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Analogue of Flat Basis and

Cohomological Intersection Numbers

for General Hypergeometric Functions

By Hironobu Kimura and Makoto Taneda

Dedicated to Professor Kazuhiko Aomoto on the occasion of his 60-th birthday

Abstract. The general hypergeometric functions of confluent type
given by 1-dimensional integral are studied. To such functions, the
rational de Rham cohomology group is associated and cohomological
intersection numbers for a good basis are computed explicitly, using the
property of the basis analogous to the flat basis of simple singularity of
A-type.

1. Introduction

This paper concerns the explicit computation of intersection numbers for

the de Rham cohomology classes associated with the general hypergeometric

functions (GHF, for short) introduced in [1], [6] and [12]. According to [12],

one can define, for any given partition λ of any positive integer n, general

hypergeometric functions as solutions of a holonomic system on a Zariski

open set of the space of complex matrices M(r, n; C) or by integrals of

Euler-Laplace type of (r − 1)-form. See Sec. 2 for the details. For the

partition λ = (1, . . . , 1), GHF, which was introduced by K. Aomoto [1] and

I.M. Gelfand [6], gives a generalization of the famous Gauss hypergeometric

function. In fact, Gauss hypergeometric function corresponds to the case

(r, n) = (2, 4). For the hypergeometric function of Aomoto and Gelfand, an

intersection theory is developped in [4], [16] and the explicit computation

of the cohomological intersection numbers is carried out for the de Rham

cohomology classes represented by logarithmic forms in the case r = 2.

For partitions λ containing parts greater than or equal to 2, GHF gives

generalizations to several variables of the classical hypergeometric functions
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of confluent type, say, Kummer’s confluent hypergeometric function, Bessel

function, Hermite function and Airy function. The de Rham cohomology

group associated to GHF is calculated explicitly in the case r = 2 in [10]. To

compute the intersection numbers for this case, the definition of intersection

numbers given in [19] can be applied. We choose a ”good basis” for the de

Rham cohomology group which turns out to be an analogue of flat basis for

the Jacobi ring for the simple singularity of A-type ([20], [21]) at several

points in P
1. Using this good basis, we obtain the matrix of intersection

numbers which is independent of the variables of the GHF as was the case

for Aomoto-Gelfand hypergeometric function when the logarithmic form

are taken as a basis of the cohomology group. The contents of this paper

are as follows.

§2 : General hypergeometric integral.

§3 : Twisted de Rham cohomology.

§4 : Cohomological intersection number.

§5 : Main theorem.

§6 : Invariance of intersection pairing by the group action.

§7 : Flatness of the basis ϕ
(k)
i .

§8 : Proof of Theorem 5.1.

2. General Hypergeometric Integral

Let (n1, . . . , nl) be a partition of n ≥ 3, namely a nonincreasing sequence

of positive integers such that

n =
l∑

k=1

nk.

To this partition we associate the abelian complex Lie subgroup of dimen-

sion n:

H = J(n1) × · · · × J(nl),

where J(nk) is the Jordan group of size nk defined by

J(nk) =


h(k) =

∑
0≤i≤nk−1

h
(k)
i Λi

nk
| h

(k)
0 �= 0, h

(k)
i ∈ C


 ⊂ GL(nk, C),
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Λnk
= (δi+1,j)0≤i,j<nk

being the shift matrix.

Let Z be the set of 2 × n complex matrices z = (z(1), . . . , z(l)), z(k) =

(z
(k)
0 , . . . , z

(k)
nk−1) ∈ M(2, nk, C), satisfying the condition:

(2.1)
det(z

(k)
0 , z

(k)
1 ) �= 0 for any k such that nk ≥ 2.

det(z
(k)
0 , z

(k′)
0 ) �= 0 for any k �= k′ .

The general hypergeometric integral (GHI) is defined as follows. Let H̃ be

the universal covering group of H and let χ : H̃ → C
× be a character of H̃,

that is, a complex analytic homomorphism from H̃ to the complex torus

C
×. Define the functions θi(x) of x = (x0, x1, x2, . . . ) by the generating

function ∞∑
m=0

θm(x)Tm = log(x0 + x1T + x2T
2 + · · · ).

Expanding the right hand side as

log(x0 + x1T + x2T
2 + · · · )

= log x0 + log

(
1 +

x1

x0
T +

x2

x0
T 2 + · · ·

)

= log x0 +
∞∑

m=1

(−1)m+1

m

(
x1

x0
T +

x2

x0
T 2 + · · ·

)m

,

we have

θ0(x) = log x0

and the weighted homogeneous polynomials in x1/x0, x2/x0, . . .

θm(x) =
∑

λ1+2λ2+···+mλm=m

(−1)λ1+···+λm−1 (λ1 + · · · + λm − 1)!

λ1! · · ·λn!

×
(

x1

x0

)λ1

· · ·
(

xm

x0

)λm

.

For example we have

θ0(x) = log x0,
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θ1(x) =
x1

x0
,

θ2(x) =
x2

x0
− 1

2

(
x1

x0

)2

θ3(x) =
x3

x0
−
(

x1

x0

)(
x2

x0

)
+

1

3

(
x1

x0

)3

θ4(x) =
x4

x0
− 1

2

(
x2

x0

)2

−
(

x1

x0

)(
x3

x0

)
+

(
x1

x0

)2(x2

x0

)
− 1

4

(
x1

x0

)4

.

Then, the character χ : H̃ → C
× is explicitly written as

χ(h; α) =
l∏

k=1

exp

(
nk−1∑
i=0

α
(k)
i θi(h

(k))

)

for appropriate complex constants α = (α(1), . . . , α(l)) ∈ C
n, α(k) =

(α
(k)
0 , . . . , α

(k)
nk−1) ∈ C

nk . Define a biholomorphic map

ι : H̃ →
l∏

k=1

(
C̃
× × C

nk−1
)
⊂ C

n

by

ι(h) = (h
(1)
0 , . . . , h

(1)
n1−1, . . . , h

(l)
0 , . . . , h

(l)
nl−1)

for h = (h(1), · · · , h(l)) ∈ H̃.

Assumption. For the character χ(· ; α) of H̃λ, we assume

(2.2)
l∑

k=1

α
(k)
0 = 0.

For z ∈ Z, we consider the n polynomials in t:

tz = (tz
(0)
0 , . . . , tz

(0)
n1−1, . . . , tz

(l)
0 , . . . , tz

(l)
nl−1)
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defined by the multiplication of matrices t = (1, t) and z
(k)
j :

tz
(k)
j = z

(k)
0j + tz

(k)
1j

and substitute these polynomials to the character χ(· ; α) to obtain the func-

tion χ(ι−1(tz); α). By the assumption (2.2), χ(ι−1(tz); α) is a multivalued

function of (t, z) ∈ P
1 × Z having the branch locus

l⋃
k=1

{(t, z) | tz(k)
0 = 0}.

Definition 2.1. The general hypergeometric integral is defined by

F (z; α) =

∫
∆(z)

χ(ι−1(tz); α)dt

where ∆(z) is some 1-dimensional cycle in P
1 depending on z ∈ Z.

3. Twisted de Rham Cohomology

The hypergeometric integral is naturally regarded as a dual pairing of

some cocycle of de Rham cohomology and the twisted cycle. We recall the

definition of the de Rham cohomology.

For the moment we fix z ∈ Z, and consider the 1-form in t

ω := d log χ(ι−1(tz); α) =


 l∑

k=1

nk−1∑
j=0

α
(k)
j ∂tθj(tz)


 dt

obtained as the logarithmic derivative of χ(ι−1(tz); α). The 1-form ω has

poles at

pk = −z
(k)
00 /z

(k)
01 , (k = 1, . . . , l)

of order nk and these poles are distinct each other by virtue of the as-

sumption (2.1). Let D be the divisor of the meromorphic 1-form ω in P
1,

i.e.,

D =
l∑

k=1

nk pk.
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Let Ω•(∗D) be the sheaf of meromorphic 1-forms on P
1 having poles at

most on |D| = {p1, . . . , pl}. Consider the de Rham complex

(Ω•(∗D),∇ω) : 0 −→ Ω0(∗D)
∇ω−→Ω1(∗D) −→ 0,

where ∇ω is the connection defined by

∇ωf = df + ωf, f ∈ Ω0(∗D).

The cohomology group of the complex of the global sections of the above

complex of sheaves

Hp(Γ(P1, Ω•(∗D)),∇ω)

is called the twisted rational de Rham cohomology group. We simply denote

this group by Hp(Ω•(∗D),∇ω).

In [10] we proved the following.

Proposition 3.1. Let the parameters α in the connection form ω sat-

isfy

(3.1) α
(k)
nk−1

{
/∈ Z if nk = 1,

�= 0 if nk ≥ 2.

Then we have

1. H i(Ω•(∗D),∇ω) = 0, (i �= 1),

2. H1(Ω•(∗D),∇ω) � Γ(P1, Ω1(D))/C ·ω, where Ω1(D) is the sheaf of

meromorphic 1-forms η such that

(η) + D ≥ 0,

3. dimC H1(Ω•(∗D),∇ω) = n − 2.

As a C-basis of the vector space Γ(P1, Ω1(D)) we can take, for example,

the 1-forms

(tz
(k)
0 )−idt,

d log(tz
(k)
0 ) − d log(tz

(k+1)
0 )

(k = 1, . . . , l; i = 2, . . . , nk)

(k = 1, . . . , l − 1),



Flat Basis and Cohomological Intersection Numbers 421

which were chosen in [10], [19]. In this paper we take the following 1-forms

as a basis.

(3.2)
ϕ

(k)
i = dθi(tz

(k)),

ϕ
(k)
0 = dθ0(tz

(k)) − dθ0(tz
(k+1)),

(k = 1, . . . , l; i = 1, . . . , nk − 1)

(k = 1, . . . , l − 1).

For later use, we also prepare the 1-form

ϕ
(l)
0 = dθ0(tz

(l)) − dθ0(tz
(1))

Note that, by virtue of the conditions (2.2), the 1-form ω is a linear combi-

nation of ϕ
(k)
i ’s listed in (3.2). The reason for the choice of the forms ϕ

(k)
i ’s

will become clear in Sections 7 and 8.

4. Cohomological Intersection Number

We recall the definition of intersection numbers for the de Rham coho-

mology classes. For the details we refer to [19]. Consider two complexes of

sheaves of meromorphic differential forms

(Ω•(D),∇ω) : 0 −→ Ω0 ∇ω−→ Ω1(D) −→ 0,

(Ω•(−D),∇ω) : 0 −→ Ω0(−D)
∇ω−→ Ω1 −→ 0.

Then computing the associated hypercohomologies, we get the isomor-

phisms

jω : H
1(P1, (Ω•(D),∇ω)) −→ Γ(P1, Ω1(D))/C · ω

kω : H
1(P1, (Ω•(−D),∇ω)) −→ Ker(∇ω : H1(P1, Ω0(−D)) → H1(P1, Ω1)).

On the otherhand there exists an isomorphism

ιω : H
•(P1, (Ω•(D),∇ω)) −→ H

•(P1, (Ω•(−D),∇ω)).



422 Hironobu Kimura and Makoto Taneda

This follows from the following exact sequence of complexes of sheaves and

from the fact that the complex represented by the third column is exact:

0 0 0� � �
0 −−→ Ω0(−D)

ιω−−→ Ω0 −−→
⊕l

k=1

(∑nk
i=1 bki(t − pk)

i−1
)
pk

−−→ 0

∇ω

� ∇ω

� ∇̄ω

�
0 −−→ Ω1 ιω−−→ Ω1(D)

π−−→
⊕l

k=1

(∑nk
i=1 cki(t − pk)

−i
)
pk

−−→ 0� � �
0 0 0

where π is defined by taking the principal part of a meromorphic 1-form in

Ω1(D) at each point pk and ∇̄ω is defined by applying ∇ω to an element∑nk
i=1 bki(t− pk)

i−1 and then taking the principal part of the resulted germ

of meromorphic 1-form at pk. Put iω := kω ◦ ιω.

Now consider the de Rham complex (Ω•(∗D),∇−ω) defined by the con-

nection ∇−ω with the connection form −ω which is dual to ∇ω:

0 −→ Ω0∇−ω−→Ω1(D) −→ 0.

Assuming the condition (3.1), we have

Hp(Ω•(∗D),∇−ω) �
{

Γ(P1, Ω1(D))/C · (−ω) if p = 1

0 otherwise.

We define the intersection pairing between the de Rham cohomologies

H1(Ω1(∗D),∇ω) × H1(Ω1(∗D),∇−ω) −→ C

as follows. Take [ϕ+] ∈ H1(Ω•(∗D),∇ω) and [ϕ−] ∈ H1(Ω•(∗D),∇−ω)

represented by the forms ϕ+, ϕ− ∈ Γ(P1, Ω1(D)). Then iω ◦ j−1
ω ([ϕ+]) ∈

Ker(∇ω : H1(P1, Ω0(−D)) → H1(P1, Ω1)) and [ϕ−] ∈ Γ(P1, Ω1(D))/C ·
(−ω). Then by the Serre duality H1(P1, Ω0(−D)) × Γ(P1, Ω1(D)) →
H1(P1, Ω1), we have an element of H1(P1, Ω1), which is represented by
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a global (1, 1)-form by virtue of Dolbeault theorem. Integrating this 2-

form over P
1 we get a complex number, well defined for the classes iw ◦

j−1
ω ([ϕ+]), [ϕ−], which is denoted by 〈[ϕ+], [ϕ−]〉 and is called the intersec-

tion number of the classes [ϕ+] and [ϕ−].

For the 1-forms ϕ+, ϕ− ∈ Γ(P1, Ω1(D)) and ω ∈ Γ(P1, Ω1(D)), we set

ϕ+ = g+(t)dt, ϕ− = g−(t)dt, ω = h(t)dt.

Put
ϕ+ ∗ ϕ−

ω
:=

g+(t)g−(t)

h(t)
dt.

By following carefully the argument in [19], we see the following, the proof

of which we omit.

Proposition 4.1. The intersection number of the cohomology classes

[ϕ+] ∈ H1(Ω1(∗D),∇ω) and [ϕ−] ∈ H1(Ω1(∗D),∇−ω) with the represen-

tatives ϕ+, ϕ− ∈ Γ(P1, Ω1(D)) is given by summing up the residues of the

form at each point of |D|:

〈[ϕ+], [ϕ−]〉 = 2π
√
−1

l∑
k=1

Rest=pk

ϕ+ ∗ ϕ−

ω
.

5. Main Theorem

As in Section 3, we consider the elements of Γ(P1, Ω1(D)) :

(5.1) ϕ
(1)
0 , . . . , ϕ

(1)
n1−1, . . . , ϕ

(l)
0 , . . . , ϕ

(l)
nl−1.

If one omits one of ϕ
(1)
0 , . . . , ϕ

(l)
0 , the n−1 remaining 1-forms give a C-basis

of Γ(Ω1(D)). The classes in H1(Ω•(∗D),∇ω) and in H1(Ω•(∗D),∇−ω) rep-

resented by the 1-form ϕ
(k)
i is denoted by [ϕ

(k)
i

+
] and [ϕ

(k)
i

−
] respectively.

Although we can obtain a basis of H1(Ω•(∗D),∇ω) by omitting one of the

classes [ϕ
(k)
nk−1] (k = 1, . . . , l), in order to present the matrix of intersec-

tion numbers (〈[ϕ(k)
i

+
], [ϕ

(k′)
j

−
]〉) in a symmetric manner, we compute these

numbers for the classes given by the forms (5.1).
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Introduce a series of polynomials e0(x) = 1, e1(x), e2(x), . . . of x =

(x1, x2, . . . ) by using the generating function

(1 + x1T + x2T
2 + · · · )−1 =

∞∑
k=0

ek(x)T k

and put

β(k) = (1, β
(k)
1 , . . . , β

(k)
nk−1) :=

(
α

(k)
nk−1

α
(k)
nk−1

,
α

(k)
nk−2

α
(k)
nk−1

, . . . ,
α

(k)
0

α
(k)
nk−1

)
,

(k = 1, . . . , l).

Theorem 5.1. The matrix of intersection numbers

I = (Ikk′)k,k′=1,...,l, Ik,k′ = (〈ϕ(k)
i , ϕ

(k′)
j 〉)0≤i<nk,0≤j<nk′

is symmetric and have the form

I =




I11 I12 0 . . . 0 I1l

I21
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . Il−1,l

Il1 0 . . . 0 Il,l−1 Ill




where

Ikk =
2π

√
−1

α
(k)
nk−1




e0(β
(k))

. .
.

e1(β
(k))

. .
.

. .
. ...

e0(β
(k)) e1(β

(k)) . . . enk−1(β
(k))




+ δnk+1,1
2π

√
−1

α
(k+1)
0




1


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Ik−1,k =
2π

√
−1

α
(k)
nk−1




−1

 (k = 1, . . . , l)

Here when k = 1, we understand (k − 1, k) as (l, 1) by convention.

Remark 5.2. The intersection numbers computed in the above the-

orem are independent of the variables z ∈ Z of general hypergeometric

functions. This fact relies on the choice of representatives of the cohomol-

ogy classes. Here we took ϕ
(k)
i as representatives, which, as will be seen in

Sec. 7, can be regarded as an analogue of the flat basis of the Jacobi ring

for the simple singularity of A-type at each point pk of |D|. As for the flat

basis, we refer the reader to [20], [21].

6. Invariance of Intersection Numbers by the Group Action

Let us consider the action of G = GL(2, C) and of H on Z defined by

ρg,h : Z −→ Z, z �→ gzh

and let X be the subset of Z consisting of the matrices

x = (x(1), . . . , x(l)), x(k) ∈ M(2, nk, C)

with

x(k) =

(
x

(k)
0 x

(k)
1 . . . x

(k)
nk−1

1 0 . . . 0

)
satisfying

1. x
(1)
0 , . . . , x

(l)
0 are distinct complex numbers,

2. x
(k)
1 �= 0 for k such that nk ≥ 2,

3. in the case l = 1, x
(1)
0 , x

(1)
2 are fixed to arbitrary prescribed numbers

and x
(1)
1 to an arbitrary prescribed nonzero number, say, x

(1)
0 =

0, x
(1)
1 = 1, x

(1)
2 = 0,

4. in the case l = 2, x
(1)
0 , x

(2)
0 are fixed to arbitrary prescribed distinct

numbers and x
(1)
1 to an arbitrary prescribed nonzero number, say,

x
(1)
0 = 0, x

(1)
1 = 1, x

(1)
2 = 1,

5. in the case l ≥ 3, three among x
(1)
0 , . . . , x

(l)
0 , say x

(1)
0 , x

(2)
0 , x

(3)
0 , are

fixed to some prescribed 3 distinct numbers.
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Note that X is a closed submanifold of Z of dimension n − 3.

Proposition 6.1. The subset X gives a realization of the quotient

space G\Z/H :
X

x

−→
�→

G\Z/H

[x]

is a homeomorphism.

By the proposition, we see that for any z ∈ Z there are g ∈ G and h ∈ H

such that

x = gzh ∈ X.

The forms ϕ
(k)
i ∈ Γ(P1, Ω1(D)) depend on z ∈ Z. When we want to make

apparent the dependence of these forms on z we write ϕ
(k)
i (z) instead of

writing ϕ
(k)
i . We want to reduce the computation of the intersection num-

bers for ϕ
(k)
i (z) to those for ϕ

(k)
i (x) with x ∈ X. The first step is the

following.

Lemma 6.2. The 1-forms ϕ
(k)
i and ω are invariant under the action of

H.

Proof. Since ω is a linear combination of ϕ
(k)
i ’s, it suffices to show

that ϕ
(k)
i are invariant under the action of H. We prove in the case i ≥ 1,

since the case i = 0 is similarly proved. In this case, ϕ
(k)
i (z) = dt(θi(tz

(k))).

By the definition of the functions θi(x), we have

θi(ι(hh′)) = θi(ι(h)) + θi(ι(h
′)) (h, h′ ∈ J(nk)).

Thus

θi(tz
(k)h(k)) = θi(tz

(k)) + θi(ι(h
(k))).

Taking the exterior derivative of the both sides with respect to t, we get

d
(
θi(tz

(k)h(k))
)

= d
(
θi(tz

(k))
)
.

This implies the invariance ϕ
(k)
i (z) = ϕ

(k)
i (zh) (h ∈ H). �

Next we consider the action of G on Z.
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Lemma 6.3. We have

(6.1) 〈[ϕ(k)
i

+
(z)], [ϕ

(k)
i

−
(z)]〉 = 〈[ϕ(k)

i

+
(gz)], [ϕ

(k)
i

−
(gz)]〉, (g ∈ G).

Proof. Consider the projective transformation

Pg : P
1 � t �→ s := t · g =

b + dt

a + ct
∈ P

1 for g =

(
a b

c d

)
∈ G.

In view of Proposition 4.1, the intersection number for ψ+, ψ− ∈
Γ(P1, Ω1(D)) satisfies

(6.2) 〈[ψ+], [ψ−]〉 = 〈[P ∗
g ψ+], [P ∗

g ψ−]〉.

On the otherhand, for the forms ϕ
(k)
i (z), we have

(6.3) P ∗
g ϕ

(k)
i (z) = ϕ

(k)
i (gz).

In fact, for the case i ≥ 1,

P ∗
g ϕ

(k)
i (z) = P ∗

g d
(
θi(sz(k))

)
= d
(
θi((1, t · g)z(k))

)
= d
(
θi((1, t)gz(k))

)
= ϕ

(k)
i (gz).

The case i = 0 can be shown similarly. Combining (6.2) and (6.3), we have

the desired identity (6.1). �

Summing up we have shown the following.

Proposition 6.4. The intersection number 〈[ϕ(k)
i

+
], [ϕ

(k′)
j

−
]〉 is

invariant by the action of G × H on Z, namely we have

〈[ϕ(k)
i

+
(z)], [ϕ

(k′)
j

−
(z)]〉 = 〈[ϕ(k)

i

+
(ρg,h(z))], [ϕ

(k′)
j

−
(ρg,h(z))]〉

for all (g, h) ∈ G × H.
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7. Flatness of the Basis ϕ
(k)
i

As is seen in Section 6, for the aim of computing intersection numbers

for the forms ϕ
(k)
i ’s, it is sufficient to consider ϕ

(k)
i (x) for x ∈ X. In this

section we fix x ∈ X and write simply ϕ
(k)
i for ϕ

(k)
i (x). We look into in

detail the property of these forms which permit us to regard these forms as

analogues of flat basis of the Jacobi ring of simple singularity of A-type.

Let x ∈ X be as in Section 6. Note that the pole divisor of the 1-form

ω = d log χ(tx; α) is

D =
l∑

k=1

nkpk, pk = −x
(k)
0 .

We consider the forms

(7.1) ϕ
(k)
0 , . . . , ϕ

(k)
nk−1.

having poles at pk. Take a local coordinate u at pk defined by

(7.2) u =
1

x
(k)
1

(t + x
(k)
0 )

and put

yi = x
(k)
i /x

(k)
1 , (i = 1, . . . , nk − 1)

Note that y1 = 1. Then the forms (7.1) are expressed as

ϕ
(k)
i = d

(
θi(1, y1u

−1, . . . , ynk−1u
−nk+1)

)
, (i = 1, . . . , nk − 1)

ϕ
(k)
0 = d log(u) − d log(u − pk+1 + pk).

This situation motivates to introduce the polynomials hm(u) in u−1 de-

pending on the parameters (y1, y2, . . . ), y1 = 1, by substituting

x0 = 1, x1 = y1u
−1, x2 = y2u

−1, · · · (y1 = 1).
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in the functions θm(x) (m = 1, 2 . . . ):

(7.3)

hm(u) = θm(1, y1u
−1, y2u

−1, . . . )

=
∑

λ1+2λ2+···+mλm=m

(−1)λ1+···+λm−1(λ1 + · · · + λm − 1)!

× yλ1
1 · · · yλm

m

λ1! · · ·λm!
u−(λ1+···+λm).

Note that hm(u) is a polynomial of u−1 of degree m without constant term

whose top term is

(−1)m+1u−m/m

and the coefficients of u−1 is equal to ym. Consider a Laurent series in u:

f = −u−1(1 + s1u + s2u
2 + · · · )

with parameters s = (s1, s2, . . . ). Then the power fm is a Laurent series

in u whose principal part (fm)− is a polynomial of u−1 of degree m with

the top term (−1)mu−m. Note that the coefficients of u−1 of (fm)− has the

form

(−1)mmsm−1 + (a polynomial in s1, . . . , sm−2 ).

Then the property we want to establish for hm(u) is the following.

Proposition 7.1. Determine s1, s2, . . . by the condition:

(7.4) ym = the coefficient of u−1 of − 1

m
fm, (m = 1, 2, . . . ).

Then the identities

(7.5) hm(u) = − 1

m
(fm)− (m = 1, 2, . . . )

hold as polynomials in u−1.

To prove the proposition, it is convenient to use the Schur functions

p0(t), p1(t), p2(t), . . . defined by the generating function:

exp(t1T + t2T
2 + · · · ) =

∞∑
m=0

pm(t)Tm,
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where p0(t) = 1. For the parameters s = (s1, s2, . . . ) in f, we define t =

(t1, t2, . . . ) by

sm = pm(t), (m = 1, 2, . . . ).

Then

fm = (−1)mu−m(1 + s1u + s2u
2 + · · · )m

= (−1)mu−m exp(t1u + t2u
2 + · · · )m

= (−1)mu−m exp(mt1u + mt2u
2 + · · · )

= (−1)mu−m
∞∑
k=0

pk(mt)uk.

Hence we have

(fm)− = (−1)m
m∑
k=1

pm−k(mt)u−k.

The condition (7.4) is then written as

(7.6) ym =
(−1)m+1

m
pm−1(mt), (m = 1, 2, . . . ).

Putting the expression (7.6) into (7.3), we see that hm(u) is written as

hm(u) = (−1)m+1
∑

λ1+2λ2+···+mλm=m

(λ1 + · · · + λm − 1)!

λ1! · · ·λm!

× (p0(t))
λ1

(
1

2
p1(2t)

)λ2

· · ·
(

1

m
pm−1(mt)

)λm

u−(λ1+···+λm).

Thus the verification of the identity (7.5) is reduced to showing the following

identities for the Schur functions.

Lemma 7.2. We have the identities

(7.7)

1

m
pm−k(mt) =

∑
λ1+2λ2+···+mλm=m

λ1+···+λm=k

(λ1 + · · · + λm − 1)!

λ1! · · ·λm!

× (p0(t))
λ1

(
1

2
p1(2t)

)λ2

· · ·
(

1

m
pm−1(mt)

)λm



Flat Basis and Cohomological Intersection Numbers 431

for m = 1, 2, . . . and k = 1, 2, . . . , m.

Proof. The proof is carried out by induction on m and k. In the case

m = 1 or the case k = 1, the identities (7.7) trivially hold. Assume that

(7.7) holds for m replaced by 1, 2, . . . , m − 1. Moreover, for m fixed, the

identity (7.7) holds for k replaced by 1, 2, . . . , k− 1 We will prove (7.7) still

holds for the case where k is replaced by k + 1. We may assume k ≥ 2. In

this case the possible n-tuple of indices λ = (λ1, . . . , λn) appearing in the

sum of the right hand side of (7.7) satisfies λn = 0. Differentiate the both

sides of the identity (7.7). Then we get

L.H.S = pm−k−1(mt).

and

R.H.S =
∑

λ1+2λ2+···+mλm=m,
λ1+···+λm=k

(k − 1)!

λ1! · · ·λm!

m−1∑
j=1

(
1
j pj−1(jt)

)λj−1

(λj − 1)!
pj−2(jt)

×
∏
i
=j

(
1
i pi−1(it)

)λi

λi!

=
∑

λ1+2λ2+···+mλm=m,
λ1+···+λm=k

(k − 1)!

λ1! · · ·λm!

m−1∑
j=1

∑
µ1+2µ2+···+(j−1)µj−1=j

µ1+···+µj−1=2

j

×
∏

1≤i<j

(
1
i pi−1(it)

)λi+µi

λi!µi
×

×

(
1
j pj−1(jt)

)λj−1

(λj − 1)!

∏
j≤i
=m−1

(
1
i pi−1(it)

)λi

λi!
.

We want to show that this right hand side is equal to

(7.8) m
∑

ν1+2ν2+···+mνm=m
ν1+···+νm=k+1

k!

ν1! · · · νm!

∏
1≤i≤m

(
1

i
pi−1(it)

)νi

.
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Now we fix the indices ν = (ν1, · · · , νm) such that ν1 + 2ν2 + · · · + mνm =

m, ν1 + · · · + νm = k + 1. Then, in the sum R.H.S, the contribution to the

coefficients of
∏

i

(
1
i pi−1(it)

)νi comes from the following cases of indices λ

and µ. Take any index 1 ≤ α, β ≤ m− 1 such that α + β ≤ m− 1. If α < β,

we put

λ = (ν1, . . . , να − 1, . . . , νβ − 1, . . . , νm)

µ = (0, . . . , 1, . . . , 1, . . . , 0), j = α + β.

If α = β, we put

λ = (ν1, . . . , να − 2, . . . , νm)

µ = (0, . . . , 2, . . . , 0), j = 2α.

Summing up all the contribution, we have

(k − 1)!

ν1! · · · νm!




∑
1≤α<β,α+β≤m−1

(α + β)µαµβ +
∑

1≤α,2α≤m−1

2α
µα(µα − 1)

2




=
(k − 1)!

ν1! · · · νm!




∑
1≤α,β≤m−1

αµαµβ −
∑

1≤α≤m−1

αµα




=
(k − 1)!

ν1! · · · νm!
km

Thus R.H.S is written as (7.8) as is desired. �

As a corollary, wehave

Corollary 7.3. In the above situation, we have

ϕ
(k)
i (x) = −(∂f · f−1)−du (i = 1, . . . , nk − 1).
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8. Proof of Theorem 5.1

In view of the invariance of the intersection numbers 〈[ϕ(k)
i

+
(z)],

[ϕ
(k′)
j

−
(z)]〉 by the action G×H (Sec.6), it is sufficient to prove the theorem

for z ∈ X. In this case the flatness of the basis ϕ
(k)
i ’s plays a crucial role.

Recall that

〈[ϕ(k)
i

+
], [ϕ

(k′)
j

−
]〉 = 2π

√
−1

l∑
k=1

Rest=pk

ϕ
(k)
i ∗ ϕ

(k′)
j

ω
.

Take the local coordinate u at pk as in (7.2) and choose the Laurent

series f at u = 0 of the form

f = −u−1(1 + s1u + s2u
2 + · · · )

as in Section 7. Then Corollary 7.3 says that, at u = 0, the 1-forms ϕ
(k)
i

can be expressed as

(8.1) ϕ
(k)
i = −(∂f · f i−1)−du, (i = 1, . . . , nk − 1).

Similarly the 1-form ω is expressed as

ω = α
(k)
0 d log u +

nk−1∑
m=1

α(k)
m ϕ(k)

m + (1-form holomorphic at u = 0 )

= −
nk−1∑
m=0

α(k)
m (∂f · fm−1)−du + (1-form holomorphic at u = 0).

Then we can prove the following.

Lemma 8.1. We have

Resu=0

ϕ
(k′)
i ∗ ϕ

(k′)
j

ω

=




1

α
(k)
nk−1

ei+j−nk+1(β
(k)) k′ = k

1

α
(k)
0

k′ = k − 1, nk = 1, (i, j) = (0, 0),

0 otherwise.
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Proof. We prove only the case k′ = k and nk ≥ 2, i ≥ 1, j ≥ 1. Using

the expression (8.1) for ϕ
(k)
i , we have

Resu=0

ϕ
(k)
i ∗ ϕ

(k)
j

ω

= −Resu=0
(∂f · f i−1)−(∂f · f j−1)−∑nk−1

m=0 α
(k)
m (∂f · fm−1)− + (holo. function at u = 0)

du

= − 1

α
(k)
nk−1

Resu=0
∂f · f i+j−nk

1 + β1f−1 + · · · + βnk−1f−(nk−1)
du

= − 1

α
(k)
nk−1

Resu=0 ∂f · f i+j−nk

∞∑
m=0

em(β)f−mdu

=
1

α
(k)
nk−1

ei+j−nk+1(β).

Here we have used the fact

Resu=0 ∂f · f i+j−nk−mdu =

{ −1 i + j − nk − m = −1

0 otherwise,

For the other cases i = 0 or j = 0 or nk = 1, the assertion is similary

proved. �

The above computation in the proof of Lemma 8.1 shows that

Resu=0
ϕ+ ∗ ϕ−

ω
= 0

if the sum of the orders of pole of ϕ+ and ϕ− at u = 0 is less than or equal

to nk. This remark implies the following.

Lemma 8.2.

Resu=0

ϕ
(k)
i ∗ ϕ

(k′)
j

ω
= 0 if |k − k′| ≥ 2, (k, k′) �= (1, l), (l, 1)(8.2)

Resu=0

ϕ
(k−1)
i ∗ ϕ

(k)
j

ω
=

{ −1/α
(k)
nk−1, (i, j) = (0, nk − 1)

0 otherwise
(8.3)
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When k = 1, we understand the second formula as that for the case (k −
1, k) = (l, 1).

Combining these lemmas we have the following lemma which complete

the proof of Theorem 5.1.

Lemma 8.3. We have the following equality.

〈[ϕ(k)
i

+
], [ϕ

(k)
j

−
]〉 =

2π
√
−1

α
(k)
nk−1

ei+j−nk+1(β
(k)) +

2π
√
−1

α
(k)
0

δnk+1,1δi,0δj,0,

〈[ϕ(k−1)
i

+
], [ϕ

(k)
j

−
]〉 = −2π

√
−1

α
(k)
nk−1

δi,0δj,nk−1,

〈[ϕ(k)
i

+
], [ϕ

(k′)
j

−
]〉 = 0 if |k − k′| ≥ 2, (k, k′) �= (1, l), (l, 1).

In the second equality, we used the same convention as in Lemma 8.2.
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