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1. Introduction

Arteries consist of an inner, middle, and outer layer (Gasser et al., 2006). Of these, the middle layer is the most
important, because it contains smooth muscle cells that generate active stresses and allow an arterial wall to constrict or
dilate. This activity buffers the circumferential wall stresses caused by external loads, controls the lumen diameter, and
regulates local blood flow (Humphrey and Na, 2002). Active stress generation is an important physiological phenomenon
that must be considered from a mechanical viewpoint. Therefore, it is important to develop a solid-mechanics-based
arterial model and to analyze it through numerical simulations. In the field of clinical medicine, such a mechanical model
and analysis could be used to evaluate physiological functions, predict pathogenesis, and improve treatment of diseases,
e.g., atherosclerosis and aneurysms. For example, the three-dimensional contour plots of stress distribution obtained via
mechanical analysis for each patient will provide useful information about where pathological changes occur.

Thus far, many mechanical models of active stresses have been proposed and analyzed numerically (Rachev and
Hayashi, 1999; Zulliger et al., 2004; Stålhand et al., 2008, 2011; Murtada et al., 2010a,b; Schmitz and Böl, 2011; B̈ol et
al., 2012). When modeling active stresses from a mechanical standpoint, the phenomenological strain-energy function
as a function of smooth muscle stretch is widely used. At a microlevel, active stresses are generated by contractile units
that are included in the smooth muscle cells. It is believed that relative slidings between actin and myosin filaments in a
contractile unit generate active stresses. In this sliding model, a contractile unit transitions through four chemical states
owing to the chemical reaction regulated by the intracellular calcium ion concentration. The intracellular calcium ions are
the primary determinant of the contractility; increases in intracellular calcium concentration lead to contraction (600-800
nM in fully contracted smooth muscle) while decreases lead to relaxation (100 nM in resting smooth muscle) (Murtada
et al., 2010a). A contractile unit generates active stresses, only when it reaches certain chemical states (Hai and Murphy,
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1988). As described above, active stress generation is controlled by both smooth muscle stretch and intracellular calcium
ion concentration. Therefore, it is necessary to analyze active stresses by coupling a mechanical model with a chemical
one. Thus far, these two models have been studied individually, but few studies have focused on investigations using a
mechanochemical model.

In this study our primary objective is to develop an arterial wall model with active stresses that couples the mechanical
one proposed by Schmitz and Böl (2011) and chemical one proposed by Hai and Murphy (1988) suitable for the finite
element method. By using this coupled model within the framework of finite element analysis, we calculate the stress
distribution including active stresses generated by vascular smooth muscle cells at a prescribed intracellular calcium
ion concentration. Knowing the stress distribution at each prescribed intracellular calcium ion concentration can be
helpful for understanding active calcium ion transport systems, because alterations in the stress distribution caused by the
variation of external loads are buffered by proper active stress generation resulting from continuous intracellular calcium
ion concentration changes through active calcium ion transport systems.

2. Vascular mechanics basis for finite element analysis

Because arteries show geometrical and material nonlinearities, a numerical approach using nonlinear finite element
methods is used. Furthermore, arteries are modeled by an incompressible hyperelastic material (Fung et al., 1979; Weiss
et al., 1996). In this section, we describe the notations used in this paper and the variational principle that we select to
discretize the problem.

2.1. Separation of deformation gradient tensor and strain-energy function
The particle positions in the reference configurationΩ0 and the current configurationΩ are denoted asX and x,

respectively. We assume that a bijectionφ exists such thatx = φ(X). The deformation gradientF with JacobianJ =
detF > 0 is then defined asF = ∂φ(X)/∂X, and the right Cauchy-Green tensor is defined asC = FTF. In finite element
methods, the material description is treated separately as volumetric and isochoric parts. The deformation gradient tensor
F is split into two components as

F = J1/3 F̄, (1)

where the overbar (¯·) denotes the isochoric contributions of certain physical quantities. TheJ1/3I term is associated with
volumetric deformations, whereas̄F is associated with isochoric deformations of the material (Holzapfel, 2000).

We consider a slightly compressible two-fiber reinforced anisotropic hyperelastic material that postulates the ex-
istence of a strain-energy functionΨ (defined per unit reference volume). The second Piola-Kirchhoff stress tensorS
is expressed asS = 2∂Ψ/∂C. The strain-energy functionΨ is assumed to be uncoupled, in which the volumetric and
isochoric components are such that

Ψ = Ψvol(J) + Ψiso(Ī1, Ī2, · · · , Ī9), (2)

whereĪ1, · · · , Ī9 are the isochoric contributions of invariants ofC and structural tensors. The purely volumetric part

Ψvol(J) =
κ

2
(J − 1)2 (3)

controls the degree of incompressibility by means of the positive parameterκ (Brink and Stein, 1996). In the following
sections, the isochoric contributions of the passive and active strain-energy functions of an arterial wall are given.

2.2. Variational principle of saddle type
The constrained-elastostatic boundary-value problem, such as a slightly compressible material response (i.e.,J ≃ 1),

is equivalent to finding the saddle point (u, p) of the functionalΠPL(u, p) (Brink and Stein, 1996; Chang et al., 1991;
Sussman and Bathe, 1987). The two-field functional is expressed as

ΠPL(u, p) =
∫
Ω0

[
p{J(u) − 1} − p2

2κ
+ Ψiso(Ī1, Ī2, · · · , Ī9)

]
dV+ Πext(u), (4)

whereu is the displacement vector;p, an additional Lagrangian multiplier; and the functionalΠext(u), the potential of
conservative exterior forces.

Weak-form equations derived from the functionalΠPL(u, p) are generally nonlinear in unknown fieldsu and p. To
implement weak-form equations in mixed finite element methods, they must be linearized and solved by an iterative
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method, e.g., the Newton-Raphson method. The derivation of weak-form equations and the linearization procedure are
detailed in Brink and Stein (1996); Rüter and Stein (2000).

3. Modeling an arterial wall with active stresses

This section describes the passive mechanical and active mechanochemical model of the arterial wall. For the active
stresses, we couple the chemical and the mechanical model.

3.1. Strain energy function for the passive response
We adopt the passive mechanical model proposed by Holzapfel et al. (2000, 2004). In this model, the arterial wall

is composed of an isotropic material, and two families of collagen fibers, which characterize the anisotropy, are helically
wound along the arterial axis, as indicated inFig. 1. The fiber contribution is modeled using a pair of preferred directional
unit vectorsa0 andg0. In the local covariant basis of the cylindrical coordinate system{eR,eΘ, eZ}, a0 andg0 take the
following forms:

a0 = 0eR + cosηeΘ + sinη eZ, (5a)

g0 = 0eR + cosηeΘ − sinηeZ, (5b)

whereη is the angle between fibers and the circumferential direction, as indicated inFig. 1. The isochoric term of this
(passive) strain-energy function depends on the three invariantsĪ1, Ī4, andĪ6, and it is given by

Ψpas,iso(C, a0 ⊗ a0, g0 ⊗ g0) = ce(Ī1 − 3)+
c1

2c2

∑
i=4,6

[
exp{c2(Ī i − 1)2} − 1

]
, (6)

wherece > 0, c1 > 0, andc2 > 0 are material parameters. The first term on the right-hand side of this equation is an
isotropic contribution that depends on an invariantĪ1, expressed as trC. The second anisotropic term on the right-hand
side of this equation contributes only when the fibers are extended, i.e., whenĪ4 > 1 or Ī6 > 1, whereĪ4 = a0 · Ca0 and
Ī6 = g0 · Cg0.

Fig. 1 Schematic of arterial components: An artery comprises a noncollagenous matrix, two families of fibers,
and two families of smooth muscle cells. The reference directions of the two families of fibers and
two families of smooth muscle cells are represented by the unit vectorsa0 andg0 and the unit vectors
m(1)

0 andm(2)
0 , respectively. A smooth muscle cell contains many contractile units. A basic contractile

unit comprises two actin filaments and one myosin filament connected by many myosin heads. The set
{eR, eΘ, eZ} is the local covariant basis of the cylindrical coordinate system.

3.2. Chemical model for active stresses
Active stresses are generated by contractile units included in smooth muscle cells as shown inFig. 1. Contractile

units, which are essentially one-dimensional structures, are aligned along the axis of smooth muscle cells, and they
comprise actin filaments, myosin filaments, and myosin heads. Actin and myosin filaments can slide against each other
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Fig. 2 Schematic of chemical model proposed by Hai and Murphy (1988):α1, α2, α3, andα4 represent the
chemical state fractions of the myosin head andk1, · · · , k5 are reaction rates. The phosphorylation of the
myosin head is controlled by calcium ions.

by means of chemically driven forces from the myosin heads, as indicated inFig. 2. These relative slidings generate
active stresses and are regulated by the intracellular calcium ion concentration.

To determine the active stress generating states of the contractile units, we use the model proposed by Hai and
Murphy (1988). This model describes the following four chemical states of contractile units: a free unphosphorylated
myosin head (State 1), phosphorylated myosin head (State 2), phosphorylated myosin head attached to actin (State 3),
and dephosphorylated myosin head attached to actin (State 4). The last two states are active stress generating states. This
actin-myosin sliding model is described as a coupled system of first-order ordinary differential equations in timet ∈ [0,∞)
for four chemical state fractionsα = (α1, α2, α3, α4)T as

α̇1

α̇2

α̇3

α̇4

 =

−k1 k2 0 k5

k1 −(k2 + k3) k4 0
0 k3 −(k4 + k2) k1

0 0 k2 −(k1 + k5)



α1

α2

α3

α4

 . (7)

In matrix notation, this model is expressed asα̇ = Kα, wherek1, · · · , k5 are chemical rate constants. Becauseαi (i =
1, 2,3,4) are fractions, they satisfy the constraint

∑4
i=1αi = 1. Typical initial conditions areα1 = 1 andα2 = α3 = α4 = 0,

specifying fully relaxed tissues. In this chemical model, it is assumed that the intracellular calcium ion concentration
regulates a single parameter, namely, the reaction ratek1 of myosin head phosphorylation.

At a chemically steady state (t → ∞), Eq. (7) with constraints is expressed as

0
0
0
0
1


=



−k1 k2 0 k5

k1 −(k2 + k3) k4 0
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1 1 1 1
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 (8)

or b = Kcα in matrix notation. The solutions of this overdetermined linear system are replaced by finding the minimization
pointα of the Euclidean norm∥ b− Kcα ∥.

3.3. Strain energy function for active stress
Smooth muscle cells are helically aligned along the arterial axis and are modeled using a pair of preferred directional

unit vectorsm(1)
0 andm(2)

0 at pointX ∈ Ω0, as indicated inFig. 1. Similar to Eqs. (5a) and (5b), the directional vectors
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m(1)
0 andm(2)

0 take the following forms:
m(1)

0 = 0eR + cosγ eΘ + sinγ eZ, (9a)

m(2)
0 = 0eR + cosγ eΘ − sinγ eZ, (9b)

whereγ is the angle between the smooth muscle cells and the circumferential direction. Deformed smooth muscle cells
at the associated pointsx ∈ Ω are defined by a pair of directional unit vectorsm(1) andm(2). The relationship betweenm(i)

0

andm(i) is expressed as̄Fm(i)
0 = λ̄

(i)
m m(i), whereλ̄(i)

m is the isochoric stretch of smooth muscle cellsm(i)
0 (i = 1,2).

To incorporate active stresses into a constitutive model, we use the approach of Schmitz and Böl (2011). This
phenomenological model is based on the concept of embedded fibers that expand or contract self-actively in the direction
of m(i)

0 (i = 1,2). The isochoric contribution of the active strain-energy functionΨact,iso, which depends on̄λ(i)
m and

chemical state fractionsα3 andα4, is modeled as a polynomial of̄λ(i)
m and is given by

Ψact,iso(λ̄
(i)
m , α3, α4) = (α3 + α4)

5∑
n=0

an(λ̄(i)
m )n, (10)

wherean (n = 0, · · · ,5) are material parameters. The original Schmitz model does not explicitly take into account the
effect of the intracellular calcium ion concentration. In their model, the chemical state fractionα3 + α4 is treated as a
constant. In this study, we consider that the fractionsα1, · · · , α4 vary with intracellular calcium ion concentration as
described in the next subsection.

3.4. Relation between the reaction ratek1 and intracellular calcium ion concentration
At a chemically steady state ( ˙αi → 0, t → ∞, i = 1,2, 3,4), from Eq. (7), the rate constantk1 is given as a function

of the fraction of phosphorylated myosin headsα2 + α3, i.e.,

k1 = k2
α2 + α3

α1 + α4
= k2

α2 + α3

1− (α2 + α3)
. (11)

The relationship between the intracellular calcium ion concentrationβ(x) in the current configurationΩ and fraction
of phosphorylated myosin headsα2 + α3 is fitted into a sigmoidal function commonly encountered in enzyme reaction
approximations, i.e.,

α2 + α3 = a+
b

1+ 10−cβ(x)+d
, (12)

wherea,b, c, andd are constants (Murtada et al., 2010b).
From Eqs. (11) and (12), the rate constantk1 is defined as a function of the intracellular calcium ion concentration

β(x). Substituting the ratek1 into Eq. (8), the fractionsα1, · · · , α4 as functions ofβ(x) are obtained.

3.5. Sum of strain-energy function
From Eqs. (2), (3), (6), and (10), the material behavior is described by means of the total strain-energy function as

Ψ = Ψvol(J) + Ψpas,iso(C, a0 ⊗ a0, g0 ⊗ g0) +
∑

i=1,2

1
2
Ψact,iso(λ̄

(i)
m , β(x)), (13)

where 1/2 is the weighting function with respect to the muscle cellm(i)
0 . In finite element methods described by the

total Lagrangian formulation, the second Piola-Kirchhoff stress tensorS = 2∂Ψ/∂C and fourth-order elasticity tensor
C = 2∂S/∂C must be calculated. For the derivation of these tensors, see Holzapfel (2000).

4. Numerical analysis

We examine the effect of smooth muscle stretch and intracellular calcium ion concentration on active stress genera-
tion under physiological boundary conditions using the finite element analysis. Numerical analysis is conducted using an
in-house research code developed for analyzing geometric and material nonlinear problems. In the analysis, the arterial
segment is considered as a slightly compressible thick-walled cylindrical tube, which is a simplified shape of an artery.
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Fig. 3 Schematic of boundary conditions, initial shape, and deformed shape of arterial segment. The thick-walled
cylindrical tube is assumed to have a heighth of 1.85 mm with an inner radiusr in of 3.70 mm and a wall
thicknesst of 0.77 mm as taken from the swine carotid artery (Stylianopoulos and Barocas, 2007). As
boundary conditions, the axial stretchλz is set to the approximate axial in situ stretch of a carotid artery
(1.7) (Holzapfel et al., 2004), and the inner pressurepin is set to normal blood pressure (13.33 kPa).

4.1. Conditions for the numerical analysis
The initial geometry and applied boundary conditions of the arterial segment are shown inFig. 3. The passive,

active, and chemical material parameters of the model are listed inTables1, 2, and 3. Parameter values are taken from
previous works fitted to swine carotid artery.

Because the inner and outer layers are mechanically insignificant, only the middle layer is considered, i.e., the model
is single-layered. The body forces are negligible in comparison with the surface traction loads and internal forces. To focus
on the relationship between active and passive stresses, we do not consider the effect of residual stresses. The deformation
is assumed to progress very slowly, while chemical equilibrium is maintained. We assume that in the reference (initial)
configuration, the initial intracellular calcium ion concentrationβ0(X) is uniform throughout the arterial wall (β0(X) = β0)
and remains constant throughout the arterial deformation, i.e.,β0(x) = β0. This assumption means that the calcium ion
concentration inside and outside the cell has reached equilibrium.

Table 1 Passive and active material parameters
in Eqs. (5), (6), (9), and (10).

Parameter Value Unit
η 38.4 deg
ce 3.500 kPa
c1 23.70 kPa
c2 1.700 -
γ 4.5 deg
a0 −4.9 kPa
a1 −188.2 kPa
a2 344.5 kPa
a3 −415.9 kPa
a4 389.3 kPa
a5 −124.8 kPa

(Schmitz and B̈ol, 2011)

Table 2 Chemical parameters
in evolution Eq. (7).

Parameter Value Unit
k1 calculated 1/s
k2 0.50 1/s
k3 0.40 1/s
k4 0.10 1/s
k5 0.010 1/s

(Hai and Murphy, 1988)

Table 3 Chemical parameters
in enzyme reaction Eq. (12).

Parameter Value Unit
a −0.0400 -
b 0.686 -
c 0.015 -
d 3.02 -

(Murtada et al., 2010b)

Finite element analysis is conducted under the following conditions: (i) The arterial segment is discretized into 9
radial elements, 160 elements around its circumference, and 9 axial elements, and it is modeled by the hexahedralQ1/P0-
element (i.e., trilinear displacement and constant Lagrange multiplier approximations). (ii) 10 equal-load increments are
applied to the arterial segment. (iii) Newton-Raphson iterations continue until all normalized square residual norms are
below 10−5. (iv) The penalty parameterκ is taken to bece×104. We use the direct sparse solver PARDISO included in the
Intel Math Kernel Library for solving large sparse linear systems and LAPACK routines for eigenvalue and least squares
problems.

4.2. Results: Chemical state and Cauchy stress distributions
From the Eqs. (8), (11), and (12), the chemical statesαi as a function of the intracellular calcium ion concentration

β0 at a steady state are plotted inFig. 4. If β0 is less than 124 nM, then smooth muscle cells are fully relaxed (α3+α4 = 0).
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If β0 is greater than approximately 250 nM, then the activation of smooth muscle cells is saturated, as indicated by the red
line in Fig. 4.

C
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a

l 
s
ta
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 α

i
 

Intracellular calcium ion concentration β
0
 [nM]

Fig. 4 Relationship between chemical state fractionsα1, · · · , α4 and the intracellular calcium ion concentration
β0 at the chemically steady state.

The distributions of the Cauchy stress componentsσθθ andσzz through the deformed wall thickness as functions of
the radial coordinater, are plotted for various initial calcium ion concentrationsβ0 in Fig. 5. Because active stresses
are generated toward the circumferential and axial directions, we focus on these two stress components. Whenβ0 is less
than 124 nM, active stresses are absent in the arterial wall, indicating a passive response to the external loads. As the
intracellular calcium ion concentrationβ0 increases, the effect of active stress appears gradually and continuously. In fully
activated smooth muscles (β0 ≥ 250 nM), unlike the case for lower-activated muscles, the principal stress distribution
behaves like an almost linear function ofr. The stress distribution obtained in the conventional passive only response
model corresponds to the case in whichβ0 is below 124 nM. The result by Schmitz and Böl (2011), which includes active
stress generation, corresponds to the case in whichβ0 is more than 250 nM. Interestingly, in our study, as the activation
of smooth muscle cells increases, the Cauchy stress at the outer wall exceeds that at the inner wall.

5. Discussion

In previous literature, active stresses were modeled phenomenologically in the form of a Cauchy stress tensor as
a function of smooth muscle stretch, and then, by its integration, strain-energy functions were obtained (Rachev and
Hayashi, 1999; Zulliger et al., 2004; Stålhand et al., 2008, 2011; Murtada et al., 2010a,b; Schmitz and Böl, 2011; B̈ol
et al., 2012). By using the finite element method, the mechanical behavior of an arterial wall as described by the strain-
energy function including active stresses has been analyzed. From the microscopic viewpoint, active stresses are believed
to be generated by the relative sliding between actin and myosin filaments in smooth muscle cells, and they are driven

(a) (b)

Fig. 5 Elastostatic computation of transmural Cauchy stress distributions at axial stretch of 1.7, inner pressure
of 13.33 kPa, and various initial calcium ion concentrationsβ0. (a): Circumferential direction. (b): Axial
direction.
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by chemical reactions (Hai and Murphy, 1988). The probability of active stress generating states has been described in
the chemical model regulated by intracellular calcium ion concentration. Although active stress generation is regulated
by both smooth muscle stretch and intracellular calcium ion concentration, these two models of active stresses have been
studied individually.

In this study, for a better understanding of arterial functions, we developed a mechanochemical model with an
active stress generator that couples the chemical model proposed by Hai and Murphy (1988) to the phenomenological
mechanical model proposed by Schmitz and Böl (2011). The stress distributions in an arterial wall at each prescribed
intracellular calcium ion concentration were calculated by the mechanochemical model using finite element analysis. The
differences between the conventional model and our model was that in our model, a spectrum of the stress distributions
with respect to various intracellular concentrations concerning the active stress generation can be obtained. Our results
were consistent with the fact that active stresses play a role in reducing the stress gradient with respect to radial position
r under physiological conditions, and make the stress distribution uniform within the wall beyond the reduction due to
residual stress (Yamada et al., 1999, 1997; Humphrey and Na, 2002; Stålhand et al., 2011). Our results also showed
that as the intracellular calcium ion concentrationβ0 increases, the effect of active stress appears continuously, i.e., stress
distribution could be considered as a continuous function of the intracellular calcium ion concentration, and the Cauchy
stress at the outer wall exceeded that at the inner wall as the activation of smooth muscle cells increases. This second
phenomenon can be explained as follows: (1) In the deformed state, the smooth muscle stretchλm of the outer portion
of the wall is slightly larger than that of inner ones; (2) when the absolute difference between the current stretchλm and
its initial value 1 becomes larger, the smooth muscle cells generate larger active stresses; (3) the behavior of active stress
generation changes significantly, when the stretch changes slightly.

The obtained stress distributions could be helpful for understanding the active calcium ion transport systems, because
the alterations of the stress distributions caused by the variation of external loads are buffered by proper active stress gen-
eration resulting from continuous intracellular calcium ion concentration changes through the active calcium ion transport
systems, such as calcium ion channels and ion pumps. In vivo, in order to exert the physiological function of arteries in
response to external loads, the adjustment of the intracellular calcium ion concentration by the active calcium ion trans-
port systems will control the stress distribution such that the distribution becomes nearly uniform within the arterial wall,
under various physiological state.

Several simplifying assumptions have been made in this study. First, although the intracellular calcium ion con-
centration varies continuously owing to inflow and outflow from the cell and its storage sites to ensure proper arterial
constriction or dilation, calcium ion movements were not considered; to evaluate active stress generation in vivo, active
calcium ion transport must be incorporated in the analysis (Yang et al., 2003). Second, this study was conducted under
physiological boundary conditions; to evaluate pathogenesis, pathological boundary conditions such as hypertension must
be considered. Third, because there are in vivo blood flows inside the cavity of the vessel, fluid-solid interactions cannot
be ignored in a computational mechanical approach (Humphrey and Na, 2002).

In a future study, we plan to develop a model that takes into account the active calcium ion transport systems, for
example, how stretching of the smooth muscle cells affects the intake of calcium ions from the surroundings. If com-
putational arterial models based on appropriate constitutive laws and boundary conditions are established, physiological
functions could be predicted more realistically, leading to improved diagnosis or disease treatment.
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