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Abstract 

Rapid fluctuation with a frequency dependence of l/fa (with a ~ 1-2) is characteristic of radiation 
from black-hole objects. Its origin remains poorly understood. We examined three-dimensional magneto-
hydrodynamical simulation data, finding that a magnetized accretion disk exhibits both l/fa fluctuation 
(with a ~ 2) and a fractal magnetic structure (with the fractal dimension of D ~ 1.9). The fractal field 
configuration leads to reconnection events with a variety of released energy and duration, thereby producing 
l/fa fluctuations. 
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1. Introduction 

Apparently random temporal fluctuations from galac­
tic black-hole candidates (BHCs; van der Klis 1995) and 
from active galactic nuclei (AGNs; Ulrich et al. 1997) 
have led many astronomers to recognizing how complex 
is the behavior of nature. The light curves are neither pe­
riodic nor random around some mean. Rather, they are 
seemingly composed of shot events with a variety of peak 
intensities and durations (Negoro et al. 1995). A number 
of analyses of X-ray light curves and optical AGN light 
curves show that the power spectral density (PSD) is flat 
at lower frequencies (/) , and is a power-law (oc f~a with 
a ~ 1-2) at higher frequencies. The break frequency cor­
responds to a few seconds for BHCs and to a few years 
for AGNs. Moreover, l / / a fluctuations are ubiquitous 
in natural behavior, although their origins have been un­
solved (Tajima, Shibata 1997, §2.6; Cable, Tajima 1997). 
The significance of l / / a noise is that it contains a long-
term memory (Press 1978). It has been a puzzle how 
l / / a fluctuations can arise in black-hole accretion flows 
(or disks) under realistic circumstances. 

Among a number of suggestions for a possible mecha­
nism of variability, the most promising one is magnetic 
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flares (Wheeler 1977; Galeev et al. 1979). It has been 
established through X-ray observations by the Yohkoh 
satellite that solar flares are triggered by magnetic re-
connection (Shibata 1996). In fact, the solar soft X-ray 
variation exhibits l/fa fluctuations (UeNo et al. 1997). 
Similarly, sporadic magnetic reconnection events which 
can occur in accretion flow may be responsible for the 
variability of black-hole objects, as well (Mineshige et al. 
1995). 

To prove this conjecture, we examined the three-
dimensional data of global, magnetohydrodynamical 
(MHD) disk calculations first made by Machida, Hayashi, 
and Matsumoto (2000). They calculated how a mag­
netic field evolves in a rotating disk initially threaded 
by toroidal (B^) fields. Since no cooling is taken 
into account in the computations, the simulated disk 
is advection-dominated (Kato et al. 1998), rather than 
radiation-dominated, as in the standard disk. Then, the 
system which we analyzed corresponds to BHCs in the 
hard (low) state, in which fluctuations are largely en­
hanced and whose spectra can well be reproduced by 
advection-dominated flow (Narayan et al. 1996). Mag­
netic fields are amplified with time via a number of MHD 
instabilities together with differential rotation. The max­
imum field strength is determined either by the field dissi­
pation by reconnection or field escape from accretion flow 
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via the Parker instability. As a result, the mean plasma 
/?, the ratio of the gas pressure to the magnetic pressure, 
finally reaches ~ 10, irrespective of the initial values of 
(3. Locally, however, even low-/? (< 1) regions appear; an 
inhomogeneous structure consequentially arises [see also 
similar discussion by Abramowicz et al. (1992), but for 
non-magnetic cases]. 

In the present paper, we thus analyze the temporal 
and spatial behaviors of accretion flow in order to clar­
ify the origin of l/fa fluctuations in black-hole objects. 
The results of the analysis are presented in the following 
section. The final section is devoted to discussions. 

2 . T e m p o r a l a n d S p a t i a l A n a l y s i s of A c c r e t i o n 
F l o w 

Figure 1 displays the light curves (A) and their PSDs 
(B) of a simulated disk obtained in the quasi-stationary 
state . Here, assuming tha t magnetic reconnection events 
greatly contribute to the energy ou tput , we calculated 

t ime variation of / r]j2dV (with r\ and j being the elec­
tric resistivity and electric current density) integrated 
over almost the whole disk. The high-frequency sides 
of the PSDs show a nearly power-law decline with an in­
dex of a ^ 2, in agreement with the observations. It is, 
in a sense, amazing tha t without any fine-tuning of the 
parameters or special assumptions, an MHD disk natu­
rally gives rise to l/fa fluctuations over three orders of 
frequency range. On the other hand, the low-frequency 
sides flatten at frequencies lower than the reciprocal of 
several rotation timescale at a reference radius, which is 
also consistent with the observations (van der Klis 1995; 
Ulrich et al. 1997). 

The appearance of l/fa fluctuation, or more specifi­
cally the presence of a long-term t ime correlation, implies 
a long-distance spatial correlation in the distribution of 
the magnetic fields. It is thus tempt ing to examine the 
spatial magnetic-field distribution. We specially pick up 
the quanti ty j/p, which is the ratio of the absolute value 
of the electric current density to the mat te r density, since 
it is a good indicator regarding a trigger of reconnection 
(Parker 1994; Ugai 1999). In fact, it has been shown 
by MHD simulations tha t a fast reconnection, as is ob­
served in solar flares, occurs when the electric resistivity 
becomes anomalously high in localized regions (Tajima, 
Shibata 1997, p237). Such a local, anomalous resistivity 
can be achieved where the electron drift velocity (which is 
proportional to j/p) exceeds a critical value (Yokoyama, 
Shibata 1995). Hence, any regions with high j/p values 
are all good candidates for a subsequent reconnection 
site. 

We give in figure 2 (Plate 23) a snapshot of the spa­
tial j/p distribution on a horizontal plane slightly above 
the equatorial plane. The panel roughly demonstrates to 
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Fig 1. (A) Typical light curves of the simulated MHD 
disk. Here, we assume that the radiation is predom­
inantly due to field dissipation by magnetic recon­
nection, thus plotting the temporal variation of r)j2 

integrated over almost the whole disk. The elec­
tric resistivity, 77, is assumed to be 770 x MAX[j'/p — 
C?/p)crit5U], since the magnetic reconnection seems 
to occur where local j/p is larger than some crit­
ical value. (B) The power-spectral densities of the 
above light curves. The dotted line is a least-squares 
fit with a broken power-law function for (j/p)c r i t of 
200 (open circles). It is of great importance to note 
that the general behavior does not depend on the 
values of {j/p)CT\t- The unit of time is the rotation 
period at a reference radius where the center of the 
initial torus is located. The rotation timescale used 
here corresponds to a few seconds for BHCs and a 
few years for AGNs in a realistic situation. 

what extent the reconnected area expands, once recon­
nection is initiated somewhere. We point out tha t the 
distribution is quite inhomogeneous; patchy pat terns are 
visible everywhere in figure 2 (Plate 23). Importantly, 
there seems to be no typical size of each patch. The 
presence of a fractal s t ructure is suspected. 

To confirm this idea, we conducted a fractal analy­
sis for a three-dimensional MHD disk with mesh-point 
numbers of (Nx,Ny,Nz) = (100,100,25); namely, we first 
marked the sites where j/p exceeds some critical value, 
{j/p)cr\ti a n d named any assembly of the marked sites 
clusters. We then counted the numbers of clusters ac­
cording to the cluster sizes (i.e., volume) for the da ta 
sets at five different timesteps and averaged the counts. 
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Fig. 3. Histograms of clusters with j / ' p > (j/p)Cr\t — 
200 (by the thick solid lines) and those with j/p > 
400 (by the thick dotted lines) as functions of the 
cluster size (volume). A power-law distribution is 
realized over three orders of cluster sizes; roughly, 
D(s) oc s~2. For a comparison, we also plot the 
same, but for a random distribution (by the thin 
dashed lines). Obviously, large clusters are missing. 

Fig. 4. Relation between the volume (s) and mean ra­
dius (r) of each cluster. The lines of s oc r, s o c r 2 , 
and 5 oc r 3 are also depicted. The least-squares fit 
shows s oc rD with D ~ 1.9. 

D i s c u s s i o n s 

The resultant distribution is plotted in figure 3 with thick 
lines. Surprisingly, the cluster size is distributed in a 
power-law fashion over three orders of magnitudes of clus­
ter sizes, from a few larger clusters to numerous smaller 
clusters. 

For a comparison, we calculated the random distribu­
tion in the following way: we first evaluated what fraction 
of the entire volume is covered with the indicated sites in 
figure 2 (Plate 23), finding about 5.5% for j/p > 200. We 
next assigned a random number between 0 and 1 for each 
site of the three-dimensional box, and marked the sites 
where the number exceeded 0.945. We then repeated 
the same procedure as tha t done for the MHD disk, and 
plotted the resultant histogram in figure 3 with the thin 
dashed line. Clearly, there are no very big clusters in 
the random model. In other words, a long-distance j/p 
correlation is lost there. 

Magnetic fields in the disk have a fractal structure. 
To find the fractal dimension, we plotted the size (vol­
ume) of each cluster as a function of its mean radius 
in figure 4. Here, the cluster mean radius is defined as 

(i/*)£lr< r C M | with rCM ( l / s ) \ J r j for each 

cluster with a size of s (> 1), where r* is the coordinates 
of the i-th site belonging to the cluster. From the fitting, 
we find roughly s oc rD with D = 1.9. 

We now address two key questions: what relates the 
fractal structure to the temporal fluctuation in the sim­
ulated MHD disk? How can such a fractal distribution 
arise? Turbulence is generally known to exhibit a fractal 
behavior (Procaccia 1984); although this fact may be re­
lated to our present finding, the predicted fractal dimen­
sion is D ~ 2.6, differing from tha t of the present case. 
Alternatively, we note the notion of self-organized crit-
icality (SOC: Bak 1996; Jensen 1998), one of the most 
at tractive concepts developed in the study of complex 
systems. 

Bak, Tang, and Wiesenfeld (1988) proposed a sand-pile 
model to describe a system exhibiting l/fa fluctuation. 
Suppose tha t we drop sand particles one after another on 
a table. The fallen sand particles will form a pile, onto 
which other sand particles will be added. When the slope 
of the pile in either direction exceeds a critical value, an 
avalanche occurs and sand particles slide down in tha t di­
rection. Then, the system spontaneously evolves to, and 
stays at, SOC. In our case, the addition of a sand particle 
corresponds to energy input to magnetic fields, while the 
critical slope corresponds to the critical j/p over which 
energy dissipation occurs via reconnection (Mineshige et 
al. 1994). 

For systems in an SOC state, long-distance spatial 
communication among different sites is naturally built 
up, which yields a long-term time correlation. If each 
flare light curve is expressed by a time-symmetric pro-

© Astronomical Society of Japan • Provided by the NASA Astrophysics Data System Downloaded from https://academic.oup.com/pasj/article-abstract/52/1/L1/2949194
by Institute of Botany, CAS user
on 17 November 2017



L4 T. Kawaguchi et al. 

file with exponential grow and decay of about t = 0, 
L(t) oc e x p ( - | r | / r ) with r (< r m a x ) being constant, its 
PSD is PT(f) oc e 2 / ( l + 4 7 T 2 / 2 T 2 ) 2 - ^ the energy (e) of 

each flare is distributed as N(e) oc e 
ration is related to the energy as e oc r 
becomes 

p and each flare du-
D the total PSD 

P(f) = Y. PT(f)N(r)Ar 

r 2 D 

(1 -f 47T2/ : 2 T 2\2 (rD) 

P(f)<* 
( 3 - p ) 0 

F ( / ) ( A r ^ O ) . (1) 

Here, F ( / ) { = f 
Jo 

dx[x{3-p)D-l}/(l + x2)2} is a 

slowly varying function of / for / > l / (27r r m a x ) . We 
may regard e oc s (volume of a clump) and r oc r (mean 
radius of a clump). Then, we found from a simulation 
tha t p ~ 2 and D ~ 2 (see figure 4). Hence, equation (1) 
leads to P(f) oc / ~ 2 , in agreement with the numerical 
result (see figure 1). Tha t is the reason why the fractal 
magnetic field produces l/fa fluctuations (Takeuchi et 
al. 1995; Kawaguchi et al. 1998). 

One of the most conspicuous natures of the SOC is 
its ubiquity; namely, it is supposed to describe various 
non-equilibrium open systems, such as earthquakes, for­
est fires, the evolution of biological species, and traffic 
flow (Bak 1996). In an astrophysical context, it is im­
portant to note tha t coronal magnetic fields in the Sun 
are suggested to be in a SOC state (Lu, Hamilton 1991; 
Vassiliadis et al. 1998) as well, thus exhibiting the power-
law occurrence rate of flares and l/fa fluctuations in so­
lar flare curves (UeNo et al. 1997). 

Gamma-ray bursts (GRBs) also occasionally exhibit 
l/fa fluctuations (Beloborodov et al. 1998). In some 
models of GRBs which involve the merger of two com­
pact objects (white dwarf, neutron star, and black hole), 
a sort of accretion disk is thought to be formed by de­
bris of one component around another (Meszaros 1999). 
This situation could be similar. We thus expect frequent 
reconnection events with a smooth size (amplitude and 
duration) distribution to occur in GRBs, which would 
give rise to l/fa fluctuations (Panaitescu et al. 1999). 
Likewise, any other magnetic systems, regardless of the 
system size, may show similar effects. 
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Plate 23 

Fig. 2. Color contour map of the (j/p) distribution on a horizontal plane slightly above the equatorial plane. Here, the 
values of (j/p) where the colors change are as follows: 70 from white to blue, 120 to green, 200 to yellow, and 300 to 
red, respectively. 
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