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ABSTRACT: In this paper, we discuss the implementation of Continuous Sampling Plan (CSP)-1 under two scenarios: (i) infallible, and (ii) 
fallible inspection systems. For both cases, we develop an optimization model for designing a CSP-1 that minimizes the total expected cost. 
We use Markov theory to derive the expected results from the application of the CSP-1. A Bayesian approach is used to model the inspection 
system reliability. Based on the analyses for the two models, we offer a discussion on the adverse effects of disregarding inspection errors 
when implementing CSP-1.

Key words: CSP-1, quality, inspection sampling plan, Bayes, Markov, simulation, inspection error, optimization

RESUMEN: En el presente artículo, presentamos un análisis de las implicaciones relacionadas con ignorar errores de inspección cuando 
se implementa un plan de muestreo continuo del primer tipo (CSP-1 por sus siglas en inglés). Nuestro análisis cubre dos escenarios: (1) 
inspección perfecta o infalible, e (2) inspección imperfecta o falible. Para cada caso, presentamos un correspondiente modelo de optimización 
cuyo objetivo es el de minimizar el valor esperado del costo total. El comportamiento de los planes CSP-1 es modelado utilizando teoría 
Markoviana, mientras que la confiabilidad de los sistemas de inspección es modelada mediante un análisis Bayesiano. Las soluciones de 
ambos modelos son confrontadas para establecer comparaciones entre los dos escenarios. 

Palabras clave: Calidad Saliente Promedio (CSP), Planes de Muestreo, Teorema de Bayes, Cadenas de Markov, Simulación, Error Muestral, 
optimización

1.  INTRODUCTION

Quality is one of the most important factors considered 
by customers at the moment of selecting their suppliers. 
In an ideal world, customers would  prefer suppliers 
whose products were absolutely perfect. However, in 
reality, customers usually agree to tolerate a certain 
proportion of defective units. Then, the task for the 
suppliers is to implement inspection policies that 
guarantee that the average outgoing quality level 
(AOQL) of their product, does not exceed a certain 
value, based on the customer’s expectations regarding 
the acceptable proportion of defective units. An 
inspection policy can be defined as inspecting 100% 
of the products. However, due to financial limitations, 
a 100% inspection is not always viable. An alternative 
is to implement sampling inspection plans (SIPs), in 
which only a fraction of the total products is inspected.

The parameters involved in SIPs are often selected in such 
a way that the total expected cost is minimized [1-4].  An 
important assumption when computing the expected cost 
of a SIP is that related to the efficiency or reliability of 
the inspection system. Such inspection systems can be 
human inspectors or machines (from now on we will use 
indifferently the terms “inspector” and “inspection system” 
to refer to both human and machine-based inspection 
systems). In both cases, the occurrence of inspection errors 
is inevitable. There are two types of inspection errors: 
Type I, which refers to classifying a defective unit as non-
defective; and Type II, which refers to classifying a non-
defective unit as defective. Disregarding these errors, i.e. 
assuming perfect performance of the inspector, is unrealistic 
and it can lead to inaccuracies in the computations of the 
expected SIP cost and performance. 

In this paper, we use Markovian and Bayesian analysis 
to develop two optimization models for designing a 
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SIP of the type CSP-1 [5], which applies for products 
that are manufactured through a continuous process. 
The implementation of CSP-1 can be summarized as 
follows:

1.  Initially, inspect 100% of the units until i consecutive 
units are found as non-defective. 

2.  Once i consecutive non-defective units have been 
inspected, discontinue the 100% inspection and 
start to systematically inspect only a fraction f of 
the units. The fractional inspection continues as 
long as the inspected units are non-defective. If a 
defective unit is found, reestablish 100% inspection, 
i.e. return to step 1.

In our first model, we consider the minimization of 
expected costs assuming perfect performance of the 
inspector. This initial model sets the path for developing 
a more realistic model in which our objective is to 
minimize the expected costs when inspection errors are 
taken into consideration. Based on the results obtained 
for such optimization models, we offer a discussion on 
the effects of disregarding inspection errors in CSP-1.

The remaining of the paper is organized as follows: 
Section 2 contains our literature review. In section 
3, we state the description of the problem, as well as 
the corresponding notation and assumptions. Section 
4 presents an optimization model for CSP-1 when 
disregarding inspection errors, whereas section 5 
contains the optimization model when taking into 
consideration such errors. In section 6, we discuss the 
economic impact of disregarding inspection errors, 
based on the results obtained on sections 4 and 5. In 
section 7 we extend our discussion by including the 
transition costs between total and partial inspection. 
Finally in section 8 we present some remarks, 
conclusions and future research directions.

2.  LITERATURE REVIEW

In the literature, we can find some papers that analyze 
the effect of inspection errors in SIPs, such as that 
offered by [6], who use a Bayesian model to evaluate 
the efficiency of inspectors. Another interesting work 
that uses a Bayesian approach is that given by [7]. In 
this latter paper, the authors consider a type of SIP that 
accounts for the number of defects in each inspected 

product. The authors address the problem of analyzing 
the best a priori distribution to model the number of 
defects per unit under the presence of inspection errors. 
Another interesting paper that also considers inspection 
errors is that offered by [8] which establishes a set of 
results for matching Dodge-Romig single plans with 
Dodge-Romig plans under the presence of inspection 
errors.

As mentioned in the previous section, the design of 
SIPs is often subject to economic criteria such as in 
[9]. In that paper, the authors offer a mathematical 
model to design both 100% and single sampling 
plans considering potential inspection errors, while 
minimizing a loss function that accounts for deviations 
of quality characteristics from a certain target value. 
An earlier related work is offered by [10] in which the 
authors develop a model for locating inspection stations 
in an n-stage production system. The optimization 
criterion used in [10] is the cost per good unit accepted 
by the customer. Reference [11] also studies the impact 
of inspection error from an economical perspective. 
More specifically, in [11] the author develops a 
mathematical model and an algorithm for designing 
a SIP under inspection errors, while minimizing the 
expected associated cost. Reference [12] offers a model 
for minimizing inspection costs while imposing upper 
bounds on the inspection errors. 

One fundamental difference between our paper and 
those mentioned above, is that they do not address 
CSP-1 in particular. Two papers that specifically 
investigate CSP-1 under inspection errors from an 
economic point of view are those given by [4], and 
[3]. In the first one, the authors present an optimal 
mixed policy of precise inspection and CSP-1 under 
the presence of inspection errors and return cost. In the 
second, the authors develop a model using a renewal 
reward process approach for selecting an economically 
optimal decision involving three alternatives: “do 
100% inspection”, “do not inspect” and “do a CSP-1 
inspection”. Their model accounts for both types of 
inspection errors. A key difference between the work 
given by [3] and ours is that we assume that as long 
as the customer’s acceptable quality level (AQL) 
is satisfied, there is no penalization for defective 
units delivered to the customer. With this reasonable 
assumption, our optimization models are simplified 
to finding the optimal number of inspected units as 
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the basis for designing an optimal CSP-1, instead 
on focusing on finding directly the parameters of the 
inspection plan (see sections 4 and 5). 

Also, one of the main contributions of our work is that 
it highlights the impact of disregarding inspection errors 
when implementing CSP-1, which allows visualizing the 
importance of recognizing and measuring inspection errors. 
Similar analyses have been made for attribute SIPs, [13-17], 
but to our knowledge, this issue has not been yet addressed 
from the perspective of a supplier that implements CSP-1. 

3.  PROBLEM DESCRIPTION, NOTATION AND 
ASSUMPTIONS

In this section we present the description of our 
problem, as well as the corresponding notation and 
assumptions. 

3.1.  Problem Description

We focus our analysis on a supplier company that uses a 
continuous production scheme. The production process 
has an inherent defective fraction, which is greater than 
the AQL specified by the customer. In order to comply 
with the customer’s AQL, the supplier implements an 
inspection plan of the type CSP-1 that guarantees that 
the AOQL, i.e. the expected proportion of defective 
units that are delivered to the customers, is lower than 
or equal to the customer’s AQL. (The implementation 
of CSP-1 is as described in the Introduction).

The only two parameters involved in CSP-1 are i and 
f. The values for these two parameters are specified 
such that the resulting AOQL does not exceed the 
customer’s AQL. Given the defective fraction of the 
process, different combinations of i and f can be used 
to achieve a desired AQL. 

As mentioned before, the inspector participating in 
CSP-1 is often assumed to be infallible. However, in 
practice, inspection errors are likely to occur. In fact, 
according to the Second Law of Thermodynamics 
[18] and the Principle of Uncertainty of Heisenberg 
[19], it is not possible to have perfect inspectors, 
and if they were perfect, it would be impossible to 
prove it. Our objective is to perform an analysis of 
the implementation of CSP-1 under two scenarios: 
(1) assuming infallible inspection systems; and (2) 

considering the presence of inspection errors. We then 
study the impact of disregarding such inspection errors.

3.2.  Assumptions

Our assumptions can be summarized as follows:

•	 The value of the defective fraction of the production 
process is deterministic and known.

•	 Throughout CSP-1, every rejected unit must be 
replaced by an acceptable one, according to the 
inspector criteria. 

•	 Additional units produced to replace rejected ones, 
are also inspected.

•	 As long as the AOQL delivered by the company 
is at most equal to the customer’s AQL, there is 
no penalization for defective units received by 
customers.

•	 The purpose of the supplier company is to design 
a CSP-1 that guarantees an AOQL lower than or 
equal to the customer’s AQL.

•	 For simplicity, we perform our computations for a 
shipment of Q units delivered to the customer.

3.3.  Notation

•	 2 :θ  event of a unit being defective

•	 1 :θ  event of a unit being non-defective

•	 ( )jP θ : probability of occurrence of event jθ , for 
1,2j = . Note that ( )2P θ is the fraction defective 

of the process, and that ( ) ( )1 21P Pθ θ= −

•	 AQL : acceptable quality level specified by 
the customer. We assume that ( )2AQL P θ< . 
Otherwise, there would be no need to implement 
CSP-1.

•	 AAOQL : average outgoing quality level for a CSP-
1 under infallible inspection systems

•	 :BAOQL  average outgoing quality level for a 
CSP-1 under inspection errors

•	 Q : size of the production batch to be analyzed
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•	 1S : event of the inspection system classifying a unit 
as non-defective

•	 2S : event of the inspection system classifying a 
unit as defective

•	 ( )kP S : probability of occurrence of event kS  for 
1,2j = . Note that ( ) ( )1 21P S P S= −

•	 AU : expected number of inspected units for a CSP-
1 under infallible inspection systems

•	 BU : expected number of inspected units for a CSP-
1 under fallible inspection systems 

•	 sc : cost of inspecting one unit

•	 rc : cost of rejecting one defective unit

4.  ECONOMIC ANALYSIS FOR CSP-1 UNDER 
IDEAL INSPECTION PROCEDURES

In this section we present a discussion on the optimal 
expected cost of implementing CSP-1 under ideal 
conditions, i.e. infallible inspection systems. 

As mentioned before, for CSP-1 to be useful, the 
AOQL must be at most equal to the consumer’s AQL. 
A way to assign values to the parameters involved in 
the CSP-1 is by using Markovian analysis, in which 
CSP1- procedure is considered as an ergodic Markov 
chain. Two Markovian states are identified: (1) 100% 
inspection and (2) systematic inspection [18]. When 
analyzing CSP-1 as a Markov chain, the transition 
matrix would be as depicted in Table 1 [20]. Based on 
Table 1, we can define the steady-state probabilities 

*
100%x   and *

fx  respectively for the states of 100% and 
fractional inspection [20]:

( )
( ) ( )

2*
100%

2 1
i

P
x

P P
θ

θ θ
=

+
			   (1)

( )
( ) ( )

1*

2 1

i

f i

P
x

P P
θ

θ θ
=

+
				    (2)

Recall that Q  represents the amount of products being 
inspected. Then, the expected number of inspected units 
in CSP-1 is given by * *

100%  fQ x fx +   [20], which can 

be expressed as follows: 

( ) ( )
( ) ( )

2 1

2 1

,
i

A i

P fP
U Q

P P
θ θ

θ θ

+
=

+
	 		  (3)

Table 1. Transition Matrix for CSP-1
100% Inspection Frac t i ona l 

Inspection
100%  
Inspection ( )11 iP θ− 	 ( )1

iP θ

Fractional 
Inspection 	 ( )2P θ ( )1P θ

The total expected number of rejected units would be 
equal to the number of detected defective units, i.e. 

( )2AU P θ .  The AOQL would be equal to proportion 
of the undetected defective units, which can be 
expressed as a  function of AU  as follows [20]:

( ) [ ] ( )2 A
A A

Q U P
AOQL U

Q
θ−

= 		  (4)

Two types of costs must be considered for the 
implementation of CSP-1: inspection cost, and 
defective units cost. The expected inspection cost 
would be s Ac U , where 

AU  is given by expression (3). 

On the other hand, the cost due to defective units 
involves the replacement of defective detected units 
by non-defective ones. This implies producing and 
inspecting additional units in order to replace the 
defective ones. Note that due to the defective fraction 
of our process, for producing an amount of X non-
defective units, the expected number of units to be 
produced would be 

( )1

X
P θ

, since we should expect 

( )2XP θ  units to be defective. Let us denote pc  as the 

cost of manufacturing one unit of product. Then, the 
expected cost due to defective units would be 

( )
( )

2

1

A
p s

U P
c c

P
θ
θ

 + 
. Additionally, we need to include 

the cost of rejecting each defective unit, denoted by rc .  

Then the total expected cost for CSP-1, can be 
expressed in terms of AU as:
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( )
( )
( ) ( ) ( )2

2
1 1

A A A

p s
s r

C U U

c P cc c P
P P

θ
θ

θ θ

=

 
+ + + 

 

		  (5)

The expected cost for CSP-1 under infallible inspection 
systems, given by equation (5), has AU  as its only 
variable. The minimization of (5) is restricted by the 
fact that the AOQL given in (4) must be at most equal 
to the customer’s  AQL. Then our optimization model 
can be expressed as:

Minimize (5) subject to:

( )21 AU P AQL
Q

θ 
− ≤ 

 
			   (6)

We have that the AOQL is a decrement function of 
the proportion of inspected units. On the other hand, 
by inspecting (5) we notice that the expected cost is 
an increasing function of AU . Therefore, the optimal, 
value of AU , i.e. *

AU , is the minimum AU  that allows 
complying the constraint given by (6). Any value 
lower than *

AU  would imply an AOQL greater than 
the customer’s AQL, whereas a value greater than *

AU  
would not be economically optimal. Then, *

AU   can be 
computed as follows:

( )*
2| 1 A

A A
UU U P AQL
Q

θ 
= − = 

 
		  (7)

When solving (7) we obtain:

( ) ( )
*

2
2

A
QU P AQL

P
θ

θ
=  −   			   (8)

Having determined the value of *
AU , it is possible 

to compute the parameters of CSP-1 using equation 
(3) which relates ( )2, , ,  AU P f iθ and Q, where  

( )2,AU P θ  and Q would be given. We can specify 
the value of one of the parameters and then solve for 
the other, based on the desired value of the AOQL. In 
this case, it is simpler to select a value of i  and then 
solve for f, as follows:

( ) ( )
( ) ( )

2 1

2 1

1
i

i

AOQL P P
f

P P

θ θ

θ θ

 + = −
		

(9)

At this point, we would like to highlight two properties 
regarding the optimal expected cost and the optimal 
expected number of inspected units for CSP-1 under 
infallible inspection. First we have that expression (8) 
can be stated as  [ ]

( )
*

2
A

AQL Q
U Q

P θ
= − . Therefore, we 

can conclude that *
AU  increases with ( )2P θ .  This is 

a reasonable result since, intuitively, we would expect 
to have to inspect more units to guarantee a certain 
AQL for greater defective fractions. Second, by 
inspecting expression (5) we can notice that the optimal 
expected cost increases with ( )2P θ . Again, this 
finding is also reasonable since the inspection, 
replacement and rejection costs increases with the 
defective fraction of the process. 

5.  EXPECTED COST FOR CSP-1 UNDER 
INSPECTION ERRORS 

In the ideal case discussed in the previous section, an 
underlying assumption is that the inspection procedure 
is infallible. Therefore, it is assumed that whenever an 
inspected unit is classified as non-defective, such a unit is 
actually non-defective (an analogous analysis applies for 
units that are classified as defective). However, in practice 
we would expect inspection systems not to be infallible 

When we drop the infallibility assumption, the 
transition matrix given in Table 1 does no longer apply 
for CSP-1, since the probability of an inspected unit 
being classified as defective is not equal to the actual 
defective fraction of the process. Also, recall that 2  S
is the event of the inspection system classifying a unit 
as defective, and 1S  as non-defective. Anytime an 
event 1S  occurs, it means that the inspected unit has 
been accepted, whereas 2S  implies the rejection of the 
inspected unit. In our model we consider two types of 
conditional probabilities: 

•	 Validity: ( )|   1,2, 1, 2 i jP S for i jθ = = gives the 
probability that the inspector makes a decision iS  
given that the actual status of the inspected unit is 

jθ . Note that such conditional probabilities are 
inherent to the inspector. 

•	 Prediction:  ( )|   1,2, 1, 2j kP S for j kθ = =  gives 
the probability that an inspected unit is jθ , given 
that the inspector has classified it as kS . 
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The two types of inspection errors discussed in the 
Introduction section can be now defined in terms of 
the conditional probabilities stated above, as follows:

( ) ( )2 1  |IP P ErrorType I P S θ= = 		  (10)

( ) ( )1 2  |IIP P ErrorType II P S θ= = 		  (11)

By applying Bayes theorem and using the conditional 
probabilities discussed above, we can compute the 
probability of a unit being classified as defective, 
( )2P S , as follows:
( )
( ) ( ) ( ) ( )

2

2 2 2 2 1 1| |

P S

P S P P S Pθ θ θ θ

=

+
		  (12)

In a similar way, we can compute ( )1P S . Then, the 
transition matrix for a CSP-1, when considering inspection 
errors, would be as shown in Table 1, but replacing jθ  by 

jS . We can perform a statistical analysis similar to that 
offered in section 3.1 to compute an expression for the 
expected number of inspected units ( )BU , and the 
corresponding AOQL ( )BAOQL . For BU  we have:

( ) ( )
( ) ( )

2 1

2 1

i

B i

P S fP S
U Q

P S P S
+

=
+

			   (13)

To find the AOQL, we need to compute the expected 
proportion of defective units that would be delivered 
to the customers. First, we have the expected number 
of defective units that are inspected, and that are 
accepted due to error type II, i.e. ( ) ( )2 1 1|BU P S P Sθ . 
Also, when performing the inspection, some units will 
be rejected and additional units would be produced and 
inspected to replace the rejected ones, which would be 
equal to ( )

( )
2

1

BU P S
P S

. Among these additional units, we 

will also have defective units that are erroneously 
classified as non-defective and are sent to the customers, 
i . e .  ( )

( ) ( ) ( )2
2 1 1

1

|BU P S
P S P S

P S
θ

 o r  s i m p l y , 

( ) ( )2 2 1|BU P S P Sθ . Additionally, there will be some 

defective units delivered to the customers which come 
from those units that are never inspected during the 
fractional inspection. Therefore, the AOQL in this case 

can be expressed as:

( )
( ) ( ) ( ) ( )

( ) ( )

2 1 1 2 2 1

2

| |
B B

B B

B

AOQL U

U P S P S U P S P S
Q

Q U P
Q

θ θ

θ

=

+

−
+

	 (14)

which can be simplified as follows:

( )
( ) ( ) ( )

22 2 1 2|
B B

i

AOQL U

QP U P S P
Q

θ θ θ

=

+  −   		  (15)

Regarding the expected cost for CSP-1 under inspection 
errors, we have four different components: (1) cost of 
inspecting units, (2) cost of replacing rejected units, (3) 
cost due to rejecting defective units, and (4) opportunity 
cost due to inspection error Type I. The first cost is 
simply s Bc U . For the expected cost of replacing rejected 
units we have that, as discussed in section 3.1, we need 
to produce and inspect additional units to replace those 
that have been rejected. Note that a proportion equal to 
( )2P S  of such additional units would be also rejected. 

Then, the expected number of additional units that we 
must produce and inspect to replace ( )2BU P S  rejected 

units would be ( )
( )

2

2

 
1

BU P S
P S−

. 

Therefore, the second component of the expected cost 
for CSP-1 under inspection errors would be 

( )
( )

2

1

 B
s p

U P S
c c

P S
 + 

. The expected costs related to 

reject ing defect ive units  would be s imply 

( ) ( )2 2 2|rc BP S P Sθ . 

Finally, let us denote as Ic  the cost of erroneously 
classifying a non-defective unit as defective (Type I 
error). Then, the expected cost due to a Type I error 
would be ( ) ( )1 2 2 |  B IU c P S P Sθ . Recall that we have 
assumed that defective units sent to the clients do not 
generate an extra cost as long as the AOQL is lower 
than or equal to the customer’s AQL. Therefore, we 
do not introduce any cost due to errors Type II. Then, 
the total expected cost of implementing CSP-1 under 
inspection errors is given by equation (16).



Barbosa-Correa & Galindo-Pacheco / Dyna, year 81, no. 183, pp. 188-198, February, 2014.194

( )
( )
( )

( )
( )

( ) ( ) ( )

2 2

1 1

1 2 2 2 |  

B B B

s s p

I r

C U U

P S P S
c c c

P S P S

c P S P S c P Sθ

=

 
+ + 

 
 + + 

		  (16)

The expected cost for CSP-1 given by equation (16), 
has BU  as its only variable. The minimization of (16) 
is restricted by the fact that the AOQL given in (14) 
must be at most equal to the customer’s AQL. Then our 
optimization model can be expressed as:

Minimize (16) subject to:

( ) ( ) ( )2 2 1 2|BQP U P S P
AQL

Q
θ θ θ+  −   ≤ 	 (17)

Note that by assuming that ( ) ( )2 2 1|P P Sθ θ> , the 
AOQL is a decrement function of the proportion of 
inspected units. This is a reasonable assumption, since the 
role of the inspector is to reduce the number of defective 
units delivered to the customers (otherwise, it would be 
better not to use the inspector). On the other hand, the 
expected cost is an increasing function of BU . Therefore, 
we can proceed as before to find the optimal value of 

BU , i.e. *
BU , which would be the minimum BU  that 

allows complying the constraint given by (17). Then, 
*
BU   can be computed as follows:

( ) ( ) ( )

*

2 2 1 2|
|

B B

B

U U

QP U P S P
Q

AQL

θ θ θ

=

+  −  

=

		

(18)

Then, we have:

			   (19)

Having determined the value of *
BU , it is possible 

to compute the parameters of CSP-1 using equation 
(13). To do so, we can specify the value of one of 
the parameters and then solve for the other, based on 
the desired value of the AOQL. As mentioned in the 
previous section, it is simpler to select a value of i  and 
then solve for f, as follows: 

		 (20)

By inspecting expression (20) we have the following 
properties, which will be stated without proof due to 
their simplicity:

Property 1: the optimal expected number of inspected 
units, i.e. *

BU , is directly proportional to the difference 
between the fraction defective of the process and the 
customer’s AQL.

Property 2: the optimal expected number of inspected 
units, i.e. *

BU , is inversely proportional to the difference 

( ) ( )2 2 1|  P P Sθ θ −   . Notice that, given that a unit 

has been delivered to the customer, if we did not 
implement an inspection plan at all, the probability of 
such a unit resulting defective is ( )2P θ ; whereas if 
we implemented a CSP-1, such probability would 
decrease to ( )2 1|P Sθ . Then, this property states that 

*
BU  is inversely proportional to the improvement 

obtained for having an inspection system, regarding 
the chances of delivering a defective unit to the 
customer. 

Regarding the optimal expected cost, we have that it 
increases with the proportion of rejected units and with 
the probability of rejecting a non-defective unit. As it 
depends on  *

BU , it also increases with ( )2P AQLθ −    

and decreases with ( ) ( )2 2 1|  P P Sθ θ −   . 

6.  CSP-1 UNDER INFALLIBLE INSPECTION VS. 
CSP-1 UNDER INSPECTION ERRORS

Let us consider the case in which we are interested in 
implementing a CSP-1 while minimizing the total 
expected cost. If we took into consideration the 
presence of inspection errors, we would compute the 
optimal value for *

BU  as discussed in section 5. 
However, if we neglected such inspection errors by 
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assuming infallible inspection systems, we would 
compute a suboptimal value *

AU  based on the analysis 
provided in section 4. The difference between *  BU  and 

*
AU  can be stated as:

( )

( ) ( ) ( )

* *
2

2 2 2 1

1 1
|

A BU U Q P AQL

P P P S

θ

θ θ θ

− =  −  
 

− − 

			   (21)

Expression (21) is always lower than or equal to zero, 
by our assumptions that  and 
( )2P AQLθ > . Therefore, by implementing a CSP-1 

with the expected number of inspected units equal to 
* *
A BU U< , we should expect that in the long run we 

will not be able to comply with the customer’s AQL. 
By inspecting expression (21) we can formulate the 
following properties:

Property 3: The difference * *
A BU U −   is directly 

proportional to the difference between the fraction 
defective and the customer’s AQL. This means that 
even though both *  BU and *  AU increases with 

( )2P AQLθ −   , the rate at which such an increment 
occurs for *

BU  is greater than for *
AU . This can be 

verified by examining expressions (8) and (19), from 
which we obtain that the rate at which *

BU  changes 

with ( )2P AQLθ −    is 
( )2 2 1( | )

Q
P P Sθ θ−

. This 

rate is greater than that for *
AU , which is equal to 

( )2

1
P θ

.

Property 4: The magnitude of the difference 
* *
A BU U −   decreases with the improvement obtained 

for having an inspection system, defined as 
( ) ( )2 2 1|P P Sθ θ −   . Moreover, in the ideal case in 

which an accepted unit never happens to be defective, 
i.e.  ( )2 1| 0P Sθ = , we would have * *

A BU U= .

A reasonable assumption is that if a customer receives 
a shipment of units whose AOQL is greater than the 
customer’s AQL, all units in such a shipment would be 
rejected and returned to the supplier. Therefore, if we 
design our CSP-1 disregarding inspection errors, in the 

long run we should expect the customer to return all of 
our shipments! Hence, we can conclude that using *

AU  
as the optimal policy in the presence of inspection error, 
is not economically suboptimal, but simply unviable. 

7.  EXTENSION CONSIDERING TRANSITION 
COSTS BETWEEN TOTAL AND PARTIAL 
INSPECTIONS

So far we have only considered the costs related 
to inspection, rejection and classification errors. 
This approach is valid only when the cost due to 
the transition between total and partial inspection is 
insignificant. However, let us assume that we we would 
need to stop the production process and reprogram 
the inspection system when shifting from one type of 
inspection to the other. In that case, the assumption that 
the transition costs between total and partial inspections 
can be neglected would no longer apply.  Let us first 
focus in the ideal case in which there are no inspection 
errors. Let us also introduce the following additional 
notation: 

•	 1c : cost for shifting from 100% to systematic 
inspection

•	 2c : cost for shifting from systematic to 100% 
inspection

•	 1U : number of expected units to be inspected during 
100% inspection

•	 2U : number of expected units to be inspected 
during systematic inspection

The expected number of times that we would shift from 
100% to systematic inspection is given by the steady-
state probability *

100%x  times the total number of units, 
Q, times the probability of shifting from 100% to 
systematic inspection which is ( )1

iP θ ,  i .e. 

( )*
100% 1Q ix P θ . We also have that *

1 100%U Qx= . Then, 

we have that the expected number of times that we 
would shift from 100% to systematic inspection would 
be given by ( )1 1

iU p θ . Similarly, the expected number 
of times in which we would shift from systematic to 
100% inspection would be given by ( )2 2U p θ , where 
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*
2 fU Qfx= . Then the total expected cost under ideal 

inspection would be given by:

( )
( )
( ) ( ) ( )

( ) ( )

2
2

1 1

1 1 1 2 2 2

A A A

p s
s r

i

C U U

c P cc c P
P P

c U p c U p

θ
θ

θ θ

θ θ

=

 
+ + + 

 

+ +

		  (22)

As mentioned before, the minimization of the cost 
given by (22) is subject to (6). 

Note that from expression (22) we have the following 
properties:

•	 1 2 AU U U+ = . 

•	 Our findings presented in section 4 regarding the 
optimal number of units to be inspected still apply. 
This means that the optimal number of units to be 
inspected is  ( )*

2| 1 A
A A

UU U P AQL
Q

θ 
= − = 

 

. 

To see why, let us first consider the case in which 
we inspected less than *

AU . In that case we would 
violate the constraint given by (6) which is not 
allowed. For the other case, let us consider that we 
inspect 

'
AU  units where ' *

A AU U> . Then, clearly the 
first term of (22) would be greater for '

AU  than for  
*
AU . Also, ( )A AC U  is an increasing function of both 
1U  and 2U . So if there is a combination of values 
1 2U U+  that allows complying with the constraint, 

such a combination would dominate any other that 
yields to a greater values of  1 2U U+ . Therefore, 

*
AU  is always a better solution than '

AU .
( )A AC U  can be expressed as:

( )

( )
( )

( ) ( )

( ) ( ) ( )

2

1

2
1

1 1 1 2 1 2

p
s

A A A
s

r

i
A

c P
c

P
C U U

c c P
P

c U p c U U p

θ
θ

θ
θ

θ θ

 
+ 

 =
 
+ + 
  

+ + −

		

(23)

By realizing that ( )*
2| 1 A

A A
UU U P AQL
Q

θ 
= − = 

 
, 

we just need to focus on optimizing ( )A AC U  in terms 
of 1U . Therefore, our optimization problem becomes:

( ) ( )
( ) ( )

1 1 1 1

*
2 1 2

 i

A

MinZ U c U p

c U U p

θ

θ

=

+ −
			   (24)

By inspecting (24) we have that the optimal value of 
1U , namely *

1U  is given by:

•	
* *
1 AU U=  if ( ) ( )1 1 2 2 0ic p c pθ θ− ≤ . This means 

that we would remain in 100% inspection and we 
would avoid shifting to systematic inspection. This 
can be achieved by making  *

Ai U=  and f = 0.

•	
*
1 0U =  if ( ) ( )1 1 2 2 0ic p c pθ θ− ≥ . This would 

imply that we never enter 100% inspection. This can be 
achieved by starting directly the systematic inspection, 
making 0i = . The value of f must be such that:

( )
( ) ( )

( ) ( )

1* *
2

1 2

2
2

i

f i

p
U Qfx Qf

p p
QP AQL

P

θ

θ θ

θ
θ

= =
+

=  −  

		  (25)

Then, the optimal value for f  would be given by:

( )
( )

( ) ( )
( )

2 1 2

2 1

i

i

P AQL p p
f

P p

θ θ θ
θ θ

  −  +  =     
	 (26)

Now let us discuss the case in which we consider 
inspection errors. By a similar analysis to that applied 
for the case without inspection errors, we obtain that:

( )
( )
( )

( )
( )

( ) ( ) ( )
( ) ( )

2 2

1 1

1 2 2 2

1 1 1 2 2 2

 |  

B B B

s s p

I r

i

C U U

P S P S
c c c

P S P S

c P S P S c P S

c U p S c U p S

θ

=

 
+ + 

 
 + + 

+ +

		

(27)
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It can be easily shown that, as in the previous case, our 
findings for section 5 still apply and therefore 

. Then, our optimization 

problem becomes:

( ) ( )
( ) ( )

1 1 1 1

*
2 1 2

 i

B

Min Z U c U p S

c U U p S

=

+ −
			   (28)

By inspecting (28) we arrive to similar conclusions as 
those exposed for the previous case:

•	
* *
1 BU U=  if ( ) ( )1 1 2 2 0ic p S c p S− ≤ . Therefore  *

Bi U=  and f = 0.

•	
*
1 0U =  if ( ) ( )1 1 2 2 0ic p S c p S− ≥ . This can be 

achieved by starting directly the systematic inspection, 
making 0i = . The value of f must be such that:

		  (29)

Then, the optimal value for f  would be given by:

	 (30)

8.  CONCLUSIONS AND FUTURE RESEARCH 
DIRECTIONS

In this paper we have presented two models for designing 
optimal CSP-1 from an economic perspective, under 
two scenarios: infallible and fallible inspection systems. 
Our work combines Markovian and Bayesian analysis 
to model the uncertain parameters of the system. We 
found that for both models, the optimal decision is 
to implement a CSP-1 whose expected number of 
inspected units is the minimum required to guarantee 
that the AOQL does not exceed the customer’s AQL. 
From our findings, we can conclude that implementing 
the model for infallible inspection systems when actual 
inspection errors are present, results in a violation of the 

customer’s AQL. We have also extended our analysis 
for the cases in which the costs for shifting between 
100% and systematic inspections cannot be neglected. 
Our results show that the optimal answer in this case 
is either to remain whether in 100% or in systematic 
inspection, but never switch between the two styles of 
inspection within the same process .

As future research direction we recommend to 
consider the defective fraction as stochastic rather than 
deterministic. In this regard, the probability function of 
the fraction defective can be modeled using the Normal 
approximation to the Binomial distribution. Also, our 
analysis can be extended to other SIPs, such as CSP-2, 
CSP-3 and other related ones. 
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