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A Cohen Type Inequality for Polynomial Expansions
Associated with the Measure (1 —z)*(1+z)°dx+ Mé_,+ N&,

By Bujar Xh. FEJZULLAHU

Abstract. The purpose of this paper is to establish a Cohen type
inequality for Fourier expansion with respect to polynomials associated
with the measure (1 — 2)®(1 + z)%dx + Mé_1 + N&;, where &; is the
delta function at a point ¢ and M, N > 0.

1. Introduction and Main Result

In a well known paper [1] Cohen proved that for any trigonometric poly-
nomial Py(z) = Zévzl are™® where 0 < n; < ... < ny, N > 2, and
lag| > 1 for 1 < k < N, the following inequality holds:

/ |Pa(2)]dz > (L> .
0

loglog N

Motivated by the work of Cohen, inequalities of this type have been estab-
lished in various other contexts, e.g., for classical orthogonal expansions or
on compact groups (see [1], [2], [3], [6], [10], [12]). The aim of this article
is to prove a Cohen type inequality for Fourier expansions in terms of or-
thonormal polynomials relative to the Jacobi measure with two masses at
points x = +1.

Let wo g(z) = (1 — 2)%(1 4+ 2)?, (, 3 > —1), be the Jacobi weight on
the interval [—1,1]. In [11] T. H. Koornwinder introduced the sequence of

o,B8,M,N) ((E)

polynomials {qu o0 o which are orthogonal on the interval [—1, 1]

with respect to the measure

B MNa+p8+2)
- 200D (a + 1) (B + 1)

dp(z) Wa,g(x)dx + Mbo_1 + Né,
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where o« > —1, 6 > —1, and M, N > 0. They are called Koornwinder’s
Jacobi-type polynomials. We denote the orthonormal Koornwinder’s
Jacobi-type polynomial by p(a #.M,N) , which differs from P,sa’ﬁ M) by nor-
mahzatlon constant (see [15, p. 81]). For M = N = 0, denoted by
{pn o o, we have the classical Jacobi orthonormal polynomials (see [14,
Chapter IV]). It is known that, unlike the Jacobi orthonormal polynomials,
the polynomials p%a’ﬁ’M’N) for M > 0, N > 0 decay at the rate of n=*3/2
and n=%73/2 at the end points 1 and —1.

We shall say that f(z) € LP(du) if f(x) is p-measurable on the [—1, 1]

and || f]| zp(qu) < 00, where

(/L F@Pdu) i1 <p <,

ess sup | f(z)] if p = oc.
—1<z<1

Il Lo (apy=

Throughout this paper we denote by [LP(du)] the space of all bounded,
linear operators T : LP(du) — LP(dp), furnished with the usual operator

norm
T ()N Lo (dp)

17| =
P} = rerotawy 11| oo(an)

For f € L'(du), the Fourier expansion in Koornwinder’s Jacobi-type
polynomials is

(1.1) Zf I (),

where the Fourier coefficients are

/'f (@BMN) (1) ()

B INa+ [+ 2) a,@ N)
= e I [ @ @t

+ MF)R 1) N ),

The Cesaro means of order p of the expansion (1.1) are defined by (see [16,
p. 76-77))

n

@ﬁ@»=§jA' E F(Rpleo M) ()

k=0
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where A} = (kzp).

For a given sequence {cn}7_o, n € N U {0}, of complex numbers with
|cn,n| > 0, we define the operators T PN [LP(dp)] by

TS7B7M7N Z Ck nf (auB M N

The main result of the present paper is the following theorem:

THEOREM. Leta> (> —1/2,a> —1/2 and1 < p < co. There exists
a positive constant c, independent of n, such that

2042 _ 2043
no» ? if a <p<po
M.N 2a+1 .
T3P MM Lo = Clennl § (log n)ia+t  if p = po, p = qo
2041 20+2

n? 7 dfq<p<b

where pg = (da+4)/(2a+3), q = (da+4)/(2a+1), and
i) if M >0, N=0, thena=1 and b= o0
ii) if M >0, N >0, then1l<a,b<ooandl/a+1/b=1.

COROLLARY 1.1. Let o, 3, and p be as in Theorem. For ¢, = 1,
k=0,...,n, and for p outside the Pollard interval (po, qo)

[1SnlliLe(duy)— 00, 1 — 00

where Sy, denotes the nth partial sum of expansion (1.1).

P

AP
For ¢, = A" , 0 <k <n, the Theorem 1 yields:

COROLLARY 1.2. Let o, B, p, and p be given numbers such that a >
-1/2,

—1<B<a,

a<p<hb,

0<p< 2222088 4f 1 <p < p,
0<p< 2 — 22 if gy < p < oo.



246 Bujar Xh. FEJZULLAHU

Then, for p ¢ [po, qo)

||Uﬁ||Lpd — 00, N — Q.
[LP(dp)]

REMARK 1.1. Using the symmetry formula in [11], for the case M = 0
and N > 0 we get the same results as above but exchanging o and S.

Notice that the study of the convergence of Fourier expansions (1.1) has
been discussed in [7], [9].

2. Estimates for Koornwinder’s Jacobi-type Polynomials

In order to prove our main result, we need some estimates for Koorn-
winder’s Jacobi-type orthonormal polynomials. The representation of the

p,(la’ﬁ AN 44 terms of p,(la’ﬁ , a strong asymptotic on (—1, 1), a Mehler-Heine
type formula, Lebesgue norms of pﬁf‘ﬂ MN) are derived. Throughout this

paper, the positive constants are denoted by ¢, ¢/, ... and they may be differ-
ent at different occurrence. The notation u,, = v,, means that the sequence
U /vy converges to 1 and notation w, ~ v, means cu, < v, < cu, for
sufficiently large n.

ProprosITION 2.1. The representation of the pﬁf"ﬁ’MfN)

in terms of
p(avﬁvaO) 7;8
n

1) PPN (@) = Aupl PO (@) + Bule — D (@)
where
(2.2) A, = enm2072, B, 1.

PROOF. Let {P1}>, be the orthonormal polynomials with respect to

n=0
the measure (see proof of the Proposition 6 in [8])

(x — 1)} waps(x)dr + MS_1] = way2,5(x)de + 4MS_;.

Therefore P! = png_Qﬂ AMO0) Prom [8, Proposition 4] it follows

PPN (@) = Appleo PO @) + Bu(a — 1)p P ()

n—1
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where 1
lim A,L, 1(1,1) = —————
N
lim B, = ————,
00 A1)+ N
1
A1) =

i (L, 1)
Since (see [5, (3)] and [14, (4.5.8)])

n
Ln(la 1) — ZpgavﬁyMaO)(1)p§avﬁ7M:0)(1) o~ Cn2a+2
=0

we get (2.2). O

Combining the above proposition with [5, (7)] we obtain:

COROLLARY 2.1. The representation of the pq(f"ﬁ’M’N)

pgza,ﬁ) s

in terms of

(PN (@) = ) @) + b+ 1)l ()

Pn,
+ (e — P2 () + dy (2% — DL H ) ()

where

i) if M >0, N =0, then

an = cn_2’8_2, b,=21, ¢,=0, d,=0,

ii) if M >0, N >0, then

an ~ Cn72a72ﬂ74’

The following proposition establishes a strong asymptotic on (—1,1) for
p(a?ﬁ7M7N)
" .

PROPOSITION 2.2. For @ € [e,m — €] and € > 0

PLBMN () = 138(1 — 2)~/2 VA1 4 )02 cos(kO + 7) + O(n ),
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where x = cosB, k =n+ (a+B8+1)/2, v=—(a+1/2)7/2, and lim I3 =
2/m.

PrOOF. From (2.1) and [5, Lemma 1]

PPN w) = (A + Bsi (1 — ) /21 )
x cos(kf + ) 4 [An + Bn(z — 1)]O(n™1),
lim s0F = \/2/m. Now taking into account (2.2), the result follows. [J

n—oo

Next we give a Mehler-Heine type formula of the polynomials pﬁf’/” AMN)

for M >0 and N > 0.

PROPOSITION 2.3. Let |z| < R, and R a given positive real number.

Then . »
lim n*afl/zpsla’ﬁ’M’N)(cos —)==2""2 z %Jya(z2)
n

n—oo

where Jo(z) is the Bessel function of order a.
PrROOF. By (2.1) we have

n~0=1/2p(@B.MN) (cog %) = Apn~o1/2p(@B8.M0) (o %)

— 2B, sin%%) n_o‘_l/2p7(f‘+2’ﬁ’4M70) (cos %)

Using the estimates for the coefficients A,,, B,,, and the Mehler-Heine type

formula for orthonormal polynomials p%a’ﬁ ’M’O)(Cos Z) (see [5, Lemma 2])

lim n~@/2p(@BM0) (o5 %) = 2757 (2/2) " Ja(2),

n—oo n
the result follows. [
The proof of main result is based on following proposition.

PROPOSITION 2.4. Let a > —1/2 and M,N > 0. For 1 < ¢ < o

L c if 2a > qa — 2+ q/2,
/ (1= 2)*[plP M) (2)9dz ~ { log n if 20 = g — 2 4 q/2,
0 ndota/2=20=2 o0 < qo — 2 + q/2.
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PROOF. The upper estimate has been proved in [5, Theorem 1]. In
order to prove the lower estimate, we follow the same line as in [14, Theorem
7.34] (see also [5, Theorem 2]).

Le « > —1/2, M > 0 and N > 0. By using the Proposition 2.3 we get

-1

/2 "
/ 02a+1’p%a,ﬂ,M7N) (COS 9)|Qd0 > / 02a+1|p1(104,5,M,N) (COS 9)|qd9
0 0
1
= c/ (Z/n)2a+1nqa+q/2|z*aJa+2(z)|q n"Ydz ~ piata/2—2a-2
0

In the same way , for 2a = qo — 2 4 ¢/2, from [13, Lemma 2.1] we obtain

n—1/2

/2
/ g2t pl@ P MN) (o 0)[1d6 > / g2t p(@BMN) (o5 0)|9d0
0 0

nl/2

= c/ 220 27 T o (2)|7 dz > clogn.
0

Finally, we use Proposition 2.2 to obtain

/2
/ g2t p(@BMN) (o5 0)|9d0 > /
0 ™

w/2
92(]4»1 |pgla,/87M7N) (COS 9) ‘ng ~ C.

/4

The proof of case when M > 0 and N = 0 can be done in a similar way
(see [5, Theorem 2]). O

3. Proof of Theorem

Let us consider the test functions

where a > > —1/2, a > —1/2, and j € N. The following estimates
of the Fourier coefficients for the functions gg’ﬁ g () as well as the upper
bounds of their Lebesgue norms plays the essential role in proof of theorem.
By applying the operators Ty, B M N
j>a+1/2—(2a+2)/p, we get

to the test functions g,?f’ﬂ ’j, for some

n

j I\ ~ ) 9M»N

(3.1) TT?’B’M*N(gf;’ﬁ’J) — ch,n(gff’ﬁ”) (k)pl(f B )
k=0
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where

1

(g2%9)" (k) = / lgzﬂ’f(w)p;“ﬂ“vm ()du(z), k=0,1, ... ,n.

From Corollary 2.1, the Fourier coefficients of the function gg**” (z) are

208+ (@ + 1)T(B + 1)
I'a+6+2)

1
= [ Q=P @ ) o)

(gn7)" (k)

1
N ak/ (1 = 22Vl HHD (2)p\ ™ () we, 5 () dex
-1

1
+bk/ (1 —x2>jpgla+j’ﬁ+j)($)(l‘+ )p,(f’fw)(m)wa,ﬁ(x)dw
—1

1
b / (1 — 2P pet354) (1) ( — D)2 (1) () da
—1

1
_ dk/ (1 _ xQ)Jpﬁf‘ﬂ’ﬂ“)(x)(l _ x2)p](€0$2ﬁ+2) (:c)wa”g(a:)d:c
-1

_ I{c,n +I§’n +I§,n . Iic,n

where £k =0, 1, ... ,n, and it is assumed p()(x) =0fori=—1,-2.

K3

According to the [12, (2.8)] and [14, (4.3.4)] we get

(32) (1= a?)pH0) (@)

2j
= {plotif+i)y-1/2 Z by j (v, B, 1) ;ﬁi}l/zp(a B (2),
where h'gza,ﬁ) = 204+Bn—1’ bo,j(aa B, TL) = 4J and b2j7j(a7ﬁ7n) = (_4)]
Taking into account (3.2)

2j
I = A H P2 S b (e B m) 2

n+m
m=0

x / @ @ p(2) e
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Thus
" =0, 0<k<n-1,
(3.3) " = 2ia,, m =0,
=0, 0<m<2j.

Again, for k > 1, according to the [12, (2.8)] and [14, (4.3.4)]
Iéc,n - bk{hgla—l—jﬂ-&-j)}—1/2{h](€oi,f+2)}_1/2

1
< / (1 — #2)7 P3040 (1) (2 + 1) PP (2)wa () da
1

2j
= g { RTINS (0, Bym)
m=0

1
y / P (2)(@ + )PP (@)w 5(x)dr.
—1

n+m

Since (see [14, (4.5.4)])

(@,B842)  \ _ 2k (0,8+1)
(:E+1)Pk_1 (x) = Zk—l—oz—i-ﬁ—i—lpk (z)
2(k+ B +1) plass+D)

hratpiii-1 @

and deg Péf’fjﬂ) <n —1, we have

ko 2kby,
2 2%kta+pB+1

2] 1
<3 b gon) [P ) PP @) sl da,
m=0 -

{RlotdB+) }*1/2{hl(if+2) }-1/2

n

Formula 16.4 (11) in [4, p. 285] shows that

1
34) [ PO @) PO @) i pla)da
Fn+DI'a+p+n+2)
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This formula can also be proved by using identity (9.4.1) in [14, p. 256].
Thus

=, 0<k<n-1,
(3.5) " =2 27, m =0,
" =0, 0<m<2j.

In a similar way, for k& > 1, using symmetry p,(la’m(—x) = (—1)”p£{6’a) (x)
we find that

mwm=o, 0<k<n-1,
(3.6) I =9, m=0,
" =0, 0<m<2j.

Finally, for & > 2

27
(3.7) It = di{he TP Y222 N g (0, B,)

m=0
1
X / 1P,§iﬁ>(x)(1 — )PP (1) g 5(x)de,

On the other hand, from [12, (2.8)] and [14, (4.5.3)] we have the following

relations
(1 — 2P (1) = byy(a + 1,8 + 1,n) P (1)
Fba(a+ 1,8+ 1,n) PRt ()
+boa(a+1, 8+ 1,n)PTH T (2

and

n—1
N Znta+B+1_ a,
PletLB+D) () = e P ’6+1)(I)+ch,kp,§ B+1)(;r).

k=0

By using these relations and (3.4) we also find from (3.7) that
rm =, 0<k<n-1,

(3.8) Ip" = —4.21d,, m =0,
" =0, 0<m<2j.
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As a conclusion, by using (3.3), (3.5), (3.6), (3.8), and Corollary 2.1 we
find that:

i) If M >0, N =0, then

{ﬁm>w

(39) (92%9)" () =

Il
o L
o
IA
e
N
3
|
—_

ii) If M >0, N >0, then

@O (k)y=0, 0<k<n-1
(gn™") " (n) =4 2.
On the other hand, from [12, (3.1)]
[(a+6+2)

767 9. 9
(3.11) Hgn ]HLp(du 2a+ﬁ+lr(a + 1) (ﬂ T 1) ” In BjHLp (Wa de)< c

for j >Oz+%—(2a+2)/p>ﬂ+%—(2ﬂ+2)/p and gy < p < c0.
We are now in position to prove Theorem.

PROOF OF THEOREM. Let > (> —1/2 and a > —1/2. We assume
that qg < p < b, where

b=oo if M >0, N=0,
b<oo ifM>0, N>O0.

The assertion for a < p < pg, a is the index dual to b, then follows by
duality. From (3.1), (3.9), (3.10), and (3.11) we have

(312) TP N a2 119777 o)~ IT M 9029 | oay

> ¢ (BMN L a-

By Proposition 2.4 we have

@BMN)| gy

V

172

(logn)/? if p = qo,
N 2a+1)/2-2a42)/p 3¢ do < p < 0.
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On combining this and [5, (13)] with (3.12), the statement is seen to be
true. 0
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