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Abstract

We try to understand the quasi-periodic oscillations (QPOs) in low-mass neutron-star and black-hole X-ray
binaries by a resonance model in warped disks with precession. Our main concern is high-frequency QPOs,
hectohertz QPOs, and horizontal-branch QPOs in the z sources and the atoll sources, and the corresponding QPOs
in black-hole X-ray binaries. Our resonance model can qualitatively, but systematically, explain these QPOs by
regarding hectohertz QPOs as a precession of warp.
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1. Introduction

Quasi-periodic oscillations (QPOs) have been observed in
many low-mass X-ray binaries. They give important clues to
understand disk structures as well as to evaluate the mass and
spin of the central neutron stars or black holes. Although the
mechanism of the QPOs is still under debate, recent observa-
tions suggest that they can be attributed to disk oscillations.
Observations further suggest that some resonant processes
are involved in the mechanism of the QPOs, and many disk
oscillation models in this direction have been proposed since
Abramowicz and Kluzniak (2001), e.g., Lamb and Miller
(2003) and Kluzniak et al. (2004). In previous papers (Kato
2003, 2004a, 2004b) we have proposed that the QPOs are disk
oscillations excited on a warped disk by a resonant process.
The purpose of this paper is to examine how much the warp
model is compatible with observations.

We consider a relativistic warped disk. On the disk we
superpose disk oscillations. Then, some of these disk oscil-
lations have resonant interactions with the disk at particular
radii through non-linear coupling with the warp (Kato 2003,
2004a, 2004b). When the warp has no precession (this is the
case considered in the above papers) the resonances occur at
radii where one of the relations of κ = (

√
2− 1)Ω, κ = Ω/2, or

κ = (
√

3−1)Ω is satisfied, where κ(r) is the epicyclic frequency
and Ω(r) is the angular frequency of disk rotation, r being the
radius from the disk center. In the case of relativistic Keplerian
disks, these radii are, in turn, r = 3.62 rg, r = 4.0 rg, and
r = 6.46 rg (Kato 2003, 2004a), where rg is the Schwarzschild
radius, defined by rg = 2GM/c2, M being the mass of the
central object. Kato (2004b) subsequently showed that among
the resonant oscillations mentioned above, those at κ = Ω/2
are excited spontaneously by the resonance process, itself.
Kato (2004b) further showed that the high-frequency QPOs in
black-hole X-ray binaries, which are usually a pair and have
a frequency ratio close to 2 : 3, can be explained by this warped
model.

In this paper we extend the warped disk model to the case
where the warp has precession. We demonstrate that by this

extension the main important characteristics of QPOs in X-ray
binaries (neutron-star and black-hole X-ray binaries) can be
qualitatively explained. Among three types of resonances,
which tend, in the limit of no precession, to κ = (

√
2 − 1)Ω,

κ = Ω/2, or κ = (
√

3−1)Ω, we focus our attention in this paper
on the middle one, since the resonances in this case sponta-
neously excite oscillations, as mentioned above.

2. Resonant Oscillations at κ = (Ω + ωp)/2 on Warped
Disks

Details of the resonance process on warped disks are
presented by Kato (2003, 2004a, 2004b) in the case where
the warp has no precession. The essence of the resonance
processes is the same, even when a warp has precession. We
thus present here only an outline. An overview of our non-
linear resonance model in the case where the warp has preces-
sion is sketched in figure 1 of Kato (2004c).

We consider geometrically thin disks rotating with angular
velocity Ω(r). The epicyclic frequency on the disk is denoted
by κ(r). The oscillations on geometrically thin disks are gener-
ally classified into g-mode and p-mode oscillations (see, e.g.,
Kato et al. 1998; Kato 2001). In simplified disks the oscil-
lations are further classified by the set of (m, n), where m =
(0,1,2, . . .) is the number of nodes in the azimuthal direction,
and n = (0,1,2, . . .) is a number related to nodes in the vertical
direction. That is, n represents the number of nodes that ur

(the radial component of velocity associated with oscillations)
has in the vertical direction. It is noted, however, that uz (the
vertical component of velocity associated with oscillations) has
(n−1) nodes in the vertical direction, and uz = 0 in the case of
n = 0.

A warp is a global deformation of disks with m = n = 1. The
warp is assumed to have a precession whose angular frequency
is ωp. On a disk deformed by the warp we superpose g-mode
oscillations with arbitrary m and n. A g-mode oscillation with
frequency ω and (m, n) has a relatively large amplitude, global
pattern only around the radius where
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(ω−mΩ)2 − κ2 = 0 (1)

is satisfied. This can be understood if the dispersion relation for
local perturbations is considered (e.g., Kato et al. 1998; Kato
2001). That is, the region of (ω−mΩ)2−κ2 >0 is a evanescent
region of the oscillations. In the region where (ω −mΩ)2 is
smaller than κ2, on the other hand, the oscillations have very
short wavelengths in the radial direction in geometrically thin
disks.

A non-linear interaction of this g-mode oscillation with
the warp produces an oscillation with ω ± ωp, m̃, and ñ,
where m̃ = m± 1 and ñ = n± 1 (these oscillations are called
hereafter intermediate oscillations). These intermediate oscil-
lations resonantly interact with the disk at the radius where the
dispersion relation for these intermediate oscillations is satis-
fied (see Kato 2004b for detailed discussions). There are two
types of resonances. One is resonances that occur through
motions in the vertical direction, and the other is those through
motions in the radial direction (see Kato 2004a, referred to
Paper I). Here, we are interested in resonances in the horizontal
direction. The horizontal resonances occur around the radius
where

(ω±ωp − m̃Ω)2 − κ2 ∼ 0 (2)

is satisfied. Combining equations (1) and (2), we find that the
resonances occur at the radius of κ = Ω/2±ωp/2 (cf. Paper I).
After this resonance the intermediate oscillations feedback to
the original oscillations, amplifying or dampening the original
oscillations (Kato 2004b). Hereafter, we consider the case of
κ = Ω/2 + ωp/2.

A detailed examination shows that when m̃ of the interme-
diate oscillation is m− 1, i.e., m̃ = m− 1, the oscillations that
resonantly interact with the disk at κ = (Ω + ωp)/2 are those
satisfying ω = mΩ − κ at the resonant radius. On the other
hand, the oscillations that resonantly interact with the disk at
κ = (Ω + ωp)/2 are those satisfying ω = mΩ + κ there, when
m̃ = m + 1 (see Paper I).

Here, we consider non-axisymmetric oscillations. Among
them we are particularly interested in oscillations of a small
number of m. Typical ones are ω =Ω−κ (m= 1, m̃= 0), ω =Ω +
κ (m=1, m̃=2), and ω=2Ω−κ (m=2, m̃=1). As shown below,
we identify these oscillations, in turn, to the horizontal branch
QPOs, upper-frequency kHz QPOs, and lower-frequency kHz
QPOs in the case of z sources. Considering this, we introduce
the following notations:

ωH = Ω + κ, ωL = 2Ω− κ, ωHBO = Ω− κ. (3)

3. Precession of Warps

We consider a relativistic Keplerian disk with the
Schwarzschild metric, and examine the radii where the
resonance condition, κ = (Ω + ωp)/2, is satisfied as functions
of ωp. The condition is satisfied at two different radii when
ωp > 0. (In the case of ωp = 0, we have only one radius, i.e.,
4.0 rg. The other one is ∞.) As ωp increases, the inner radius
becomes larger than 4.0rg, while the other one decreases from
infinity. At a certain critical value of ωp, both radii coincide
and above the critical value of ωp, there is no solution of
κ = (Ω + ωp)/2. The results are shown in figure 1. The unit of

Fig. 1. The r–ωp relation giving the solution of the resonance condi-
tion κ = (Ω + ωp)/2. The disk is Keplerian in the Schwarzschild metric.

Fig. 2. The ωL–ωH, ωHBO–ωH, and ωp–ωH relations obtained from
the resonance condition κ = (Ω + ωp)/2 for some frequency range of
ωH. For a comparison, the line of ωH–ωH is shown and the value of ωp
along the ωp–ωH curve is shown at some points. For a comparison, the
0.08ωL–ωH relation is shown. The trancated curve on the upper-right
corner represents the first harmonic of ωHBO, i.e., it is the 2ωHBO–ωH
relation. In order to avoid complexity, the curve is trancated. It is noted
that the ratio ωH/ωL decreases as ωH increases. The ratio is ∼ 1.5 for
ωH in the middle of the figure, and becomes 1.0 at the right end of the
figure, where ωH is the maximum and ωp = 0. At this right end, the
ratio ωH (= ωL) : 2ωHBO : ωHBO = 3 : 2 : 1. We regard the oscillations
of ωp as hectohertz QPOs.

the abscissa is ωp(M/M�). The critical value of ωp is ∼325Hz
when M/M� = 1.0, while ∼ 162 Hz when M/M� = 2.0. The
branch of larger value of r on the r–ωp plane is hereafter called
the upper branch and that of the lower one the lower branch.
The frequencies (ωH, ωL, ωHBO) at radii of the lower branch
decrease as ωp increases, since the resonance radius moves
outward. On the other hand, the frequencies at radii of the
upper branch increase as ωp increases. To compare with obser-
vations, the ωL–ωH, ωHBO–ωH, and ωp–ωH relations are shown
in figure 2, which is free from precession. For a comparison,
the straight line of the ωH–ωH relation is also added. Values of
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ωp(M/M�) are shown, for convenience, at some points on the
ωp–ωH curve. The trancated curve on the upper-right corner
is the first harmonic of ωHBO, i.e., it represents the 2ωHBO–ωH
relation. The curve extends to the left, but is cut in order to
avoid complexity of the figure. It is useful to compare this
figure with figure 2.9 of van der Klis (2004). We take the
standpoint that the variation of the precession is the cause of
time variations of QPO frequencies in a single object.

As the precession frequency changes, the frequencies ωH,
ωL, and ωHBO vary along the curves in figure 2. Observations
show that the changes of the horizontal branch QPOs and
lower-frequency kHz QPOs are correlated so that the former
frequencies are ∼ 0.08-times the latter ones (Psaltis et al.
1999). Hence, for a comparison, the curve of the 0.08 ωL–ωH
relation is shown in figure 2. Figure 2 shows that the curve
of the 0.08 ωL–ωH relation crosses the curve of the ωHBO–ωH
relation at ωH ∼ 320 (M/M�)−1 Hz, which corresponds to
ωp ∼ 115(M/M�)−1 Hz.

It is noted that the curves shown in figure 2 are mass-
independent, since the axes are normalized by M/M�. That
is, the results hold in a wide range of frequency by changing
the mass.

4. Summary and Discussion

In luminous neutron-star low-mass X-ray binaries (the
z sources), we typically have four distinct types of QPOs.
These are the ∼ 5–20 Hz normal branch oscillation (NBO),
the 15–60 Hz horizontal branch oscillation (HBO), and the
∼ 200–1200 Hz kilohertz QPOs that typically occur in pairs.
The QPOs in the atoll sources (less luminous neutron-star low-
mass X-ray binaries) can also be classified into similar types
of oscillations. In addition, in the atoll sources the hectohertz
QPOs are observed in the frequency range of 100 Hz–200 Hz.
In the z sources, however, the presence of hectohertz QPOs is
uncertain, or ambiguous. In black-hole X-ray binaries, we have
high-frequency QPOs in the range of 100 Hz to 450 Hz, which
usually appear in pairs. A comprehensive review on QPOs is
presented by van der Klis (2004).

One of important characteristics of QPOs in the z sources
is the presence of a strong correlation between kilohertz
QPOs and HBOs. That is, the frequency of the lower kHz
QPO and that of HBO are correlated in each object so
that the former is ∼ 0.08-times the latter. This correlation
extends from neutron-star to black-hole X-ray binaries in
nearly three orders of magnitude in frequency (Psaltis et al.
1999, see figure 2 of their paper). In our resonance model
this correlation can be explained if variation of precession
frequency occurs around 115 (M/M�)−1 Hz, say, 70 ×
(M/M�)−1 Hz ∼ 170 (M/M�)−1 Hz. A question is whether
such a precession has been observed. In relation to this issue,
it it interesting to note that the observed hectohertz QPOs
are roughly in the frequency range mentioned above. This
suggests that the hectohertz QPOs might be a manifestation
of the warp. One of the characteristics of the hectohertz QPOs
is that their frequencies are nearly constant (e.g., van der Klis
2004). In our resonance model, the relation of ωHBO ∼ 0.08ωL
is realized over in a wide range of ωH without much changing
the value of ωp, as shown in figure 2. This is consistent with

the idea that the warp represents the hectohertz QPOs. The
precession of disks in X-ray binaries is theoretically expected,
since the radiation force from central star gives torques on
warped disks (Pringle 1996; Maloney et al. 1996). It is not
clear, however, whether such a high-frequency precession
as required here is generally expected. We suppose that the
frequency of the precession is related to rotation of the central
star. A non-axisymmetric pattern on a rotating stellar surface
will give rise to a precession of the disk through the effects of
a radiative force or a magnetic field.

Another important characteristic of QPOs in neutron-star
X-ray binaries is that the frequency ratio of the pair kHz QPOs
is close to 3 : 2, but changes with time so that the ratio decreases
with an increase of the frequency. This observational trend
is realized in our model. In our model the ratio ωH/ωL is
1.5 at ωH ∼ 700 (M/M�)−1 Hz, and becomes larger than 1.5
for smaller ωH. For larger ωH the ratio tends to unity as the
resonant radii approaches to 4.0 rg (i.e., ωp = 0).

Next, let us consider black-hole X-ray binaries. The pair
of high-frequency QPOs in these objects changes little their
frequencies, keeping the ratio close to 3 : 2. This is different
from the case of neutron-star X-ray binaries. Our resonance
model qualitatively explains this. Considering their mass and
the observed frequencies of QPOs, we think that in the case
of black-hole X-ray binaries the observed QPOs are those
resulting from the lower branch of the r–ωp relation (see
figure 1). That is, the resonance radius is close to 4.0 rg. This
case corresponds to the upper-right corner of figure 2. In the
limit of ωp = 0, the resonance occurs at r = 4.0 rg and the
frequency ratio of ωL and the first harmonics of ωHBO is just
3 : 2. (It is noted that the first harmonic of ωHBO has been
also observed in the z sources.) These QPOs change little
their frequencies for a change of precession frequency, since
as shown in figure 1 the resonance radius remains close to
4.0 rg for a large change of ωp. Another explanation of little
change of frequencies of high-frequency QPOs in black-hole
binaries is that the precession is really small in the case of
black holes, since the radiation force from the central object is
absent. It is noted that in our model the modes of the pair QPOs
in the black-hole binaries are different from those in neutron-
star binaries. That is, the pairs in the former are ωH (= ωL) and
2ωHBO, while those in the latter are ωH and ωL.

We have restricted our attention only to the resonances at
κ = (Ω + ωp)/2, since the analyses of growth rate of resonant
oscillations suggest that the resonances at κ = (

√
2− 1)Ω + ωp

and κ = (
√

3 − 1)Ω + ωp are not spontaneously excited (Kato
2004b). However, examinations of these cases are worth-
while. As an example, some results in the case of κ =
(
√

2 − 1)Ω + ωp are shown in figure 3. For simplicity, in
this figure, only the resonant oscillations resulting from the
upper branch of the r–ωp curve are shown. The frequency
of precession required to obtain ωHBO ∼ 0.08 ωL is around
50(M/M�)−1 Hz–100(M/M�)−1 Hz.

Our model predicts that some QPOs that are not yet observed
are present in neutron-star and black-hole X-ray binaries. In
our model the observed QPOs in neutron-star X-ray binaries
are the resonance oscillations at resonant radii belonging to
the upper branch of the r–ωp diagram (figure 1). Resonances
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Fig. 3. Same as figure 2, except for κ = (
√

2 − 1)Ω + ωp. In this
figure, for simplicity, only the resonant oscillations that occur on the
upper branch of the r–ωp plane are shown.

coming from a resonance radius of the lower branch are also
expected. They have higher frequencies compared with the
observed ones. The observed QPOs in black-hole X-ray
binaries, on the other hand, are interpreted to be resonant oscil-
lations belonging to the lower branch of the r–ωp relation.
Resonant oscillations resulting from radii of the upper branch
are also expected. These oscillations have lower frequencies
compared with the observed ones.

Note added on April 30:
In the present paper we have considered horizontal

resonances of g-mode oscillations. In this model, the preces-
sion required is retrograde. Furthermore, time variation of the
precession is required in order to explain time variation of QPO
frequencies. In the case of vertical resonances of g-mode oscil-
lations, however, the observed QPO frequencies and their time
variations can be explained as a result of time change of disk
structure in the vertical direction, without appealing to preces-
sion. This is discussed in a subsequent paper.
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