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Symbolical and Geometrical Characterizations

of Kronecker Sequences by Using

the Accelerated Brun Algorithm

By Takahiko Fujita, Shunji Ito and Syoiti Ninomiya

Abstract. We give a van der Corput-type expression of the multi-
dimensional Kronecker sequence and a geometrical characterization of
its distribution property. We can consider the latter to be a multi-
dimensional analogue of the “three-distance theorem.” All these results
were obtained by using the accelerated Brun algorithm.

0. Introduction

The sequence xn = (nα1− [nα1], . . . , nαs− [nαs]); n ∈ N, (α1, . . . , αs) ∈
Rs, called the Kronecker sequence with respect to (α1, . . . , αs), is distributed

uniformly in the s-dimensional unit cube if and only if 1, α1, . . . , αs are lin-

early independent over Q. There is another well-known classical uniformly

distributed sequence, called the van der Corput sequence. Many studies

have been made of the distribution properties of these sequences [2,6,7,9].

In this paper, we study Kronecker sequences by using the accelerated

Brun algorithm [13].

Theorem 3.1 shows that we can construct the set of admissible words

and the orbit of the origin by the adding machine transformation (Defi-

nition 3.5) on this set expresses the given Kronecker sequences. We can

consider the van der Corput sequence to be the orbit of the origin under

the adding machine transformation. Therefore, we say that the theorem

gives a van der Corput-type expression of the Kronecker sequence. Follow-

ing this principle of regarding the van der Corput sequence as an orbit of

the adding machine transformation, a generalization of the van der Corput
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sequence is studied in [8,10,11]. Pagès [12] and Hellekalek [3] also consider

the van der Corput sequence from this point of view.

We see from Theorem 5.1 that the distribution of the Kronecker sequence

is connected with the stepped surface associated with the accelerated Brun

algorithm. The notion of stepped surfaces is introduced by Ito and Oht-

suki [5]. They construct the stepped surface associated with the modified

Jacobi-Perron algorithm. The theorem gives a geometrical characterization

of the Kronecker sequence and it is reasonable to say that this theorem is

a multidimensional analogue of the classical three-distance theorem for the

one-dimensional sequence generated by irrational rotation [14]. We empha-

size here that the ergodic property of irrational rotations plays an essential

role in the proof of the theorem.

1. Kronecker Sequences

First, we recall notions of irrational rotations and Kronecker sequences.

N, Z, Q, and R are sets of all natural numbers, all integers, all rational

numbers, and all real numbers, respectively. We also set

R>a = {r ∈ R | r > a}
Z≥n = {i ∈ Z | i ≥ n}

...

and so on. I denotes the unit matrix. Id denotes the d-dimensional unit

matrix.

For x ∈ R, [x] denotes the integer part of x, and [(x1, . . . , xs)] means for

([x1], . . . , [xs]).

Let Fα be a parallel shift on Rs by α, where α ∈ Rs, i.e., Fα : x �→ x+α.

Definition 1.1. A transformation on the s-dimensional unit cube

[0, 1)s defined by x �→ Fαx (mod Zs) is called an irrational rotation if

α = (α1, . . . , αs) satisfies the following condition.

(IR) 1, α1, . . . , αs are linearly independent over Q.
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Let α = (α1, . . . , αs) ∈ (0, 1)s satisfy the condition (IR) and α′ =

(1 + α1 + · · · + αs)−1α. Let Lα be a Z-module defined by (1.1).

(1.1) Lα = Z




1 + α1

α2

...

αs


+ Z




α1

1 + α2

...

αs


+ · · · + Z




α1

α2

...

1 + αs




The transformation Fα′ (mod Zs) over Rs/Zs and the transformation Fα
(mod Lα) over Rs/Lα are isomorphic, that is to say there exists a linear

isomorphism Φα : Rs/Lα → Rs/Zs that satisfies Φα◦(Fα (mod Lα)) = (Fα′

(mod Zs)) ◦ Φα. Note that when α satisfies (IR), α′ also satisfies (IR)

and vice versa. In this paper, we consider Fα (mod Lα) rather than Fα′

(mod Zs).

Definition 1.2. Let α ∈ (0, 1)s satisfy (IR) and let Lα be a Z-module

defined by (1.1). We define the transformation Rα over Rs/Lα as Fα
(mod Lα). The s-dimensional Kronecker sequence Kα = {Kα(n)}∞n=0 with

respect to α is defined by Kα(0) = 0, Kα(n+ 1) = RαKα(n).

2. The Accelerated Brun Algorithm

In this section, we define the multidimensional continued fraction algo-

rithm, called the accelerated Brun algorithm [13].

Definition 2.1. Let

X =
{
x = (x1, . . . , xd) ∈ [0, 1)d

∣∣∣ x1 > x2 > · · · > xd
}
.

For α = (α1, . . . , αd) ∈ X that satisfies (IR), we define

a(α) =

[
1

α1

]
,

ε(α) =




1 if 1
α1 −

[
1
α1

]
> α2

α1

i if αi

α1 >
1
α1 −

[
1
α1

]
> αi+1

α1 and 1 < i < d

d if αd

α1 >
1
α1 −

[
1
α1

]
and
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T (α) =

(
α2

α1
, . . . ,

αε(α)

α1
,

1

α1
− a(α),

αε(α)+1

α1
, . . . ,

αd

α1

)
.

The triple (X,T, (a(α), ε(α))) is called the accelerated Brun algorithm. We

also define αn, an, and εn as follows:

αn =

{
α if n = 0

T (αn−1) if n ≥ 1,

(an, εn) = (a(αn−1), ε(αn−1)) for n ≥ 1.

Definition 2.2. For a ∈ N and ε ∈ {1, . . . , d}, we define a matrix

A(a,ε) ∈ GL(d+ 1,Z) as follows:

A(a,ε) = (Aij)0≤i,j,≤d

where

Aij =




a if (i, j) = (0, 0)

1 if (i, j) = (0, ε)

1 if (i, j) = (i, i− 1) and 1 ≤ i ≤ ε
1 if (i, j) = (i, i) and ε+ 1 ≤ i ≤ d
0 otherwise.

Definition 2.3. For α ∈ X satisfying (IR), we define M(α), Mn(α)

and θn(α) as follows:

M(α) = A(a(α),ε(α)),

Mn(α) =

{
I if n = 0

Mn−1(α)M(αn−1) if n ≥ 1,

θn(α) =

{
1 if n = 0

θn−1(α)α1
n−1 if n ≥ 0.

For 0 ≤ i, j ≤ d, we define mn(α; i, j) as the (i, j)-entry of Mn(α), i.e.,

Mn(α) = (mn(α; i, j))0≤i,j≤d .
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We also define

ln(α, j) =
d∑

i=0

mn(α; i, j).

Definition 2.4. For α ∈ X satisfying (IR), we define bn(α) ∈ Rd and

d× d-matrices B(α), Bn(α) as follows:

bn(α) =
(
mn(α; 0, 0)αj −mn(α; j, 0)

)
1≤j≤d

for n ≥ 0,

B(α) = (Bij)1≤i,j≤d

where Bij =




1 if (i, j) = (i, i− 1) and 2 ≤ i ≤ ε(α)

1 if (i, j) = (i, i) and ε(α) + 1 ≤ i ≤ d
−αi if (i, j) = (i, ε(α))

0 otherwise

,

and

Bn(α) =

{
I if n = 0

Bn−1(α)B(αn−1) if n ≥ 1.

We also define bin(α) as the i-th element of bn(α), i.e.,

bn(α)i = mn(α; 0, 0)αi −mn(α; i, 0) i = 1, . . . , d.

Definitions 2.2, 2.3, and 2.4 and direct calculations lead to the following

proposition.

Proposition 2.1. For all n ∈ Z≥0, we have

(
1
tα

)
= θn(α)Mn(α)

(
1

tαn

)
(2.1)

and

bn(α) = Bn(α)tαn.(2.2)
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3. Van der Corput-type Expression

We construct a unique expansion of natural numbers associated with

the accelerated Brun algorithm. By using this expansion, we obtain a

van der Corput-type expression of the Kronecker sequence.

From now on, in this paper, we let α ∈ X satisfy (IR) and we let αn
and (an, εn) be generated from α by the accelerated Brun algorithm.

From definition 2.3, we have

ln+1(α; 0) = an+1ln(α; 0) + ln(α; 1)

ln+1(α; 1) = ln(α; 2)

...

ln+1(α; εn+1 − 1) = ln(α; εn+1)

ln+1(α; εn+1) = ln(α; 0)

ln+1(α; εn+1 + 1) = ln(α; εn+1 + 1)

...

ln+1(α; d) = ln(α; d).

(3.1)

These recurrent relations (3.1) immediately lead us to the following propo-

sition.

Proposition 3.1. For all n ≥ 0, there exists a unique k ≥ 0 which

satisfies

ln(α; 1) = ln−k(α; 0).

Definition 3.1. We define k(n) as the k in the previous proposition.

For any positive integer N , we have the unique expansion of N in the

following definition. This is a d-dimensional analogue of the well-known

expansion associated with one-dimensional continued fraction [4,6,15].

Definition 3.2. Let N be a positive integer. We define c(N), e(N),

and r(N) as follows:

c(N) = max {c ∈ Z≥0| lc ≤ N}
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e(N) = max {e ∈ Z≥0| elc(N) ≤ N
}

r(N) = N − e(N)lc(N),

where ln = ln(α; 0). We remark that r(N) < N holds and, taking this

inequality into account, we can define s(N) and cj , j = 0, . . . , s(N) thus:

s(N) = min {s ∈ Z≥0| rs+1(N) = 0
}

cj =

{
c(N) if j = 0

c(rj(N)) if j ≥ 1,

where rj(N) denotes r(r(. . . r(N) . . . ))︸ ︷︷ ︸
j times

. Define ej(N), j = 0, 1, . . . , c(N) as

follows:

ej(N) =

{
e(ri(N)) if 0 ≤ ∃i ≤ s(N) such that j = ci,

0 otherwise.

We then have the unique expansion of N ,

(3.2) N =

c(N)∑
j=0

ej(N)lj(α; 0),

associated with the sequence {ln(α; 0)}∞n=0.

Definition 3.3. We define a set Ω0
α of sequences of non-negative in-

tegers as follows:

Ω0
α =
{
(e0(N), e1(N), . . . , ec(N)(N), 0, 0, . . . ) | N = 0, 1, 2, . . .

}
.

We also define Ω0
α(N) as (e0(N), . . . , ec(N)(N), 0, 0, . . . ).

Definition 3.4. Let Yi be a finite set {0, 1, . . . , ai} with discrete topol-

ogy and Y =
∏∞

i=0 Yi with the product topology. We define Ωα as the

closure of Ω0
α in Y .

From Proposition 3.1, Definition 3.2, Definition 3.3, and Definition 3.4

we have the following proposition:
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Proposition 3.2. (e0, e1, . . . , en, . . . ) ∈ (Z≥0)
N belongs to Ωα if and

only if following two conditions hold.

(1) ej ≤ aj+1 for all j = 0, 1, 2, . . . .

(2) ej = aj+1 implies ej−1 = · · · = ej−k(j)−1 = 0.

The adding machine transformation 1+ : Ωα → Ωα is defined in the

following.

Definition 3.5. For e = (e0, e1, . . . ) ∈ Ωα we define

1+(e) = (0, . . . , 0, ej + 1, ej+1, ej+2, . . . ) ,

where

j = min {i ∈ Z≥0 | (0, . . . , 0, ei + 1, ei+1, ei+2, . . . ) ∈ Ωα } .

We say 0 = (0, 0, . . . ) as the origin of Ωα. Remark that

(1+)n(0) = Ω0
α(n) for all n ∈ Z≥0.

In the following definition, we define a mapping ρ from Ω0
α to Rd/Lα.

Definition 3.6.

ρ(e0, e1, . . . , en, 0, 0 . . . ) =
n∑

k=0

ekbk(α) (mod Lα)

When
∑∞

k=0 ekbk(α) (mod Lα) = y ∈ Rd/Lα exists for an e =

(e0, e1, . . . ) ∈ Ωα, ρ(e) denotes the value y and we say that e is the ex-

pansion of y.

The following theorem shows that the adding machine transformation

on Ωα and the irrational rotation Rα are connected by ρ.

Theorem 3.1. Let e ∈ Ωα. When ρ(e) exists, it follows that

ρ(1+(e)) = Rα(ρ(e)).
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Corollary 3.1.

Kα(N) = ρ(Ω0
α(N)) for all N ∈ Z≥0.

Proof. Let e = (e0, e1, . . . ) and 1+(e) = (0, . . . , 0, ek + 1, ek+1,

ek+2, . . . ). The following equality

(3.3) lk(α; 0) =
k−1∑
j=0

ejlj(α; 0) + 1

holds from Definition 3.2. From Definition 2.3 and Definition 2.4, we have

lj(α; 0)α =
d∑

i=0

mj(α; i, 0)α(3.4)

= bj(α) +mj(α; 1, 0)




1 + α1

α2

...

αd


+mj(α; 2, 0)




α1

1 + α2

...

αd




+ · · · +mj(α; d, 0)




α1

α2

...

1 + αd




= bj(α) (mod Lα) for all j ∈ Z≥0.

From (3.3),

bk(α) −
k−1∑
j=0

ejbj(α) = lk(α; 0)α−
k−1∑
j=0

ejlj(α; 0)α(3.5)

=


lk(α; 0) −

k−1∑
j=0

ejlj(α; 0)


α

= α.
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We also have

(3.6) ρ(1+(e)) − ρ(e) = bk(α) −
k−1∑
j=0

ejbj(α) (mod Lα)

from Definition 3.6. From these equalities (3.5) and (3.6), we have

ρ(1+(e)) = ρ(e) + α (mod Lα),

and the theorem follows. �

4. Stepped Surfaces

We define stepped surfaces and substitutions on these from the acceler-

ated Brun algorithm. The notion of stepped surfaces was first introduced

by Ito and Ohtsuki [5]. We introduce the notion following Arnoux and

Ito [1].

Let A be a set of d+ 1 letters, i.e., A = {0, 1, . . . , d}. Let A∗ be the set

of finite words on the set A, i.e., A∗ =
⋃∞

n=0 An. A∗ is endowed with the

concatenation product. A substitution σ on A∗ is an endomorphism of A∗

defined as follows:

(1) for i ∈ A, σ(i) =W (i) ∈ A∗,
(2) for all U, V ∈ A∗, σ(UV ) = σ(U)σ(V ).

For a word U , leng(U) denotes its length and U(i) ∈ A denotes the i-th

letter of U , that is to say U = U(1)U(2) · · ·U(leng(U)). When j < k,

U [j, k) denotes the word U(j)U(j + 1) · · ·U(k − 1) and U(j, k] the word

U(j + 1)U(j + 2) · · ·U(k). When j ≥ k, U [j, k) and U(j, k] denote the

empty word.

Definition 4.1. We define a homomorphism f : A → Zd+1 as follows:

f(i) = ei for i ∈ A,
f(UV ) = f(U) + f(V ) for U, V ∈ A∗,
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where ei, i = 0, 1, . . . , d denotes the i-th unit vector in Rd+1. We define a

linear transformation 0σ by the following commutative relation.

A∗ σ−−−→ A∗

f

$ $f
Zd+1

0σ−−−→ Zd+1

Definition 4.2. A substitution σ is called unimodular if 0σ has deter-

minant 1 or −1.

We consider only unimodular substitutions in the following part of this

paper.

Definition 4.3. We define Z-modules F and F∗ as follows:

F =
⊕

Zd+1×A
Z

F∗ = {u ∈ HomZ(F ,Z) | support of u is finite.}

For g ∈ F and h ∈ F∗, 〈h, g〉 denotes the natural pairing.

For x ∈ Zd+1 and i ∈ A, (x, i) is identified with the element of F which

takes value 1 at (x, i), and 0 elsewhere. (x, i∗), i ∈ A denotes the element

of F∗ defined by

〈(x, i∗), (y, j)〉 =

{
1 if x = y and i = j

0 otherwise.

We remark that the set
{
(x, i)

∣∣ x ∈ Zd+1, i ∈ A
}

is a basis of F and the set{
(x, i∗)

∣∣ x ∈ Zd+1, i ∈ A
}

is its dual basis. For a unimodular substitution

σ defined as above, we define the one dimensional geometric realization
1σ : F → F and its dual map 1σ∗ : F∗ → F∗ as in the following definition.

Definition 4.4.

1σ(x, i) =

leng(W (i))∑
k=1

(
0σ(x) + f

(
W (i)[1, k)

)
,W (i)(k)

)
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〈1σ∗(u), v〉 = 〈u, 1σ(v)〉, for all u ∈ F∗, v ∈ F .

From Definition 4.3, Definition 4.2, and Definition 4.4, we have the fol-

lowing lemma.

Lemma 4.1 (Arnoux-Ito [1]). The map 1σ∗ is defined by

1σ∗(x, i∗) =
∑

1≤k, j∈A
W (j)(k)=i

(
0σ−1

(
x− f

(
W (j)[1, k)

))
, j∗
)
.

We define a mapping R that gives a geometric interpretation of F∗ and
1σ∗. For i ∈ A, t ∈ R and s ∈ {0, 1}, λs(i; t) is defined as follows:

λ0(i; t) = tei

λ1(i; t) = (1 − t)ei.

We define Ei a subset of Rd+1 as follows:

E

(
s1, s2, . . . , sn
i1, i2, . . . , in

)
= {λs1(i1; t1) + · · · + λsn(in; tn) | 0 ≤ t1, . . . , tn < 1} ,

Ei = ei + E

(
1, 1, . . . , 1, 0, . . . , 0

0, 1, . . . , i− 1, i+ 1, . . . , d

)
.

Definition 4.5. Any u ∈ F∗ is uniquely expressed as a finite sum

u =
∑
k

uk(xk, i
∗
k) if k �= j, (xk, ik) �= (xj , ij).

When all coefficients uk are 1 or −1, u is called geometric. For a geometric

u ∈ F∗, R(u) ⊂ Rd+1 is defined as follows:

R((x, i∗)) = x+ Ei,

R
(∑

k

uk(xk, i
∗
k)

)
=
⊔
k

R((xk, i
∗
k)).
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Fig. 4.1. E0, E1, and E2, (d = 2)

vn ∈ Rd+1, Pn, P
>
n , P

≥
n ⊂ Rd+1 and Ln ⊂ Zd+1 are defined for α as follows:

vn =

{ ∑d
k=0 ek if n = 0

tA(an,εn)vn−1 if n ≥ 1,
(4.1)

Pn =
{
x ∈ Rd+1

∣∣txvn = 0
}
,(4.2)

P>
n =

{
x ∈ Rd+1

∣∣txvn > 0
}
,(4.3)

P≥
n =

{
x ∈ Rd+1

∣∣txvn ≥ 0
}
,(4.4)

Ln =

{
Z(e1 − e0) + Z(e2 − e0) + · · · + Z(ed − e0) if n = 0

A−1
(an,εn)Ln−1 if n ≥ 1.

(4.5)

We have the following proposition immediately from the definition.

Proposition 4.1. For all n ∈ Z≥0, A
−1
(an,εn)Pn−1 = Pn and Ln =

Pn ∩ Zd+1.

In the following definition, we define stepped surfaces Sn and S′
n on Pn.

Definition 4.6. Cn and C′
n ⊂ F∗ are defined as follows:

Cn =
{

(x, i∗)
∣∣∣R((x, i∗)) ⊂ P>

n and x /∈ P>
n

}
C′
n =
{

(x, i∗)
∣∣∣R((x, i∗)) ⊂ P≥

n and x /∈ P≥
n

}
.

Sn and S ′
n are families of all finite subsets of Cn and C′

n respectively, i.e.,

Sn =

{∑
λ∈Λ

(xλ, i
∗
λ)

∣∣∣∣∣ #Λ <∞, (xλ, i∗λ) ∈ Cn,
(xλ, i

∗
λ) �= (xλ′ , i∗λ′) for all λ �= λ′

}
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and

S ′
n =

{∑
λ∈Λ

(xλ, i
∗
λ)

∣∣∣∣∣ #Λ <∞, (xλ, i∗λ) ∈ C′
n,

(xλ, i
∗
λ) �= (xλ′ , i∗λ′) for all λ �= λ′

}

where elements are denoted as formal sums. An element of Sn (or S ′
n) and

its image by R are called a patch of the stepped surface. If U, V,W ∈ Sn

(or S ′
n) satisfy U = V +W , we write V ≺ U and define U − V = W . Sn

and S′
n are defined as follows:

Sn =
⋃

U∈Sn

R(U), S′
n =

⋃
U∈S′

n

R(U).

We now construct the substitution between stepped surfaces. First, we

define substitutions σn, n ∈ N on the set A∗ as follows:

(4.6) σn(i) =




W
(0)
n = 00 . . . 0︸ ︷︷ ︸

an times

1 if i = 0

W
(1)
n = 2 if i = 1

...

W
(εn−1)
n = εn if i = εn − 1

W
(εn)
n = 0 if i = εn

W
(εn+1)
n = εn + 1 if i = εn + 1

...

W
(d)
n = d if i = d.

We introduce the following two lemmas which show that 1σ∗n induces a

mapping from Sn−1 (resp. S ′
n−1) to Sn (resp. S ′

n).

Lemma 4.2. For all (x, i∗) ∈ Cn−1 (resp. C′
n−1), it follows that

1σ∗n(x, i∗) ∈ Sn (resp. S ′
n).

Proof. We prove the lemma for the case in which (x, i∗) ∈ Cn−1. We

can prove the case of C′
n−1 in the same way. First we show that

(4.7)
(
A−1

(an,εn)

(
x− f

(
W (j)

n [1,m)
))
, j∗
)
∈ Cn
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holds for all i,m, j that satisfy W
(j)
n (m) = i.

Let i,m, j satisfy W
(j)
n (m) = i. We know by (4.1) that

(4.8) vn = tMn(α)
d∑

k=0

ek = (ln(α; 0), . . . , ln(α, d)) ∈ Nd+1

holds for all n ∈ Z≥0. From this fact and Definition 4.6, we have

(4.9) A−1
(an,εn)

(
x− f

(
W (j)

n [1,m)
))

∈ P<
n .

Taking Definition 4.1 into account, we see that

0σ−1
n

(
x− f

(
W (j)

n [1, k)
))

+ ej(4.10)

= 0σ−1
n

(
x− f

(
W (j)

n [1, k)
)

+ f(σ(j))
)

= 0σ−1
n

(
x+ ei + f

(
W (j)

n (k, leng(W (j)
n )]
))
.

By (4.7) it follows that

tf
(
W (j)

n (k, leng(W (j)
n )]
)
vn−1 > 0,

and it follows that

(4.11) x+ ei + tf
(
W (j)

n (k, leng(W (j)
n )]
)
∈ P>

n−1.

From (4.10) and (4.11), we have

(4.12) 0σ−1
n

(
x− f

(
W (j)

n

))
+ ej ∈ P>

n .

(4.7) follows from (4.9) and (4.12).

Second, we show that 1σ∗n(x, i∗) is geometric for all (x, i∗) ∈ Cn−1. Let

(
0σ−1

n

(
x− f

(
W (j)

n [1, k)
))
, j∗
)

=
(

0σ−1
n

(
x− f

(
W (j′)

n [1, k′)
))
, j′∗
)
.
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If W
(j)
n (k) = W

(j′)
n (k) = i then j = j′. If k < k′ then f(W

(j′)
n [1, k′)) �=

f(W
(j)
n [1, k)) holds and it contradicts the fact that 0σn ∈ GL(d + 1; Z).

Thus k = k′ and j = j′. By virtue of Lemma 4.1 we know that 1σ∗n(x, i∗) is

geometric. From this fact, (4.7), and Lemma 4.1, we see that the lemma is

proved. �

Lemma 4.3. For all (x1, j
∗
1), (x2, j

∗
2) ∈ Cn−1 (or C′

n−1), if there exists a

unit chip (y, i∗) which satisfies (y, i∗) ≺ 1σ∗n(x1, j
∗
1) and (y, i∗) ≺ 1σ∗n(x2, j

∗
2)

then (x1, j
∗
1) = (x2, j

∗
2) holds.

Proof. We prove the lemma for the case of Cn−1. We can prove the

case of C′
n−1 in the same way. Let

(x1, j
∗
1), (x2, j

∗
2) ∈ Cn−1,

(y, i∗) ≺ 1σ∗n(x1, j
∗
1), and (y, i∗) ≺ 1σ∗n(x2, j

∗
2).

(4.13)

By virtue of Lemma 4.1, we know that there exist k1 and k2 which satisfy

the following equalities.

(4.14) y = 0σ−1
n

(
x1 − f

(
W (i)

n [1, k1)
))

= 0σ−1
n

(
x2 − f

(
W (i)

n [1, k2)
))
.

Remark that the equality

(4.15) x1 − f
(
W (i)

n [1, k1)
)

= x2 − f
(
W (i)

n [1, k2)
)

follows.

First, we assume x1 = x2. In this case, we have k1 = k2 andW
(j1)
n (k1) =

W
(j2)
n (k2) = i from (4.14). Then we see j1 = j2 follows from the definition

of σn (4.6) and the lemma follows.

Then we assume x1 �= x2. k1 �= k2 holds. Let k1 < k2. We have

x1 + f(W
(i)
n [k1, k2)) = x2 from (4.15). This equality and j1 =W

(i)
n (k1) lead

to (x2, j
∗
2) /∈ Cn−1. This contradicts (4.13). �

Definition 4.7. Mappings 1σ∗n
∣∣
Sn

and 1σ∗n
∣∣
S′
n

are called substitutions

on stepped surfaces associated with the accelerated Brun algorithm.
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5. Kronecker Sequences and Domain Exchange

Transformations

In this section, we see the correspondence between the distribution of

the Kronecker sequence Kα and stepped surfaces associated with the accel-

erated Brun algorithm.

First, we prepare five lemmas related to stepped surfaces and domain

exchange transformations.

Let U , U ′, U(i), and U ′(i) (i ∈ A) denote elements of F∗ as follows:

U(i) = (0, i∗), U ′(i) = (−ei, i
∗),

U =

d∑
i=0

U(i), U ′ =

d∑
i=0

U ′(i).
(5.1)

From (IR), U (resp. U ′) belongs to S0 (resp. S ′
0). Taking this into account,

we define Un(i), Un ∈ Sn and U ′
n(i), U ′

n ∈ S ′
n (i ∈ A, n ∈ Z≥0) as follows:

Un(i) =

{
U(i) if n = 0
1σ∗n(Un−1(i)) otherwise,

Un =

{
U if n = 0
1σ∗n(Un−1) otherwise,

U ′
n(i) =

{
U ′(i) if n = 0
1σ∗n(U ′

n−1(i)) otherwise,

U ′
n =

{
U ′ if n = 0
1σ∗n(U ′

n−1) otherwise.

(5.2)

From Lemma 4.3,

(5.3) Un =
⊔
i∈A
Un(i) and U ′

n =
⊔
i∈A
U ′
n(i)

hold.

Figures 5.1, 5.2, and 5.3 show examples of U , U ′, Un, and U ′
n in the case

where d = 2, α1 = 1/
√

3, α2 = 1/
√

5, (an, εn) = (1, 2), (1, 2), (1, 2), (3, 1),

(4, 2), (1, 1), (3, 1), (4, 1), . . . . In these figures, we mark cells that belong to

Un(2) or U ′
n(2) with crosses and cells that belong to Un(3) or U ′

n(3) with

black squares.
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Fig. 5.1. U and U ′

Fig. 5.2. U4

Lemma 5.1 ([1]). For all n ∈ Z≥0, U ≺ Un, U
′ ≺ U ′

n and Un − U =

U ′
n − U ′ hold.

Proof. If n = 0, the statement holds. We assume that U ≺ Un−1,

U ′ ≺ U ′
n−1 and Un−1 − U = U ′

n−1 − U ′ hold. From these assumptions and

following two equalities:

Un − U = 1σ∗n(Un−1 − U) + 1σ∗n(U) − U
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Fig. 5.3. U ′
4

and

U ′
n − U ′ = 1σ∗n(U ′

n−1 − U ′) + 1σ∗n(U ′) − U ′,

it is enough to show that U ≺ 1σ∗n(U), U ′ ≺ 1σ∗n(U ′) and 1σ∗n(U) − U =
1σ∗n(U ′) − U ′ hold. If W

(j)
n (1) = i, we have (0, j∗) ≺ 1σ∗n(0, i∗) from

Lemma 4.1. Then U ≺ 1σ∗n(U) holds. If W
(j)
n (leng(W

(j)
n )) = i, we have

1σ∗n(−ei, i
∗) �

(
0σ−1

n

(
−ei − f

(
W (j)

n

[
1, leng

(
W (j)

n

))))
, j∗
)

=
(

0σ−1
n

(
−f
(
W (j)

n

))
, j∗
)

= (−ej , j
∗)

from Lemma 4.1. Then U ′ ≺ 1σ∗n(U ′) holds. When W
(j)
n (k) = i, we have

ei + f
(
W (j)

n [1, k)
)

= f
(
W (j)

n [1, k + 1)
)

(5.4)

when k < leng
(
W (j)

n

)
and
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0σ−1
n

(
−ei − f

(
W (j)

n [1, k)
))

= −ej(5.5)

when k = leng
(
W (j)

n

)
.

From Lemma 4.1 and equalities (5.4) and (5.5), we have

1σ∗n(U ′) =
∑
i∈A

1σ∗n(−ei, i
∗)(5.6)

=
∑
i∈A

∑
1≤k, j∈A
W

(j)
n (k)=i

(
0σ−1

n

(
−ei − f

(
W (j)

n [1, k)
))
, j∗
)

=
∑
j∈A

leng(W
(j)
n )∑

k=1

(
0σ−1

0

(
−e

W
(j)
n (k)

− f
(
W (j)

n [1, k)
))
, j∗
)

=
∑
j∈A

leng(W
(j)
n )−1∑

k=1

(
0σ−1

n

(
−f
(
W (j)

n [1, k + 1)
))
, j∗
)

+
∑
j∈A

(−ej , j
∗)

=
∑
j∈A

leng(W
(j)
n )∑

k=2

(
0σ−1

n

(
−f
(
W (j)

n [1, k)
))
, j∗
)

+ U ′

and

1σ∗n(U) =
∑
i∈A

1σ∗n(0, i∗)(5.7)

=
∑
i∈A

∑
1≤k, j∈A
W

(j)
n (k)=i

(
0σ−1

n

(
−f
(
W (j)

n [1, k)
))
, j∗
)

=
∑
j∈A

leng(W
(j)
n )∑

k=2

(
0σ−1

n

(
−f
(
W (j)

n [1, k)
))
, j∗
)

+
∑
j∈A

(0, j∗)

=
∑
j∈A

leng(W
(j)
n )∑

k=2

(
0σ−1

n

(
−f
(
W (j)

n [1, k)
))
, j∗
)

+ U.
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From (5.6) and (5.7), 1σ∗n(U ′) − U ′ = 1σ∗n(U) − U . �

Let πn be a projection from Rd+1 to {(x0, x1, . . . , xd) ∈ Rd+1| x0 = 0}
along t(1, αn). Hereafter, we identify Rd with {(x0, x1, . . . , xd) ∈ Rd+1| x0 =

0}. We define Dn, D′
n, Dn(i), and D′

n(i) (i ∈ A, n ∈ Z≥0) as follows:

Dn = πn(R(Un)), D′
n = πn(R(U ′

n)),(5.8)

Dn(i) = πn(R(Un(i))), D′
n(i) = πn(R(U ′

n(i))).(5.9)

We also define D = D0, D
′ = D′

0, D(i) = D0(i), and D′(i) = D′
0(i). From

(5.8) and Lemma 4.3, we have

Dn =
⊔
i∈A
Dn(i), D′

n =
⊔
i∈A
D′

n(i);

if i �= j then Dn(i) ∩Dn(j) = D′
n(i) ∩D′

n(j) = ∅.
(5.10)

It is trivial to show that D = D′. Then, from Lemma 5.1, we have

(5.11) Dn = D′
n for all n ∈ Z≥0.

We introduce the domain exchange transformation on stepped surfaces

and their images projected by πn. We define fn(i) ∈ Zd+1, i ∈ A as follows:

(5.12) Mn(α)−1 = ( fn(0) fn(1) · · · fn(d) ) ,

i.e., fn(j) is the j-th column vector of Mn(α)−1. fn(j)k denotes the k-th

element of fn(j), i.e., fn(j) = t(fn(j)0, . . . , fn(j)d).

For y ∈ Zd+1 and u =
∑

k uk(xk, i
∗
k) ∈ F∗, we define y+u as

∑
k uk(y+

xk, i
∗
k).

Lemma 5.2. For i ∈ A, we have Un(i) = U ′
n(i) + fn(i).

Corollary 5.1. For i ∈ A, we have Dn(i) = D′
n(i) + πnfn(i).

Proof. If n = 0, we have

U0(i) = (0, i∗) = −ei + (−ei, i
∗) = U ′

0(i) + f0(i)
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and the statement follows. We assume that Un−1(i) = U ′
n−1(i) + fn−1(i).

Then we have

Un(i) = 1σ∗n(Un−1(i))

= 1σ∗n(U ′
n−1(i) + fn−1(i)) from the induction hypothesis

= 1σ∗n(U ′
n−1(i)) +A−1

(an,εn)fn−1(i) from (4.6)

= U ′
n(i) + fn(i) from (5.12)

and the lemma follows. �

Taking (5.3), (5.10) and Lemma 5.2 into account, we define the domain

exchange transformation.

Definition 5.1. We define the mapping Qn from R(U ′
n) to R(Un) and

the transformation Qn on Dn as follows:

Qn(x) = x+ fn(i) if x ∈ R(U ′
n(i))

Qn(x) = x+ πnfn(i) if x ∈ D′
n(i).

Qn and Qn are called domain exchange transformations.

The next lemma shows that Un, U
′
n, and Dn give periodic tiling.

Lemma 5.3. It follows that

Sn =
⊔

z∈Ln

(z + R(Un)), S′
n =

⊔
z∈Ln

(z + R(U ′
n)),

and

Rd =
⊔

z∈πnLn

(z +Dn).

Proof. It is trivial to show that

S0 =
⊔
z∈L0

(z + R(U0)) and S′
0 =

⊔
z∈L0

(z + R(U ′
0)).
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Fig. 5.4. D7

Then from the definition of 1σ∗n, (4.5), and Lemma 4.3, the lemma holds.�

In the next lemma, we see that the domain exchange transformation is

an irrational rotation on Rd/πnLn. Figure 5.4 and Figure 5.5 show examples

of D7 and D′
7 for the same α as in the preceding figures. In these figures,

large hexagons drawn with dashed lines denote R2/π7L7.

Lemma 5.4. For all x ∈ Dn,

Qn(x) = x+ πnfn(0) (mod πnLn).
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Fig. 5.5. D′
7

Proof. We see that

Ln =Mn(α)−1L0

= ( fn(0) fn(1) · · · fn(d) )
d∑

i=1

Z (ei − e0)

=
d∑

i=1

Z(fn(i) − fn(0))

holds from (4.5) and (5.12). Then,

πnfn(0) = πnfn(1) = · · · = πnfn(d) (mod πnLn).

From Definition 5.1 and Lemma 5.3, the lemma follows. �
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Lemma 5.5.

−Bn(α)QnBn(α)−1 = Rα.

Proof. From Lemma 5.4, we see that Qn = Fα (mod πnLn). Then,

from Lemma 5.3, it is enough to show that

Bn(α)πnLn = Lα(5.13)

and

Bn(α)πnfn(0) = −tα(5.14)

for all n ∈ Z≥0. In the case where n = 0, we have (5.13) and (5.14) from

Definition 1.1 and the definition of πn. We assume that

(5.15) Bn−1(α)πn−1fn−1(i) = π0f0(i).

From Definition 2.3 and Proposition 2.1, we have

(5.16)

(
1

tαn−1

)
= α1

n−1M(αn−1)

(
1

tαn

)
.

From Definition 2.4,

(5.17) B(αn−1)ei =




ei+1 if i = 1, . . . , εn − 1

−tαn−1 if i = εn

ei, if i = εn + 1, . . . , d.

From (5.12), we also have

A−1
(an,εn) ( fn−1(0) fn−1(1) · · · fn−1(d) )(5.18)

= ( fn(0) fn(1) · · · fn(d) ) .
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By using (5.16), (5.17) and (5.18), we see that

B(αn−1)πnfn(i)(5.19)

= B(αn−1) (−tαn Id ) fn(i)

= B(αn−1)
(
fn−1(i)

1(−tαn) + fn−1(i)
2e1 + · · · + fn−1(i)

εneεn−1

+
(
fn−1(i)

0 − anfn−1(i)
1
)
eεn

+ fn−1(i)
εn+1eεn+1 + · · · + fn−1(i)

ded

)
= B(αn−1)

(
fn−1(i)

1

(
− 1

α1
n−1

t
(
α2
n−1, . . . , α

εn
n−1, 1 − anα1

n−1,

αεn+1
n−1 , . . . , α

d
n−1

))
+ fn−1(i)

2e1 + · · · + fn−1(i)
εneεn−1

+ (fn−1(i)
0 − anfn−1(i)

1)eεn

+ fn−1(i)
εn+1eεn+1 + · · · + fn−1(i)

ded

)

= fn−1(i)
1B(αn−1)

(
− 1

α1
n−1

t
(
α2
n−1, . . . , α

εn
n−1, 1,

αεn+1
n−1 , . . . , α

d
n−1

))
+ fn−1(i)

2B(αn−1)e1 + · · · + fn−1(i)
εnB(αn−1)eεn−1

+ fn−1(i)
0B(αn−1)eεn + fn−1(i)

εn+1B(αn−1)eεn+1 + . . .

+ fn−1(i)
ded

= fn−1(i)
1e1 + · · · + fn−1(i)

εneεn + fn−1(i)
0(−tαn−1)

+ fn−1(i)
εn+1eεn+1 + · · · + fn−1(i)

ded

= (−tαn−1 Id ) fn−1(i)

= πn−1fn−1(i)

holds for all i ∈ A. Multiplying the equality (5.19) by Bn−1(α) from the

left, we see from (5.15) that

Bn(α)πnfn(i) = π0f0(i).

(5.13) is proved in an analogous way. �
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Fig. 5.6. B4(α, β)π4U4

We now have the following theorem, which gives the geometrical charac-

terization of the distribution of the Kronecker sequence. This theorem im-

plies that elements of the Kronecker sequence reside in the lattice that is the

projection of the stepped surface. Figures 5.6 and 5.7 show B4(α)π4U4 and

B4(α)π4(R(U4) ∩ Z3) respectively where α is the same as in the preceding

figures. In these figures, large hexagons denote R2/(B4(α)π4L4) = R2/Lα.

Let H be a polyhedron which represents Rd/Lα.

Theorem 5.1. For all n ∈ Z≥0,

{Kα(k)}
∑d

j=0 ln(α;j)

k=1 = −Bn(α)πn

(
R(Un) ∩ Zd+1

)
(mod Lα)

= H ∩
(
−Bn(α)πn

(
Sn ∩ Zd+1

))
.

Proof. We abbreviate ln(α; j) to ljn in the following. From Defini-
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Fig. 5.7. B4(α, β)π4(R(U4) ∩ Z3)

tion 1.2 and Lemma 5.5, it is enough to show that

(5.20)
{
Qk

n(0)
}∑d

j=0 l
j
n

k=1
= πn

(
R(Un) ∩ Zd+1

)
.

For V ∈ Sn, we define Cn(V ) = {(x, i∗) | (x, i∗) ≺ V } and Cn(V ; i) =

{(x, j∗) ∈ Cn(V ) | j = i}. From (4.6), Lemma 4.3, and Definition 2.3, we

have

(5.21) #Cn(Un; j) = ljn for all j ∈ A.

We consider the orbit of U ′(i), (i ∈ A) by the transformation Qn. Taking

account of Lemmas 5.1, 5.2, and 5.4, we define a set of elements of Cn(Un; i)∪
{U ′(i)} and mi ∈ N as follows:

V i
j =



U ′(i) if j = 0,

V i
j = Qn(V i

j−1) if V i
j−1 ∈ (Cn(Un; i) \ {U(i)}) ∪ {U ′(i)}

and Qn(V i
j−1) ∩ {V i

0 , . . . , V
i
j−1} = ∅,

undefined otherwise,
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mi = max{j ∈ Z≥0| V i
j exists}.

If we assume that there exists some j ∈ N that satisfies j < lin − 1 and

Qn(V i
j ) = U(i), then mi = j and, from (5.21), there exists a non-empty

subset B of Cn(Un; i) \ {U(i)} \ {V i
0 , . . . , V

i
m} that satisfies QnB = B. This

implies that

Qn

(
πn
⋃
V ∈B

R(V )

)
= πn

⋃
V ∈B

R(V ),

and this contradicts the fact that irrational rotation Qn is ergodic. If we

assume that there exist some j, j′ ∈ N that satisfy j′ < j < lin − 1 and

Qn(V i
j ) = V i

j′ , then Qn({V i
j′ , . . . , V

i
j }) = {V i

j′ , . . . , V
i
j }. This is also a con-

tradiction. Thus,

{U ′(i),Qn(U ′(i)), . . . ,Qlin−1
n (U ′(i))}(5.22a)

= (Cn(Un; i) \ {U(i)}) ∪ {U ′(i)}

and

(5.22b) Qlin
n (U ′(i)) = U(i).

From Definition 4.5

R(U(j)) ∩ Zd+1 = R(U ′(j + 1)) ∩ Zd+1 for j ∈ A \ {d}(5.23a)

and

{0} = R(U ′(0)) ∩ Zd+1.(5.23b)

From (5.22) and (5.23), we have

(5.24) Ql0n+···+lin
n (0) ∈ πn

(
R(U(i)) ∩ Zd+1

)
for i ∈ A.

Then we have (5.20). �
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