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ABSTRACT 
With these advantages such as no phase shift error, measured fast, portable, high accuracy, the 
three-dimensional measurement system which is based on the heterodyne principle and digital 
grating phase-shift technology has been widely used in rock three-dimensional shape 
measurement. The precision of camera calibration determines the measurement accuracy of the 
system. In this paper, the Zhang Zhengyou planar flexible calibration method is improved and an 
improved flexible camera calibration means is presented. This method adopts a lens distortion 
model based on second-order radial distortion and second-order tangential distortion and uses a 
high precision planar calibration target printed with circular targets. First, getting the initial 
values of camera model through image points near the center, the initial values can be a good 
approximation of the exact values because the distortion of these points near the center is small. 
Then, using the entire calibration board images, all parameters can be acquired by applying 
maximum likelihood estimation. The experimental results show that this approach is superior to 
Zhang’s in precision and robustness. 
KEYWORDS: Camera Calibration; Radial Distortion; Tangential Distortion; Maximum 
Likelihood Estimation; Rock 3D Shape Measurement 

INTRODUCTION 
Rock mechanics and rock engineering is an applied science discipline which is extremely 

closely related to the national economic construction and defense construction. Jointed surface 
factors have great influence on various properties of rock, while the important features of joint 
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surface such as mechanics and seepage properties is closely related to the joint surface 
morphology. Only accurately to obtain the joint surface morphological parameters and then to 
combine with joint closure, shear related theoretical models and empirical formulas can correctly 
reflect the actual mechanical behavior of joint. Therefore, accurate determination of the joint 
surface morphology is a prerequisite to study deformation and the mechanical mechanism of 
strength, then to further establish the appropriate model [1]. 

How to access to the rock surface 3D information conveniently, fast and accurately is a very 
important basic issue. Based on the heterodyne principle and digital grating phase-shift 
technology, the three-dimensional measurement system has many features such as no phase shift 
error, measured fast, portable, high accuracy [2-3]. Moreover, it has been widely used in rock 3D 
shape measurement [2].  

Camera calibration accuracy determines the precision of three-dimensional measuring system 
[3-4]. Up to now, the domestic and foreign scholars have proposed many calibration methods. 
Brown [5] raised a fully nonlinear calibration model of camera, and it required three-dimensional 
calibration object in the calibration process. As a result of the full non-linear model, the solution 
is instable. At the same time, the calibration is expensive because it needs a 3D calibration object 
with high accuracy. Tsai [6] presented a classic two-step calibration means, which makes the 
solving process be simple and stable. However, only the first-order radial distortion is considered, 
and 3D calibration object is also necessary. Based on the methods Triggs and Zisserman 
proposed, Zhang Zhengyou [7] put forward an approach that entirely relied on planar grid 
calibration target, yet it also only considered the first-order radial distortion and the model is not 
very fine. It has certain drawbacks to improve the accuracy for the calibration targets used in 
these ways above. Consequently, this paper presents an improved flexible camera calibration 
algorithm which has been applied to the digital grating three-dimensional measurement system. 

CAMERA CALIBRATION MODEL  

Pinhole Camera Model 
According to pinhole model imaging theory, establish coordinate transformation relation 

between the homogeneous coordinates 𝑀�  of point P represented in the world coordinate system 
and the homogeneous coordinates 𝑚�  of its projection point p. As follows: 

s𝑚� = 𝐴[𝑅 𝑡]𝑀�                               (1) 

where  𝐴 = �
𝑓𝑐(1) 𝑐 𝑢0

0 𝑓𝑐(2) 𝑣0
0 0 1

�, s is an arbitrary scale factor, containing the depth information of 

the image point m. R and t are respective the rotation matrix and translation matrix from camera 
coordinate system to the three-dimensional world coordinate system, and (R, t) is the camera 
external parameters. The camera extrinsic parameters are used to determine the position and 
orientation of a beam in a given world coordinate system, namely, the camera beam position in 
the global coordinate system (defined by the translation matrix t) and posture (defined by R). A 
represent the camera internal parameters, which are the key elements to determine the relative 
positional relationship between camera projection center and images. By means of the internal 
parameters, the relationship can be uniquely identified, i.e. to restore the shape of the beam in 
photography. (𝑢0, 𝑣0) is the principal point coordinate, 𝑓𝑐(1) and  𝑓𝑐(2) denote the camera's focal 
length, c means the skew angle between the x and y pixel axes. 
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The Actual Imaging Model 
Since various distortions being for actual optical lens, there is an error between the image 

point position of an object point in the actual case and ideal (on the base of pinhole imaging). 
Zhang mainly take radial distortion into account but not the tangential distortion. To further 
improve the calibration precision, this paper considers both the radial and tangential distortion. 

Radial distortion is usually caused by a lens with defective shape, which is divided into barrel 
distortion and pincushion distortion. The model of radial distortion can be expressed as: 

�
dxr = x[k1r2 + k2r4]
dyr = y[k1r2 + k2r4]

                                                      (2) 

where 𝑘1 and 𝑘2 are radial distortion coefficients, 𝑟2 = (𝑥2 + 𝑦2), (𝑥,𝑦) is the ideal image 
coordinates without distortion acquired on the base of pinhole imaging principle. 

The model of tangential distortion is: 

�𝑑𝑥𝑑 = 𝑝1(𝑟2 + 2𝑥2) + 2𝑝2𝑥𝑦
𝑑𝑦𝑑 = 𝑝2(𝑟2 + 2𝑦2) + 2𝑝1𝑥𝑦

                                    （3） 

where 𝑝1 and 𝑝2 are tangential distortion coefficients, 𝑟, 𝑥,𝑦 is the same as shown above. 

CAMERA CALIBRATION  
In order to enhance calibration accuracy, an elaborate calibration target is needed. 

Hereinafter, this paper will introduce the used calibration target and calibration algorithm briefly. 

Calibration Target 
The quality of camera calibration result has a direct impact on the accuracy of the final 

measurement result. While during the camera calibration process, the selection of image mark 
point pattern and extraction of feature point directly affect the accuracy of the eventual 
calibration. Not only do circular targets have radial symmetry, but also the confirmation of 
circular marking point centers possesses rotation invariant. Simultaneously, in a wide range of 
image magnification, they also have scale invariance, and previous literatures have reported that 
circular pattern features are better than other geometric patterns [8]. 

The used calibration board is shown in Figure 1, which consists of five great circles and 94 
small rounds. It mainly has two advantages: First, ellipse fitting algorithm could provide a stable 
and high-precision coordinates of the centers. Furthermore, via the positional relations of the 5 
great circles, it can automatically number all the rounds, and then achieve automation of the 
calibration process [9]. 
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Figure 1: Calibration target 

Calibration Algorithm  
Firstly, applying the image coordinates and the corresponding three-dimensional coordinate 

of the middle 35 centers in each calibration image, the initial value of external and internal 
parameters without distortion can be obtained by the following formula. 

MIN = ∑ ∑ �𝑚𝑖𝑗 − 𝑚��𝐴,𝑅𝑖 , 𝑡𝑖 ,𝑀𝑗��
2𝑚

𝑗=1
𝑛
𝑖=1             (4) 

where i represent the number of images, j is the number j point in image i, 𝑚��𝐴,𝑅𝑖 , 𝑡𝑖 ,𝑀𝑗� mean 
the projection points of image i corresponding to space plane 3D points Mj. Generally, using the 
Levenberg-Marquardt algorithm to conduct optimization can get the final external and internal 
parameters. 

Similarly, because the distortion in the middle part of images is very small, the initial internal 
and external camera parameters, distortion parameters can also be got by applying Levenberg-
Marquardt algorithm. The optimization algorithm formula as follows: 

MIN = ∑ ∑ �mij − m��k1, k2, p1, p2, A, Ri, ti, Mj��
2m

j=1
n
i=1       (5) 

where 𝑘1, 𝑘2,𝑝1 and 𝑝2 are respective radial and tangential distortion coefficients. Using the 
result optimized by (5) as a starter, and then plugging all center coordinates of each calibration 
image into equation (5) to refine parameters, finally, the final internal and external camera 
parameters and distortion parameters can be calculated. 

EXPERIMENTAL RESULT 
In order to validate if the proposed algorithm can improve the accuracy of camera calibration, 

this paper exploits 13 collected images to complete camera calibration. Calibration results are 
shown in Table 1. Figure 2 shows the distribution of projection errors. 

The standard deviation of calibration results is [0.02479, 0.02167]. However, Zhang used 
calibration board with checkerboard pattern is [0.11689, 0.11500]. The calibration accuracy of 
this method is superior to Zhang, and robustness is better. 
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Table 1 Calibration result 
Name Value(pixel) Error(pixel) 
𝒇𝒇𝒇𝒇(𝟏𝟏) 1691.50289 0.09765 
𝒇𝒇𝒇𝒇(𝟐𝟐) 1691.50289 0.011634 
𝒖𝒖𝟎𝟎 334.63985 0.126831 
𝒗𝒗𝟎𝟎 252.73961 0.130254 
𝒄𝒄 0.00037 0.00009 
𝒌𝒌𝟏𝟏 ﹣0.22933 0.00121 
𝒌𝒌𝟐𝟐 ﹣0.16297 0.00095 
𝒑𝒑𝟏𝟏 ﹣0.00025 0.00004 
𝒑𝒑𝟐𝟐 0.00008 0.00012 

 

 
Figure 2: Distribution of projection errors 

CONCLUSION 
Digital raster three-dimensional measurement system has been widely used in rock three-

dimensional shape measurement due to its characteristics as non-contact, high speed and high 
precision. Based on the camera calibration algorithm proposed by predecessors, an improved 
flexible camera calibration method is presented. The algorithm is simple to implement, 
furthermore, with high accuracy and robustness. 
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