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Gap Conjecture for 3-Dimensional Canonical

Thresholds

By Yuri Prokhorov

Abstract. We prove that the interval (5/6, 1) contains no 3-
dimensional canonical thresholds.

1. Introduction

We work over the complex number field C.

Let (X � P ) be a three-dimensional canonical singularity and let S ⊂ X

be a Q-Cartier divisor. The canonical threshold of the pair (X,S) is

ct(X,S) := sup{c | the pair (X, cS) is canonical}.

It is easy to see that ct(X,S) is rational and non-negative. Moreover, if S is

effective and integral, then ct(X,S) ∈ [0, 1]. Define the subset T can
n ⊂ [0, 1]

as follows

T can
n := {ct(X,S) | dimX = n, S is integral and effective}.

The following conjecture is an analog of corresponding conjectures for

log canonical thresholds and minimal discrepancies, see [Sho88], [Kol92],

[Kol97], [MP04], [Kol08].

Conjecture 1.1. The set T can
n satisfies the ascending chain condi-

tion.

The conjecture is interesting for applications to birational geometry, see,

e.g., [Cor95]. It was shown in [BS06] that much more general form of 1.1

follows from ACC for minimal log discrepancies and weak Borisov-Alexeev

conjecture. The important particular case of 1.1 is the following
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Conjecture 1.2 (cf. [Kol08]). εcan
n := 1 − sup(T can

n \ {1}) > 0.

The aim of this note is to prove Conjecture 1.2 for n = 3 in a precise

form:

Theorem 1.3. εcan
3 = 1/6.

An analog of this theorem for log canonical thresholds was proved by J.

Kollár [Kol94]: εlc3 = 1/42.

Note that replacing (X � P ) with its terminal Q-factorial modification

we may assume that (X � P ) is terminal. Thus the following is a stronger

form of Theorem 1.3:

Theorem 1.4. Let (X � P ) be a three-dimensional terminal singular-

ity and let S ⊂ X be an (integral) effective Weil Q-Cartier divisor such

that the pair (X,S) is not canonical. Then ct(X,S) ≤ 5/6 and this bound

is sharp. Moreover, if (X � P ) is singular, then ct(X,S) ≤ 4/5.

In Section 3 we give examples where the values 5/6 and 4/5 in the above

theorem are achieved (see Examples 3.10 and 3.11).

The proof is rather standard. We use the classification of terminal sin-

gularities and weighted blowups techniques, cf. [Kaw92], [Kol94], [Mar96].

Acknowledgments. The author would like to thank the referee for care-

ful reading the manuscript and helpful suggestions.

2. Preliminaries

2.1. Notation. For a polynomial φ, ord0 φ denotes the order of van-

ishing of φ at 0 and φd is the homogeneous component of degree d.

Throughout this paper we let (X � P ) be the germ of a three-dimen-

sional terminal singularity and let S ⊂ X be an effective Weil Q-Cartier

divisor such that the pair (X,S) is not canonical. Put c := ct(X,S) > 0.

Since (X,S) is not canonical, c < 1. We assume that c > 1/2.

Lemma 2.2. In the above notation the singularity (S � P ) is not Du

Val.
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Proof. Assume that (S � P ) is Du Val. Since X � P is an isolated

singularity, by the inversion of adjunction [Sho93, §3] we see that the pair

(X,S) is PLT. Further, since KS is Cartier lifting its nonwhere vanishing

section to X we can show that KX + S is also Cartier. Hence, the pair

(X,S) is canonical. �

Lemma 2.3. In the above notation S is reduced, irreducible and nor-

mal.

Proof. Indeed, otherwise by blowing up a curve in the singular locus

of S we get c ≤ 1/2. �

2.4. We use the techniques of weighted blowups. For definitions and

basic properties we refer, for example, to [Mar96], [Rei87]. By fixing co-

ordinates x1, . . . , xn we regard the affine space Cn as a toric variety. Let

α = (α1, . . . , αn) be a weight (a primitive lattice vector in the positive

octant) and let σα : Cn
ααα → Cn be the weighted blowup with weight α (α-

blowup). The exceptional divisor Eααα is irreducible and determines a discrete

valuation vααα of the function field C(Cn) such that vααα(xi) = αi.

2.5. Now let X ⊂ Cn be a hypersurface given by the equation φ = 0

and let Xααα ⊂ Cn
ααα be its proper transform. Fix an irreducible component G

of Eααα ∩ Xααα such that Xααα is smooth at the generic point of G. Let vG be

the corresponding discrete valuation of C(X). Write

Eααα |Xααα= mGG + (other components).

Assume that mG = 1 and G is not a toric subvariety in Cn
ααα. Then the

discrepancy of G with respect to KX is computed by the formula

a(G,KX) = |α| − 1 − vααα(φ), |α| =
∑

αi,

see [Mar96]. Let S ⊂ X be a Cartier divisor and let ψ be a local defining

equation of S in �0,X . Then vG(ψ) = vααα(ψ) and the discrepancy of G with

respect to KX + cS is computed by the formula

a(G,KX + cS) = a(G,KX) − cvG(ψ) = |α| − 1 − vααα(φ) − cvααα(ψ).

Therefore,

c ≤ a(G,KX)/vααα(ψ) = (|α| − 1 − vααα(φ))/vααα(ψ).
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Definition 2.6 (cf. [Mar96]). A weight α is said to be admissible if

Eααα ∩Xααα contains at least one reduced non-toric component.

3. Gorenstein Case

In this section we consider the case where (X � P ) is either smooth or

an index one singularity.

Lemma 3.1. If (X � P ) is smooth, then c ≤ 5/6.

Proof. Let c > 5/6. We may assume that X = C3. Let ψ(x, y, z) = 0

be an equation of S. Consider a weighted blowup σααα : C3
ααα → C3 with a

suitable weight α. Let Eααα be the exceptional divisor. Recall that (S � P )

is not Du Val. Since S is normal, up to analytic coordinate change there

are the following cases (cf. [KM98, 4.25]):

3.2. Case ord0 ψ ≥ 3. Take α = (1, 1, 1) (usual blowup of 0). Then

a(Eααα,KX) = 2, vααα(ψ) = ord0 ψ ≥ 3. Hence c ≤ a(Eααα,KX)/vααα(ψ) ≤ 2/3, a

contradiction.

3.3. Case ψ = x2 + η(y, z), where ord0 η ≥ 4. Take α = (2, 1, 1).

Then a(Eααα,KX) = 3, vααα(ψ) = 4. Hence c ≤ a(Eααα,KX)/vααα(ψ) ≤ 3/4, a

contradiction.

3.4. Case ψ = x2 + y3 + η(y, z), where ord0 η ≥ 4. We may assume

that η(y, z) = uayz
a + ubz

b (see, e.g., [KM98, 4.25]). Since he singularity

(S � P ) is not Du Val, we have a ≥ 4, b ≥ 6 and ua, ub are either units

or zero. Take α = (3, 2, 1). Then a(Eααα,KX) = 5, vααα(ψ) = 6. Hence

c ≤ a(Eααα,KX)/vααα(ψ) = 5/6, a contradiction. �

Lemma 3.5. Assume that (X � P ) is a Gorenstein terminal singularity

and (X � P ) is not smooth. Then c ≤ 4/5.

Proof. Let c > 4/5. We may assume that X is a hypersurface in

C4 (it is an isolated cDV-singularity [Rei80]). Let φ(x, y, z, t) = 0 be the

equation of X. Since (X � P ) is a cDV-singularity, ord0 φ = 2. According

to [Mar96], in a suitable coordinate system (x, y, z, t), there is an admissible

weighted blowup σααα : C4
ααα → C4 such that at least for one component G of
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Eααα ∩ Xααα we have a(G,KX) = 1. Then c ≤ 1/vααα(ψ), so vααα(ψ) = 1. This

means, in particular, that ord0 ψ = 1. Up to coordinate change we may

assume that ψ = t. Write

φ = η(x, y, z) + tζ(x, y, z, t).

Then S is a hypersurface in C3
x,y,z given by η(x, y, z) = 0. As in the proof

of Lemma 3.1, using Morse Lemma we get the following cases:

3.6. Case ord0 η ≥ 3. Since ord0 φ = 2, ζ contains a linear term.

Take α = (1, 1, 1, 2). By the terminality condition [Rei87, Th. 4.6], we have

4 = vααα(xyzt) − 1 > vααα(φ).

First we assume that ζ contains at least one of the terms x, y, or z. By

symmetry we may assume that ζ contains x. After the analytic coordinate

change x �→ζ(x, y, z, t) we obtain

φ = η(x, y, z) + tx.

In the affine chart Ux := {x �= 0} the map σ−1
ααα is given by

x �→ x′, y �→ y′x′, z �→ z′x′, t �→ t′x′2.(3.7)

Eααα ∩Xααα is given in σ−1
ααα (Ux) � C4 by

x′ = η3(1, y
′, z′) + t′ = 0.

Hence α is admissible, i.e., Eααα ∩ Xααα has a reduced non-toric component

G. Then a(G,KX) = 1, vG(ψ) = 2 and c ≤ a(G,KX)/vG(ψ) = 1/2, a

contradiction.

Now we assume that ζ does not contain any of the terms x, y, z. Then

ζ contains t. So,

φ = η(x, y, z) + t2 + tξ(x, y, z, t), ord0 ξ ≥ 2.

Further, vααα(η) ≤ 3 and η3 �= 0. We claim that α is admissible. Using (3.7)

we see that Eααα∩Xααα is given in σ−1
ααα � C4 by the equations x′ = η3(1, y

′, z′) =

0. If η3 is not a cube of a linear form, then Eααα∩Xααα has a reduced non-toric

component G. Then, as above, c ≤ 1/2, a contradiction.
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Finally assume that ζ does not contain any of the terms x, y, z and η3 is

a cube of a linear form. Then, as above, η3 �= 0 and up to linear coordinate

change we have η3(x, y, z) = y3. So,

φ = y3 + η•(x, y, z) + t2 + tξ(x, y, z, t), ord0 ξ ≥ 2, ord0 η
• ≥ 4.

Put α′ = (2, 2, 2, 3). Again, in the affine chart Ux := {x �= 0} the map

σ−1
ααα′ is given by x �→ x′2, y �→ y′x′2, z �→ z′x′2, t �→ t′x′3, where σ−1

ααα′ (Ux) �
C4/µ2(1, 0, 0, 1) and

Eααα′ ∩Xααα′ ∩ σ−1
ααα′ (Ux) = {x′ = 0, y′3 + t′2 = 0}.

Thus α′ is admissible and for some component G′ of Xααα′ ∩ Eααα′ we have

a(G′,KX) = 2, vG′(ψ) = 3, c ≤ 2/3, a contradiction.

3.8. Case η = x2 + ξ(y, z), where ord0 ξ ≥ 4. By Morse Lemma we

may assume that ζ does not depend on x. Write the linear part of ζ in

the form ζ1 = δ1y + δ2z + δ3t, δi ∈ C. Take α = (2, 1, 1, 3). In the affine

chart Uy := {y �= 0} the map σ−1
ααα is given by x �→ x′y′2, y �→ y′, z �→ z′y′,

t �→ t′y′3 and

Eααα ∩Xααα ∩ σ−1
ααα (Uy) = {y′ = 0, x′2 + ξ4(1, z

′) + δ1t
′ + δ2t

′z′ = 0}.

If either δ1 �= 0 or δ2 �= 0 or ξ4 �= 0, then Eααα ∩Xααα is reduced (at least over

Uy). Hence, α is admissible and for some component G of Eααα∩Xααα we have

c ≤ a(G,KX)/vG(ψ) = 2/3, a contradiction. Thus δ1 = δ2 = 0 and ξ4 = 0.

Then we can write

φ = x2 + ξ(y, z) + δ3t
2 + tζ•(y, z, t), ord0 ξ ≥ 5, ord0 ζ

• ≥ 2.

Take α′ = (2, 1, 1, 2). In the affine chart Uy := {y �= 0} the map σ−1
ααα′ is

given by x �→ x′y′2, y �→ y′, z �→ z′y′, t �→ t′y′2 and

Eααα′ ∩Xααα′ ∩ σ−1
ααα′ (Uy) = {y′ = 0, x′2 + δ3t

′2 + t′ζ•(2)(1, z
′, 0) = 0},

where ζ•(2)(y, z, t) = ζ•(2)(y, z, 0) is the degree 2 weighted homogeneous part

of ζ•. If δ3 �= 0 or ζ•(2) �= 0, as above, α′ is admissible and c ≤ 1/2, a

contradiction. Thus δ3 = 0, ζ•(2) = 0, and

φ = x2 + ξ(y, z) + δt3 + tζ◦(y, z, t), δ ∈ C, ord0 ξ ≥ 5, ord0 ζ
◦ ≥ 3.
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Applying the terminality condition [Rei87, Th. 4.6] with weight (2, 1, 1, 1)

we get δ �= 0.

Take α′′ = (3, 1, 1, 2). Again by the terminality condition ξ5 �= 0 or

ζ◦(3) �= 0, where ζ◦(3) is the degree 3 weighted homogeneous part of ζ◦. As

above we get

Eααα′′ ∩Xααα′′ ∩ σ−1
ααα′′ (Ux) = {x′ = 0, ξ5(y

′, z′) + t′ζ◦(3)(y
′, z′, t′) = 0}.

If either ζ◦(3) �= 0 or ξ5 has a factor of multiplicity 1, then α′′ is admissible

and c ≤ 1/2, a contradiction.

Therefore, we may assume that ζ◦(3) = 0 and ξ5 has only multiple factors.

Up to linear coordinate change of y and z we can write ξ5 = y5 or ξ5 = y2z3.

Take α′′′ = (3, 2, 1, 2). Then α′′′ is admissible and c ≤ 1/2, a contradiction.

3.9. Case η = x2+y3+ξ(y, z), where ord0 ξ ≥ 4. As in [KM98, 4.25]

we may assume that ξ(y, z) = uayz
a+ubz

b. Since the singularity (S � P ) is

not Du Val, we have a ≥ 4, b ≥ 6 and ua, ub are either units or zero. Write

the linear part of ζ in the form ζ1 = cz + "(x, y, t). Let ξ(6) is the degree 6

weighted homogeneous part of ξ with respect to wt(y, z) = (2, 1). Clearly,

ξ(6) is a linear combination of z6 and yz4. Take α = (3, 2, 1, 5). In the affine

chart Uz := {z �= 0} the map σ−1
ααα is given by x �→ x′z′3, y �→ y′z′2, z �→ z′,

t �→ t′z′5 and

Eααα ∩Xααα ∩ σ−1
ααα (Uz) = {z′ = 0, x′2 + y′3 + ξ(6)(y

′, 1) + δt′ = 0},

where δ is a constant and ξ(6)(y
′, 1) contains no y′3. Hence α is admissible,

i.e., Eααα ∩ Xααα has a reduced non-toric component G. Then a(G,KX) = 4,

vG(ψ) = 5, and c ≤ a(G,KX)/vG(ψ) ≤ 4/5, a contradiction. �

The following examples show that bounds ct(X,S) ≤ 5/6 and ≤ 4/5 in

Theorem 1.4 are sharp.

Example 3.10. Let X = C3 and let S = Sd is given by x2 + y3 + zd,

d ≥ 6. Then ct(C3, Sd) = 5/6. We prove this by descending induction

on �d/6�. Take α = (3, 2, 1) and consider the α-blowup σααα : C3
ααα → C3.

Let Sααα ⊂ Xααα be the proper transform of S. We have a(Eααα,KX) = 5 and

vααα(ψ) = 6. Hence, ct(C3, Sd) ≤ 5/6. Further,

KC3
ααα

+ 5
6Sααα = σ∗

ααα(KC3 + 5
6S).
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Thus it is sufficient to show that ct(Xααα,
5
6Sααα) is canonical. We have three

affine charts:

• Ux := {x �= 0}. Here σ−1
ααα : x �→ x′3, y �→ y′x′2, z �→ z′x′, Sααα is given

in σ−1
ααα (Ux) � C3/µ3(−1, 2, 1) by the equation 1 + y′3 + z′dx′d−6 =

0. Hence, in this chart, Sααα is smooth and does not pass through a

(unique) singular point of σ−1
ααα (Ux).

• Uy := {y �= 0}. Here σ−1
ααα : x �→ x′y′3, y �→ y′2, z �→ z′y′, Sααα is given

in σ−1
ααα (Uy) � C3/µ2(3,−1, 1) by the equation x′2 + 1 + z′dy′d−6 =

0. Again, in this chart, Sααα is smooth and does not pass through a

(unique) singular point of σ−1
ααα (Uy).

• Uz := {z �= 0}. Here σ−1
ααα : x �→ x′z′3, y �→ y′z′2, z �→ z′, Sααα is given

in σ−1
ααα (Uz) � C3 by the equation x′2 + y′3 + z′d−6 = 0. In this chart,

(Xααα, Sααα) � (C3, Sd−6).

Thus Xααα has only terminal singularities, Sααα does not pass through any

singular point of Xααα, and the pair (Xααα, Sααα) is terminal in charts Ux and

Uy. In the chart Uz the pair by induction (Xααα,
5
6Sααα) is canonical (moreover,

(Xααα, Sααα) is canonical if d ≤ 11). Therefore, ct(X,S) = 5/6.

Example 3.11. Let X ⊂ C4 is given by x2 + y3 + zd + tz = 0, d ≥ 7

and let S cut out by t = 0. Take α = (3, 2, 1, 5) and consider the α-blowup

σααα : Xααα → X. Let Sααα ⊂ Xααα be the proper transform of S. We see below

that α is admissible. Moreover, the exceptional divisor G := Eααα ∩ Xααα is

reduced and irreducible. We have four charts:

• Ux := {x �= 0}. Here σ−1
ααα : x �→ x3, y �→ yx2, z �→ zx, t �→ tx5,

Xααα is given in σ−1
ααα (Ux) � C4/µ3(−1, 2, 1, 5) by the equation 1 + y3 +

zdxd−6 + tz = 0 and Sααα by two equations x = 1 + y3 + tz = 0. Hence,

in this chart, both Xααα and Sααα are smooth.

• Uy := {y �= 0}. Here σ−1
ααα : x �→ xy3, y �→ y2, z �→ zy, t �→ ty5,

σ−1
ααα (Uy) � C4/µ2(3,−1, 1, 5), Xααα = {x2 + 1 + zdyd−6 + tz = 0}, and

Sααα = {y = x2 + 1 + tz = 0}. As above, both Xααα and Sααα are smooth

in this chart.

• Uz := {z �= 0}. Here σ−1
ααα : x �→ xz3, y �→ yz2, z �→ z, t �→ tz5,

σ−1
ααα (Uz) � C4, Xααα = {x2 + y3 + zd−6 + t = 0}, and Sααα = {z =

x2 + y3 + t = 0}. As above, both Xααα and Sααα are smooth in this chart.
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• Ut := {t �= 0}. Here σ−1
ααα : x �→ xt3, y �→ yt2, z �→ zt, t �→ t5,

σ−1
ααα (Ut) � C4/µ5(3, 2, 1,−1), Xααα = {x2 + y3 + zdtd−6 + z = 0}, and

Sααα = {t = x2 + y3 + z = 0}. The variety Xααα has a unique singular

point Q at the origin and this point is terminal of type 1
5(3, 2,−1). In

this case, Sααα ∈ | −KUt | and the pair (Ut, Sααα) is canonical.

Thus we have a(G,KX) = 4, vααα(ψ) = 5, and a(G,KX + 4
5S) = 0. Therefore,

KXααα + 4
5Sααα = σ∗

ααα(KX + 4
5S).

Since the pair KXααα + 4
5Sααα is canonical, ct(X,S) = 4/5.

4. Non-Gorenstein Case

Now we assume that (X � P ) is a (terminal) point of index r > 1. Let

π : (X� � P �) → (X � P ) be the index-one cover and let S� := π−1(S).

Lemma 4.1. If (X � P ) is a cyclic quotient singularity, then

ct(X,S) ≤ 1/2.

Proof. By our assumption we have X � C3/µr(a,−a, 1) for some

r ≥ 2, 1 ≤ a < r, gcd(a, r) = 1. Assume that c = ct(X,S) > 1/2.

Let ψ = 0 be a defining equation of S�. Consider the weighted blowup

σααα : Xααα → X with weights α = 1
r (a, r−a, 1). Then a(Eααα,KX) = 1/r. Since

a(Eααα,KX) − cvααα(ψ) ≥ 0, we have vααα(ψ) ≤ a(Eααα,KX)/c < 2a(Eααα,KX) =

2/r and so vααα(ψ) = 1/r. Thus we may assume that ψ contains x3 (if a ≡ ±1

we possibly have to permute coordinates). Then S� � C2 is smooth and

S � C2/µr(a,−a), i.e., S is Du Val of type Ar−1. �

Lemma 4.2. If (X � P ) is a terminal singularity of index r > 1 and

ct(X,S) > 1/2, then KX + S ∼ 0.

Proof. By Lemma 4.1 (X � P ) is not a cyclic quotient singularity.

There is an analytic µr-equivariant embedding (X�, P �) ⊂ (C4, 0). Let

(x1, x2, x3, x4) be coordinates in C4, let φ = 0 be an equation of X�, and let

ψ = 0 be an equation of S�. We can take (x1, x2, x3, x4) and φ to be semi-

invariants such that one of the following holds [Mor85] (see also [Rei87]):

- Main series. wt(x1, x2, x3, x4;φ) ≡ (a,−a, 1, 0; 0) mod r, where

gcd(a, r) = 1.
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- Case cAx/4. r = 4, wt(x1, x2, x3, x4;φ) ≡ (1, 3, 1, 2; 2) mod 4.

In both cases wt(x1x2x3x4) − wtφ ≡ wtx3 mod r. According to [Kaw92]

there is a weight α such that for the corresponding α-blowup σααα : Xααα ⊂
W → X ⊂ C4/µr the exceptional divisor Eααα∩Xααα has a reduced component

G of discrepancy a(G,KX) = 1/r. Moreover, rαi ≡ wtxi mod r, i =

1, 2, 3, 4. Since c > 1/2, we have 1/r − cvααα(ψ) ≥ 0, i.e., rvααα(ψ) < 2, so

rvααα(ψ) = 1. In particular, wtψ ≡ 1 mod r.

Let ω be a section of �X(−KX). Then ω can be written as

ω = λ(∂φ/∂x4)(dx1 ∧ dx2 ∧ dx3)
−1,

where λ is a semi-invariant function with

wtλ− wt(x1x2x3x4) + wtφ ≡ wtω ≡ 0 mod r.

Thus, wtψ ≡ wtλ mod r. Hence, S ∼ −KX . �

Lemma 4.3. If (X � P ) is a terminal singularity of index r > 1, then

c ≤ 4/5.

Proof. Since π is étale in codimension one, we have KX� + cS� =

π∗(KX + cS). Hence the pair (X�, cS�) is canonical (see, e.g., [Kol97,

3.16.1]). Assume that c > 4/5. By Lemma 4.1 the point (X� � P �) is singu-

lar. Then by Lemma 3.5 the pair (X�, S�) is canonical. Therefore, (S� � P �)

is a Du Val singularity. Then the singularity (S � P ) = (S� � P �)/µr is

log terminal. On the other hand, by Lemma 4.2 the divisor KS is Cartier.

Hence, (S � P ) is Du Val, a contradiction. �
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