp. ZR′) the scheme-theoretic closure of the composite

GK
(id,fK)−→ GK ×K HK

⊆−→ G×R H

(resp. G⊗R K ′ (id,fK′ )−→ (G×R H) ⊗R K ′ ⊆−→ (G×R H) ⊗R R′) .

Then it is easily verified that the natural morphism ZR′ → Z determines

an isomorphism ZR′
∼→ Z ⊗R R′. Therefore, since R′ is faithfully flat over

R, the composite Z ↪→ G ×R H
pr1→ G is an isomorphism if and only if the

composite ZR′ ↪→ (G×R H) ⊗R R′ pr1→ G⊗R R′ is an isomorphism. On the

other hand, it is easily verified that the morphism fK (resp. fK′) extends to

a morphism over R (resp. R′) if and only if the composite Z ↪→ G×RH
pr1→ G

(resp. ZR′ ↪→ (G×RH)⊗RR
′ pr1→ G⊗RR

′) is an isomorphism. Therefore, we

conclude that fK extends to a morphism over R if and only if fK′ extends to

a morphism over R′. This completes the proof of the first claim. Therefore,

in the rest of the proof of Theorem 3.4, assume that the residue field k is

perfect.
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Let G be a Barsotti-Tate group over R such that G 	 Ker(plv(G) : G →
G) (cf. Proposition 2.14), and G̃

def
= Ker(plv(G)+εFon

K +1 : G → G). Then

the endomorphism p
εFon
K +1

G̃
of G̃ factors through G ⊆ G̃, and the resulting

morphism fits into the following exact sequence

0 −→ G̃[pε
Fon
K +1] −→ G̃

via p
εFon
K +1

G̃−→ G −→ 0

(cf. Definition 2.12). Now we shall denote by gK the composite

G̃K
def
= G̃⊗R K

via p
εFon
K +1

G̃−→ GK
fK−→ HK .

Now let us claim that to prove Theorem 3.4, it is enough to show that

gK extends to a morphism over R. Indeed, since the morphism G̃ → G

is faithfully flat, the morphism Γ(G,OG) → Γ(G̃,O
G̃
) is injective, and its

image is a direct summand. In particular, we obtain that

Γ(G,OG) = Γ(G̃,O
G̃
) ∩ (Γ(G,OG) ⊗R K) .

Now if gK extends to a morphism g : G̃ → H over R, then by the con-

struction of g, the morphism Γ(H,OH) → Γ(G̃,O
G̃
) determined by g fac-

tors through Γ(G̃,O
G̃
) ∩ (Γ(G,OG) ⊗R K); in particular, the morphism

Γ(H,OH) → Γ(G̃,O
G̃
) determined by g factors through Γ(G,OG). This

completes the proof of the second claim.

For a natural number m ≤ lv(G̃) (= lv(G) + εFon
K + 1), we shall denote

by Xm the scheme-theoretic closure of the composite

G̃K [pm]
(id,gK)−→ G̃K [pm] ×K HK

⊆−→ G̃×R H .

Then it is easily verified that Xm ⊆ G̃×RH is a finite flat subgroup scheme

of G̃×R H over R, we have closed immersions

X1 ⊆ X2 ⊆ · · · ⊆ X
lv(G̃)−1

⊆ X
def
= X

lv(G̃)
⊆ G̃×R H ,

and the composite

Xm −→ G̃×R H
pr1−→ G̃ (resp. Xm −→ G̃×R H

pr2−→ H)
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factors through the subgroup scheme G̃[pm] ⊆ G̃ (resp. H[pm] ⊆ H) of G̃

(resp. H). Now to prove Theorem 3.4, it is enough to show that the com-

posite X ↪→ G̃×R H
pr1→ G̃ is an isomorphism. Indeed, then the composite

G̃
∼←− X

⊂−→ G̃×R H
pr2−→ H

is a morphism of the desired type. Therefore, the rest of the proof of

Theorem 3.4 is devoted to the proof of the assertion that the composite

X ↪→ G̃×R H
pr1→ G̃ is an isomorphism.

Now let us claim that the morphism XεFon
K +1 → G̃[pε

Fon
K +1] determined

by the composite XεFon
K +1 ↪→ G̃ ×R H

pr1→ G̃ is an isomorphism. Indeed,

this claim is verified as follows: Let YεFon
K +1 ⊆ G̃[pε

Fon
K +1]×R H be the finite

flat subgroup scheme of G̃[pε
Fon
K +1] ×R H obtained as the scheme-theoretic

image of the section of G̃[pε
Fon
K +1] ×R H

pr1→ G̃[pε
Fon
K +1] determined by the

identity section of H. Then since G̃K [pε
Fon
K +1] ⊆ Ker(gK), it is immediate

that XεFon
K +1⊗RK coincides with YεFon

K +1⊗RK in (G×RH)⊗RK. Therefore,

we obtain that XεFon
K +1 = YεFon

K +1 in G ×R K. In particular, the morphism

in question is an isomorphism. This completes the proof of the third claim.

By taking “(−)D”, we obtain a commutative diagram

G̃D G̃D

prD1

� �fG

G̃D ×R HD −−−→ XD

prD2

� �fH

HD HD ,

where the middle horizontal arrow is faithfully flat, the right-hand top ver-

tical arrow fG induces an isomorphism of group schemes G̃D
K

∼→ XD
K over

K, and the kernel of the morphism HD(K) → XD(K) determined by the

right-hand lower vertical arrow fH is annihilated by pn (cf. condition (i));

moreover, for a natural number m ≤ lv(G̃), we obtain a commutative dia-

gram

G̃D −−−→ G̃[pm]D

fG

� �
XD −−−→ (Xm)D ,
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where the horizontal arrows are faithfully flat.

Now let us claim that the morphism

t
G̃D(K/R) ⊗R R/(pε

Fon
K +1) −→ tXD(K/R) ⊗R R/(pε

Fon
K +1)

is injective, and its image is a direct summand of tXD(K/R)⊗RR/(pε
Fon
K +1);

in particular, it follows from Lemma 3.2 that the morphism

t
G̃D(K/R) ⊗R R/(plv(G̃)−εFon

K ) −→ tXD(K/R) ⊗R R/(plv(G̃)−εFon
K )

is injective, and its image is a direct summand of tXD(K/R) ⊗R R/

(plv(G̃)−εFon
K ). Indeed, this claim is verified as follows: It follows from Lem-

mas 1.6; 2.3 that we obtain a commutative diagram

t
G̃D(K/R) −−−→ t

G̃D(K/R) ⊗R R/(pε
Fon
K +1) −−−→ t

G̃[p
εFon
K

+1
]D

(K/R)� � �
tXD(K/R) −−−→ tXD(K/R) ⊗R R/(pε

Fon
K +1) −−−→ t(X

εFon
K

+1
)D(K/R) ,

where the horizontal arrows are surjective. Now since G̃ is truncated

Barsotti-Tate, the right-hand top horizontal arrow t
G̃D(K/R) ⊗R R/

(pε
Fon
K +1) � t

G̃[p
εFon
K

+1
]D

(K/R) is an isomorphism (cf. Lemma 2.15); on

the other hand, it follows from the third claim that the right-hand vertical

arrow t
G̃[p

εFon
K

+1
]D

(K/R) → t(X
εFon
K

+1
)D(K/R) is also an isomorphism. This

completes the proof of the fourth claim.

Next, let us claim that t∗
XD > εFon

K . Indeed, since HD is not étale, it

follows from condition (i), together with Lemma 2.10, (i), that XD is not

étale. Thus, the above claim follows from the fourth claim, Lemma 3.3,

together with Remark 2.9. This completes the proof of the fifth claim.

Thus, it follows from the fifth claim, together with Lemma 2.11, that

the morphism G̃D → XD, hence also the morphism X → G̃ in question is

an isomorphism. This completes the proof of Theorem 3.4. �

Corollary 3.5 (Extension of morphisms between generic fibers II).

Let G and H be truncated Barsotti-Tate group schemes over R. Assume

that 4εFon
K < lv(G), lv(H). Then the following hold:
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(i) Let K-InjR(G,H) (resp. K-InjK(G⊗RK,H⊗RK)) be the set of mor-

phisms φ of group schemes over R (resp. K) from G (resp. G⊗R K)

to H (resp. H⊗RK) such that φ induces an injection G(K) ↪→ H(K).

Then the natural morphism

K-InjR(G,H) −→ K-InjK(G⊗R K,H ⊗R K)

is bijective.

(ii) Let K-SurjR(G,H) (resp. K-SurjK(G ⊗R K,H ⊗R K)) be the set of

morphisms φ of group schemes over R (resp. K) from G (resp. G⊗RK)

to H (resp. H⊗RK) such that φ induces a surjection G(K) � H(K).

Then the natural morphism

K-SurjR(G,H) −→ K-SurjK(G⊗R K,H ⊗R K)

is bijective.

(iii) Let IsomR(G,H) (resp. IsomK(G ⊗R K,H ⊗R K)) be the set of iso-

morphisms of G (resp. G⊗RK) with H (resp. H⊗RK) over R (resp.

K). Then the natural morphism

IsomR(G,H) −→ IsomK(G⊗R K,H ⊗R K)

is bijective.

Proof. This follows immediately from Theorem 3.4. �

In the following, let Ktm (⊆ K) be the maximal tamely ramified ex-

tension of K, and ΓKtm
def
= Gal(K/Ktm). Moreover, let (Ktm)∧ (resp. K̂)

be the p-adic completion of Ktm (resp. K), Rtm (resp. (Rtm)∧) the ring of

integers of Ktm (resp. (Ktm)∧), and Γ(Ktm)∧
def
= Gal(K̂/(Ktm)∧). (Thus, by

restricting elements of Γ(Ktm)∧ to the algebraic closure of (Ktm)∧ in K̂, one

obtains a natural isomorphism of Γ(Ktm)∧ with the corresponding absolute

Galois group of (Ktm)∧.)

Corollary 3.6 (Points of truncated Barsotti-Tate groups). Let G be

a truncated Barsotti-Tate group scheme over R. Then the following hold:
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(i) If G is of level > 4εFon
K and not étale over R, then G(K) �⊆ G(Ktm).

(ii) If GD is connected, then the ΓKtm-invariant part

(G(K) ⊗Zp Zp(−1))ΓKtm

of the Zp[ΓKtm ]-module G(K) ⊗Zp Zp(−1) is annihilated by p4εFon
K .

Proof. First, we prove assertion (i). By replacing G by its connected

component, we may assume without loss of generality that G is connected.

Then if G(K) = G(Ktm), it is easily verified that there exist a finite exten-

sion K ′ of K which is tamely ramified over K, an étale truncated Barsotti-

Tate group scheme H over the ring of integers R′ of K ′, and an isomorphism

of group schemes G⊗RK ′ ∼→ H ⊗R′ K ′ over K ′. Thus, it follows from The-

orem 3.4 that the isomorphism G ⊗R K ′ ∼→ H ⊗R′ K ′ over K ′ extends to

an isomorphism G ⊗R R′ ∼→ H over R′. On the other hand, since G is

connected, any morphism G⊗R R′ → H over R′ must be trivial. Thus, we

obtain a contradiction. This completes the proof of assertion (i).

Next, we prove assertion (ii). If (G(K) ⊗Zp Zp(−1))ΓKtm is not annihi-

lated by p4εFon
K , then it is easily verified that there exist a finite extension

K ′ of K which is tamely ramified over K, an étale truncated Barsotti-Tate

group scheme H of level > 4εFon
K with height 1 over the ring of integers R′ of

K ′, and a morphism of group schemes GD ⊗R K ′ → H ⊗R′ K ′ over K ′ such

that the induced morphism GD(K) → H(K) is surjective. Thus, it follows

from Theorem 3.4 that the morphism GD ⊗R K ′ → H ⊗R′ K ′ over K ′ ex-

tends to a morphism GD ⊗RR′ → H over R′. On the other hand, since GD

is connected, any morphism GD ⊗R R′ → H over R′ must be trivial. Thus,

we obtain a contradiction. This completes the proof of assertion (ii). �

Remark 3.7. It follows from the fact that the absolute Galois groups

of Ktm and (Ktm)∧ are naturally isomorphic, together with the faithfully

flatness of the morphism Rtm → (Rtm)∧, that any finite flat group scheme

(resp. truncated Barsotti-Tate group scheme; resp. morphism of finite flat

group schemes) over (Rtm)∧ descends to a finite flat group scheme (resp.

truncated Barsotti-Tate group scheme; resp. morphism of finite flat group

schemes) over Rtm. Therefore, the following assertion follows from Theorem

3.4:
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Let G and H be truncated Barsotti-Tate group schemes over

(Rtm)∧, fK : GK
def
= G ⊗(Rtm)∧ (Ktm)∧ → HK

def
= H ⊗(Rtm)∧

(Ktm)∧ a morphism of group schemes over (Ktm)∧, and n a

natural number. Assume that one of the following conditions is

satisfied:

(i) The cokernel of the morphism GK(K̂) → HK(K̂) deter-

mined by fK is annihilated by pn, and 4εFon
K + n < lv(H).

(ii) The kernel of the morphism GK(K̂) → HK(K̂) determined

by fK is annihilated by pn, and 4εFon
K + n < lv(G).

Then the morphism fK extends uniquely to a morphism over

(Rtm)∧.

Corollary 3.8 (Extension of morphisms of Tate modules of Barsotti-

Tate groups). Let G and H be Barsotti-Tate groups over (Rtm)∧, Tp(G)

(resp. Tp(H)) the p-adic Tate module of G (resp. H), and Isog(Rtm)∧(G,H)

(resp. IsogΓ(Ktm)∧
(Tp(G), Tp(H))) the set of morphisms φ of Barsotti-Tate

groups over (Rtm)∧ (resp. Zp[Γ(Ktm)∧ ]-equivariant morphisms φ) from G
(resp. Tp(G)) to H (resp. Tp(H)) such that φ induces an isomorphism

Tp(G) ⊗Zp Qp
∼→ Tp(H) ⊗Zp Qp. Then the natural morphism

Isog(Rtm)∧(G,H) −→ IsogΓ(Ktm)∧
(Tp(G), Tp(H))

is bijective.

Proof. This follows from a similar argument to the argument used in

the proof of [10], Theorem 4, together with Remark 3.7. �
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