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Explosion Tests for Stochastic Integral

Equations Related to Interest Rate Models

By Jirô Akahori

Abstract. In the present paper a class of stochastic integral equa-
tions is studied. It is closely related to the interest rate model proposed
by Ritchken and Sankarasubramanian [8] [9]. Explosion tests for these
equations are given.

1. Introduction

Let (Ω,F) be an appropriate measurable space and let us consider the

following stochastic integral equation.

(1.1) Xt = x+ ηt+ ξ

∫ t

0

∫ s

0
a(Xu)duds+

∫ t

0
(a(Xs))

1
2 dWs,

where x > 0 and a(·) denotes a measurable non-negative function on

the real line satisfying a(0) = 0, η and ξ are positive constants, W. de-

notes a one dimensional Brownian motion on a filtered probability space

(Ω,F , P, {Ft}t∈[0,∞)) and {Ft}t∈[0,∞) is an augmented filtration.

In this paper we study pathwise uniqueness and the global existence of

the solution for (1.1). Our results are the following.

Theorem 1.1. Assume that for each integer n, there exists a constant

Kn > 0 such that

(1.2) |a(x) − a(y)| ≤ Kn|x− y|

holds for every |x| ≤ n, |y| ≤ n and that for every x > 0 and y > 0,

(1.3) |
√
a(x) −

√
a(y)|2 ≤ ρ(|x− y|)
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where ρ is a non-decreasing Borel function from (0,∞) to (0,∞) such that

(1.4)

∫
0+

da

ρ(a)
= +∞.

Then pathwise uniqueness up to the explosion time holds for (1.1).

Here we say that e is the explosion time of the solution when we have

e = lim
n→∞

τn where τn = inf{t,Xt > n}.

Theorem 1.2. Let σ and γ be positive constants and
1

2
< γ ≤ 1 and

let a(x) = σ2x2γ. Then the solution for (1.1) explodes almost surely.

Theorem 1.3. Let ξ ≡ 1 and let a(x) = xL(x) where L(x) is a slowly

varying function on [0,∞) ; i.e. it is real valued, positive, measurable and

L(λx) ∼ L(x) for each λ > 0. Here by f(x) ∼ g(x) we mean lim
x→∞

f(x)

g(x)
= 1.

Assume that

(a) lim
x→∞

L(x) = +∞,

(b) inf
x>0

L(x) > 0,

(c) (L(
√
x))−1satisfies global Lipschitz condition,

and

(d) L(0) > 2η.

Let f be the right continuous inverse of the map x �−→ x
√
L̄(x) where

L̄(x)
def
= sup

0≤y≤x
L(y), more precisely,

f(x) = inf{y > 0, y
√
L̄(y) > x}.

Then we have the following.

(i) If

∫ +∞

1

dx

x
√
L(f(x))

= +∞, then P (e <∞) = 0.

(ii) If

∫ +∞

1

dx

x
√
L(f(x))

< +∞, then P (e <∞) = 1.

Since L̄ is non-decreasing, f is well defined
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Theorem 1.1 is proved in section 2 as a corollary of a more general

theorem. We give a proof of theorem 1.2 in section 3. Theorem 1.3 is

proved in section 4.

The above equation is closely related to the interest rate model proposed

by Ritchken and Sankarasubramanian [8] [9]. We describe this relationship

in section 5.

Acknowledgements. The author expresses gratitude to Prof. Shigeo

Kusuoka and the referee for lots of comments and advice.

2. Pathwise Uniqueness of a Stochastic Integral Equation

In this section we shall study the pathwise uniqueness for somewhat

more general equations.

Let (Ω,F) be an appropriate measurable space and let us consider the

following stochastic integral equation.

(2.1) Xt = x+ η(t) +

∫ t

0
ξ(s)

(∫ s

0
µ(u,Xu)du

)
ds+

∫ t

0
σ(s,Xs)dWs,

Assume

(2.2) x > 0, η(·), ξ(·) : [0,∞) → [0,∞), continuous

and

(2.3) σ, µ : [0,∞) × [0,∞) → [0,∞), jointly measurable

and satisfies the following conditions.

(a) For each t > 0 ,

(2.4) |σ(s, x) − σ(s, y)|2 ≤ ρ(|x− y|)

holds for every s ≤ t. Here ρ is a non-decreasing Borel function from (0,∞)

to (0,∞) such that

(2.5)

∫
0+

da

ρ(a)
= +∞.
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(b) (Local Lipschitz Condition) For each t > 0 and integer n, there exists

a constant Kn
t > 0 such that

(2.6) |µ(s, x) − µ(s, y)| ≤ Kn
t |x− y|

holds for every s ≤ t and |x| ≤ n, |y| ≤ n.

We define solutions for (2.1) as usual in the weak sense but up to the

explosion time. The existence of weak solutions up to the explosion time

follows from Skorohod’s results [11] by slight modifications. (See Ikeda

and Watanabe [2].) By Yamada-Watanabe’s theory [14] we are also able

to obtain the unique strong solution from weak existence and pathwise

uniqueness.

In this paper we say that pathwise uniqueness up to the explosion time

holds for (2.1) if for any two weak solutions (up to the explosion time) of

common initial value and common Brownian motion (relative to possibly

different filtrations) (X,W ) and (X̃,W ),

P [Xt = X̃t ; 0 ≤ ∀t < e] = 1.

Theorem 2.1. Under the conditions (2.2)–(2.6) pathwise uniqueness

up to the explosion time holds for (2.1).

Proof. Let X1and X2 be two solutions (with respect to the same

Brownian motion and X1
0 = X2

0 a.s.) of (2.1) under the conditions (2.2)–

(2.6). Let

τ in
def
= inf{t | |X i

t | ≥ n}, i = 1, 2, n ∈ N,

and

τn
def
= τ1

n ∧ τ2
n.

To prove the theorem we use the following lemma from Revuz and Yor [7].

Lemma 2.2 (See e.g. Revuz and Yor [7]). Fix an integer n. Then

L0
t (X

1 −X2) = 0, 0 ≤ ∀t ≤ τn.

Here we denote by L0 the local time at 0.
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We will show that

P [X1
t = X2

t ; 0 ≤ ∀t ≤ τn] = 1, ∀n ∈ N.

By virtue of Tanaka’s formula and lemma 2.2, for t > 0,

|X1
t∧τn −X2

t∧τn | =

∫ t∧τn

0
sgn(X1

s −X2
s )
(
σ(s,X1

s ) − σ(s,X2
s )
)
dWs

+

∫ t∧τn

0
sgn(X1

s −X2
s )ξs

·
(∫ s

0
(µ(u,X1

u) − µ(u,X2
u))du

)
ds.(2.8)

Since the stochastic integral term of (2.8) is bounded,

E |X1
t∧τn −X2

t∧τn |

≤ E

[∫ t∧τn

0
ξs

(∫ s

0
|µ(u,X1

u) − µ(u,X2
u)|du

)
ds

]
(2.9)

(by integration by parts)

= E

[(∫ t∧τn

0
ξsds

)(∫ t∧τn

0
|µ(s,X1

s ) − µ(s,X2
s )|ds

)]

− E
[∫ t∧τn

0

(∫ s

0
ξudu

)
|µ(s,X1

s ) − µ(s,X2
s ) | ds

]
(2.10)

(since ξ is non-negative and continuous, there exists a positive constant Cn
t )

≤ Cn
t E

[∫ t∧τn

0
|µ(s,X1

s ) − µ(s,X2
s ) | ds

]
(2.11)

≤ Cn
t E

[∫ t∧τn

0
Kn
t |X1

s −X1
s | ds

]
(2.12)

≤ Cn
t K

n
t E

[∫ t

0
|X1

s∧τn −X2
s∧τn | ds.

]
(2.13)

By Gronwall’s lemma,

X1
t∧τn = X2

t∧τn , t ≥ 0, a.s.

Letting n ↑ ∞, we get the desired result. �

Proof of Theorem 1.1. A direct consequence of theorem 2.1 �
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3. Proof of Theorem 1.2

Let Xt be the unique solution of (1.1) and

(3.1) Yt
def
= σ2ξ

∫ t

0
X2γ
s ds.

Then

(3.2) dXt = (Yt + η) dt+ σXγ
t dWt.

We set a ‘scale function’ as follows:

(3.3) S(x, y) =
1

1 − γ x
1−γ + y

1
δ x > 0, y > 0.

Then by Itô’s formula,

(3.4) S(Xt, Yt)
def
= σWt +

∫ t

0
LS(Xs, Ys)ds

where

L def
=

1

2
σ2x2γ ∂

2

∂x2
+ (y + η)

∂

∂x
+ ξσ2x2γ ∂

∂y
.

In our stting

(3.5) LS(x, y) = − 1

x1−γ

(
σ2γ

2

)
+
y + η

xγ
+ ξσ2x2γ

(
1

δ
y

1
δ
−1

)
.

Set

(3.6) G(R)
def
= inf

S(x,y)=R
LS(x, y), R > 0.

We will show that

Lemma 3.1. there exist positive constants C1, C2, C3 such that for all

R > 0,

(3.7) G(R) > C1R
δ+1
3 − C2R

δ− γ
1−γ − C3.
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To estimate (3.6) we use the following elementary lemmas.

Lemma 3.2. (i) Let k1, k2 > 0, δ1 < δ2 < 0 and

f(x) = k1x
δ1 − k2x

δ2 . x > 0.

Then for x > 0,

(3.8) f(x) ≥ k
δ2

δ2−δ1
1 k

− δ1
δ2−δ1

2

(
δ1
δ2

) δ1
δ2−δ1

(
1 − δ1

δ2

)
.

(ii) Let k1, k2 > 0, δ1 < 0 < δ2 and

f(x) = k1x
δ1 + k2x

δ2 . x > 0.

Then for x > 0,

(3.9) f(x) ≥ k
δ2

δ2−δ1
1 k

− δ1
δ2−δ1

2

(−δ1
δ2

) δ1
δ2−δ1

(
1 +

δ1
δ2

)
.

Equality holds when

(3.10) x =

(
k1 |δ1 |
k2δ2

) 1
δ2−δ1

.

Proof of Lemma 3.1. We first remark that under the constraint that

R =
1

1 − γ x
1−γ + y

1
δ , x > 0, y > 0, R > 0,

there are bounds for both x and y, i.e.;

(3.11) 0 < x < ((1 − γ)R)
1

1−γ , 0 < y < Rδ.
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Then we have

(3.12)
y

xγ
=

(
R− 1

1 − γ x
1−γ
)δ

≥ Rδ

xγ
− δ

1 − γ
Rδ−1

x2γ−1
.

And by (3.11)

(3.13)
1

δ
y

1
δ
−1 >

1

δ
R1−δ.

Let c1, c2 be positive constants such that c1 + c2 = 1. By lemma 3.2 (ii),

and since 1 +

(−γ
2γ

)
> 0,

(3.14) c1
Rδ

xγ
+ ξσ2x2γ 1

δ
R1−δ ≥ ∃C1R

δ+1
3 .

Similarly by lemma 3.2 (i),

(3.15) c2
Rδ

xγ
− δ

1 − γ
Rδ−1

x2γ−1
≥ −∃C2R

δ− γ
1−γ .

and

(3.16)
η

xγ
− 1

x1−γ

(
σ2γ

2

)
≥ −∃C3.

By (3.12)–(3.16) we get (3.7). �

Proof of Theorem 1.2. Let R̂. be the solution of the following sto-

chastic differential equation for λ ≥ 1.

(3.17)



dR̂t = σdWt + (C1R̂

λ
t − C2R̂t − C3) dt,

R̂0 =
1

1 − γ x
1−γ .

Denote its explosion time by t. By Feller’s explosion test, (See e.g. Ikeda

and Watanabe [2])

(3.18) P [t <∞] =

{
1, if λ > 1,

0, if λ = 1.
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Then by the comparison theorem (See Yamada [13], and Ikeda and Watan-

abe [2]) and lemma 3.1,

(3.19) S(Xt, Yt) > R̂t, a.s.

Since S(Xt, Yt) ↑ ∞ implies Xt ↑ ∞, we have

P (e < t) = 1.

We can take
δ + 1

3
> 1 and δ− γ

1 − γ = 1 if and only if γ >
1

2
. This implies

P (e <∞) = 1, if γ >
1

2
. �

4. Proof of Theorem 1.3

The key idea of the following proof is time change. Note that X. is

rewritten as

(4.1) Xt = x+ ηt+

∫ t

0
[M ]sds+Mt

where Mt =
∫ t
0 (a(Xs))

1
2 dWs.

First let us consider the following equation on (Ω,G, P ).

Vt = x2 + 2

∫ t

0

√
VsdBs +

∫ t

0

(
2(s+ η)

L(
√
Vs)

+ 1

)
ds

where B denotes a P -Brownian motion with respect to a new filtration

{Gt}. By the assumption (c), the above has the unique solution (in the

strong sense). Moreover by the assumption (d) and continuity of L, we see

that inf
t>0

Vt > 0 a.s.

Let Yt
def
=

√
Vt. By Ito’s formula we have

(4.2) Yt = x+

∫ t

0

s+ η

a(Ys)
ds+Bt.
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Let

(4.3) At =

∫ t

0

ds

a(Ys)
, 0 ≤ t ≤ ∞

and Ct be its right continuous inverse, i.e.

(4.4) Ct = inf{s,As > t}, 0 ≤ t ≤ A∞.

Since At is strictly increasing and continuous, so is Ct.

Let (Ω̂,F , P̂ , {Ft}t∈[0,∞)) be an enlargement of (Ω,G, P, {GCt}t∈[0,∞))

and define a new Brownian motion with respect to this new filtration as

follows:

(4.5) Wt =




∫ Ct

0

dBs√
a(Ys)

, for t < A∞∫ ∞

0

dBs√
a(Ys)

+ β̂(t−A∞), for A∞ ≤ t <∞, if A∞ <∞

where β is a Brownian motion on Ω̂ independent of

∫
dB√
a(Y )

.

Then X̂t
def
= YCt is defined on (Ω̂,F , P, {Ft}t∈[0,∞)) as a weak solution

for (1.1). Theorem 1.1 ensures that X̂ = X is the unique strong solution.

Moreover we shall see that XA∞ = Y∞ = ∞, so that if A∞ < ∞, the

solution explode in finite time, otherwise the global existence is ensured.

The key estimation is given bellow as lemma 4.1. Instead of (4.2) we will

consider the following (random) ordinary differential equation for each ω ∈
Ω.

(4.6) Zt = x+

∫ t

0

s+ η

a(Zs +Bs)
ds

which in turn means Zt = Yt −Bt > 0 a.s. by (4.2).

First we shall have

(4.7) Yt = Zt +Bt ∼ Zt → +∞ as t→ ∞.

This is done by the following
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Lemma 4.1. Let Ω̄ = {ω ∈ Ω, lim
t→+∞

Bt(ω)

t
= 0} and fix ω ∈ Ω̄.

(i) There exists a positive constant M(ω) such that

(4.8) Zt(ω) < x+M(ω) t.

(ii) There exists a slowly varying function L∗ ∼ L and positive constant

K(ω) such that

(4.9) Zt(ω) > x+
t

M +K
(L∗(t))−1 .

Proof of Lemma 4.1. Since lim
t→+∞

Bt(ω)

t
= 0, there exists a positive

constant K such that

∣∣∣∣Bt(ω)

t

∣∣∣∣ < K. Set inf
x>0

L(x) = c and let Z1
t be the

solution for

(4.10) Z1
t = x+

∫ t

0

s+ η

(Z0
s +Bs)c

ds,

Then we have Z1
t ≥ Zt for all t ∈ [0,∞).

Set M
def
=

(
K +

η

cx
+
x

η

)
and Z2

t

def
= x+Mt. Then we have

(Z2
t )

′ = M

= M
t+ η

Z2
t −Kt

Z2
t −Kt
t+ η

=
t+ η

(Z2
t −Kt)c

x+ (
x

η
+
η

cx
)t

t+ η

(
K +

x

η
+
η

cx

)
c

=
t+ η

(Z2
t −Kt)c

{(
x

η
+
η

cx

)
−
(

1

t+ η

)
η2

cx

}(
K +

x

η
+
η

cx

)
c

>
t+ η

(Z2
t −Kt)c

(
K +

x

η
+
η

cx

)
cx

η
>

t+ η

(Z2
t −Kt)c

>
t+ η

(Z2
t +Bt(ω))

.(4.11)

By the comparison theorem we have Z2
t > Z

1
t which proves the first part of

Lemma 4.1.
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To prove the latter part, we first observe that

(4.12) Zt +Bt = t

(
Zt
t

+
Bt

t

)
≤ x+ t(M +K).

Note that L̄ = sup
0≤y≤x

L(y) is non-decreasing, L̄ ≥ L and L̄ ∼ L. (See Seneta

[10].) Since L̄ ≥ L and by (4.12) and monotonicity of L̄ we have

t+ η

a(Zt +Bt)
=

t+ η

Zt +Bt

1

L(Zt +Bt)
≥ t+ η

Zt +Bt

1

L̄(Zt +Bt)

>
t+ η

x+ t(M +K)

1

L̄(x+ t(M +K))
∼ (L(t))−1

M +K
.(4.13)

Let

(4.18) Z3
t

def
= x+

∫ t

0

s+ η

x+ s(M +K)

1

L̄(x+ s(L+K))
ds.

Then by the comparison theorem we see that Z3
t < Zt. On the other hand,

it is well known that

∫ x

N(y) dy ∼ xN(x) holds for arbitrary slowly varying

function N. (See Seneta [10].) Hence we have Z3
t ∼ t

M +K
(L(t))−1. This

proves (ii) of Lemma 4.1. �

Then we have for arbitrary ε > 0, there exists Tε such that for all t > Tε

(4.14) (1 − ε) t+ η

a(Zt)
≤ dZ

dt
=

t+ η

a(Zt +Bt)
≤ (1 + ε)

t+ η

a(Zt)
.

Consider the following differential equations.

(4.15)
dZ

dt
=

(1 + ε)(t+ η)

a(Zt)
, Tε < t <∞, ZTε = ZTε .

(4.16)
dZ

dt
=

(1 − ε)(t+ η)

a(Zt)
, Tε < t <∞, ZTε = ZTε .
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Then by comparison theorems and (4.14),

(4.17) Zt ≤ Zt ≤ Zt,
∀t ≥ Tε.

On the other hand we have

1

2
(t− Tε)(t+ Tε + 2η) =

∫ t

Tε

a(Zs)
dZ

ds
ds =

∫ Zt

ZTε

a(Zs)dZs

=

∫ Zt

ZTε

ZsL(Zs)dZs ∼
1

2
Z2
tL(Zt).(4.18)

The last relation is a consequence of the following lemma and (4.7).

Lemma 4.2 (Karamata [5]). If N is slowly varying on [c,∞), then for

each k > −1

(4.19) lim
x→+∞

xk+1N(x)∫ x

c
ykN(y) dy

= k + 1.

We also have in the similar way

(4.20) Z
2
tL(Zt) ∼ (1 + ε)(t− Tε)2.

Consequently we have

(4.21) Zt ∼
t√
L(Zt)

.

Then we have

(4.22) a(Yt) = YtL(Yt) ∼ ZtL(Zt).

Since we have by definition of f and (4.21), it follows that f(t) ∼ Zt. Then

by (4.3) and (4.22), we have

(4.23) At ≈
∫ t ds

ZsL(Zs)
=

∫ t ds

Zs
√
L(Zs)

√
L(Zs)

≈
∫ t ds

s
√
L(f(s))

Here we use the notation f ≈ g meaning lim
x→∞

f(x)

g(x)
< ∞. Then proof is

complete since the above relationship holds almost surely.
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5. A Generalized RS Model

In this section we explain first the interest rate model which admits

no arbitrage and then give a rather general model that includes the one

proposed by Ritchken and Sankarasubramanian [8] [9]. It is also explained

how the these models are related to the stochastic integral equation studied

so far in the present paper.

Let (Ω,F , {Ft}t∈[0,∞), P ) be a filtered probability space with the usual

conditions.

A zero-coupon bond price process with maturity T , denoted by p(·, T ),

is an {Ft}- adapted continuous semimartingale up to time T ∈ (0,∞) with

p(T, T ) = 1. If we assume that ∂
∂T log p(t, T ) exists for every T and that for

fixed t it is uniformly bounded, then the spot rate process is given by

(5.1) rt
def
= − ∂

∂T
log p(t, T )

∣∣∣∣
T↓t
.

It is well known that absence of arbitrage in the financial market is al-

most equivalent to the existence of so-called equivalent martingale measure

Q ≈ P and under Q we must have

(5.2) p(t, T ) = EQ
(
e−

∫ T
t rs ds |Ft

)
.

where EQ(·) denotes the expectation with respect to Q. (See e.g. Duffie

[1].)

Here we give a so-called no-arbitrage model of interest rates by specifying

the dynamics of the spot rate process.

Before giving the model, we shall have an elementary lemma. Let M. be

a continuous Q-local martingale such that M0 = 0 and ξ is a deterministic

continuous function.

Set

(5.3) Xt
def
=

∫ t

0
ξs[M ]sds+Mt.

and

(5.4) X̄t
def
= ξtXt.
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where for a martingale N., [N ]. denotes its quadratic variation process.

Lemma 5.1. Then we have

(5.5) −
∫ u

0
X̄tdt = Nu

u − 1

2
[ Nu]u

where

(5.6) Nu
t

def
= −

∫ t

0

(∫ u

s
ξvdv

)
dMs.

Proof. Since ξ is continuous, a version of Fubini’s theorem can be

applied. So we have

∫ u

0
X̄tdt =

∫ u

0
ξtMtdt+

∫ u

0
ξt

(∫ t

0
ξs[M ]sds

)
dt(5.7)

=

∫ u

0

(∫ u

s
ξtdt

)
dMs +

∫ u

0
ξtdt

∫ t

0

(∫ t

v
ξsds

)
d[M ]v

=

∫ u

0

(∫ u

s
ξtdt

)
dMs +

1

2

∫ u

0

(∫ u

v
ξsds

)2

d[M ]v. �

Now we set the spot rate process as

(5.8) rt
def
= ηt +

n∑
i=1

ξitX
i
t

where η. and ξi, i = 1, ..., n are linearly independent deterministic continu-

ous functions, and X i, i = 1, ..., n are defined by (5.3) through independent

M i and ξi, that is

(5.9) Xi
t =

∫ t

0
ξis[M

i]sds+M i
t , i = 1, ..., n.

Then we can see that the zero-coupon bond price processes are described

as the functions of Xi’s and [M i]’s. More precisely we have
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Proposition 5.2. Assume that for all T > 0 and i = 1, ..., n

(5.10) EQ

[
exp

1

2

∫ t

0

∫ T

s
ξiudud[M

i]s

]
<∞

holds for all 0 ≤ t ≤ T. Then the bond prices are given by the following.

p(t, T ) = exp
n∑
i=1

{
−
(∫ T

t
ξiudu

)
Xi
t −

1

2

(∫ T

t
ξiudu

)2

[M i]t

}
(5.11)

· e−
∫ T
t ηsds.

Proof. By (5.2), it suffices to calculate

(5.12) EQ
(
e−

∫ T
t rs ds |Ft

)
= e

∫ t
0 rsdsEQ

(
e−

∫ T
0 rs ds |Ft

)
.

By (5.3)–(5.6), (5.9) we have

(5.13) e−
∫ u
0 rsds =

n∏
i=1

E(N i,u)ue
−
∫ u
0 ηsds.

where N i,u
t = −

∫ t
0

(∫ u
s ξ

i
udu

)
dM i

s and E(·) denotes its exponential semi-

martingale. By (5.10), E(N i,u). is a martingale and by (5.12) and (5.13),

(5.14) p(t, T ) =
n∏
i=1

E(N i,T )t
E(N i,t)t

e−
∫ T
t ηsds.

An easy calculation leads to (5.11). �

Indeed Ritchken and Sankarasubramanian’s interest rate model [8] [9] is

included in the above one. To see this, we first give the original RS model.

Define the forward rate processes as

(5.15) f(t, T )
def
= − ∂

∂T
log p(t, T ).
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They assume that f(·, T ) be an Ito process, that is,

(5.16) df(t, T ) = σ(t, T, ω)dWt + µ(t, T, ω)dt

where W. denotes a Q-Brownian motion. Then we have by (5.2)

(5.17) drt = σ(t, t, ω)dWt +

(
µ(t, t, ω) +

∂

∂T
f(t, T )

∣∣∣∣
T↓t

)
dt.

By no-arbitrage argument (e.g. Duffie [1]) we see that

(5.18) µ(t, T, ω) = σ(t, T, ω)

∫ T

t
σ(t, u)du.

In [8] [9], they claim that the constraint

(5.19) σ(t, T, ω) = σ(t, t, ω)e−
∫ T
t κ(x)dx, κ ∈ Cb[0,∞)

leads to the conclusion that

(5.20) µ(t, t, ω) +
∂

∂T
f(t, T )

∣∣∣∣
T↓t

= κ(t)(f(0, t) − rt) + φt +
d

dt
f(0, t)

where φt is given by

(5.21) dφt = (σ(t, t, ω)2 − 2κ(t)φt)dt.

It follows that if we put σ(t, t, ω) = σ̂(rt, t), r is a (2-dim) Markovian.

One can easily see that if we set in (5.8) i = 1,

(5.22) ξt = ξ0e
−
∫ t
0 κ(x)dx,

(5.23) ηt = f(0, t),

and

(5.24) Mt =

∫ t

0
ξ−1
s σ̂dWs,
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we have the Markovian spot rate process of Ritchken and Sankarasubrama-

nian’s model.

Remarks. To the best of our knowledge, Jamshidian [4] is the first to

consider a class of forward rate processes given by (5.19)–(5.21) which he

called Quasi Gaussian.

A multi-factor version of the RS model is discussed in Inui and Kijima

[3]. They construct a whole-yield model while ours is a spot rate model.

They pointed out that n-factor the RS model allows one to use the 2n-state

Markovian spot rate. This also coincides with ours since we can set (ξi,M i)

as 2 dimensional diffusion processes.

Takahashi [12] reported that SIE models have advantages as price pro-

cesses of financial assets compared with one dimensional diffusion models.

Here by SIE models we mean that the processes are given by general stochas-

tic differential equations including those of non-Markov types. His model

is slightly different from ours. See also Kannan et al.[6].
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Bull. Soc. Math., France 61 (1933), 55–62.

[6] Kannan, D. and A. T. Bharucha-Reid, Random integral equation formulation
of a generalized Langevin equation, J. Stat. Ph. 3 (1972), 209–233.

[7] Revuz, D. and M. Yor, Continuous Martingales and Brownian Motion, second
edition, Springer, Berlin, 1994.

[8] Ritchken, P. and L. Sankarasubramanian, Lattice models for pricing Ameri-
can interest rate claims, Journal of Finance L no.2 (1995), 719–737.

[9] Ritchken, P. and L. Sankarasubramanian, Volatility structure of forward rates
and the dynamics of the term structure, Mathematical Finance 5 (1995), 55–
72.



Explosion Tests for SIE 745

[10] Seneta, E., Regularly Varying Function, Lecture Notes in Mathematics, vol.
508, Springer, 1976.

[11] Skorohod, A. V., Studies In The Theory of Random Processes, Addison-
Wesley, 1965.

[12] Takahashi, M., Non-ideal Brownian motion, generalized Langevin equation
and its application to the security market (1996), submitted to the Financial
Engineering and the Japanese Markets.

[13] Yamada, T., On a comparison theorem for solutions of stochastic differential
equations, Z. Wahrscheinlichkeitstheorie 13 (1973), 497–512.

[14] Yamada, T. and S. Watanabe, On the uniqueness of solutions of stochastic
differential equations, J. Math. Kyoto. Univ. 11 (1971), 155–167.

(Received May 1, 1998)
(Revised August 17, 1998)

Department of Mathematics
Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu
Shiga 525-8577, Japan
E-mail: akahori@se.ritsumei.ac.jp


