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Abstract 
An analysis of the compressive deformation of alginate-poly(L)lysine-alginate 
(APA) microcapsules by two rigid parallel plates was performed under the 
assumptions that the bending stiffness and permeability of the membrane were 
negligible. The static equilibrium equations of force for axisymmetric elastic 
deformation were solved using the Runge-Kutta method with the constraint of 
constant microcapsule volume during deformation. The constitutive laws of a 
neo-Hookean material and that proposed by Evans and Skalak(1) were used. The 
Young’s modulus of the membrane was determined by an atomic force microscopy 
(AFM)-based technique, and a comparison with a semianalytical solution 
neglecting the shear stiffness of the membrane validated the present analysis 
method. The force–displacement curve for the compressive deformation of an APA 
microcapsule is calculated and compared with the experimentally measured result. 
A nonlinear increase in the transmural pressure with increasing displacement and 
the meridional and circumferential stress resultant distributions near rupture of the 
membrane are also shown. 
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1. Introduction 

Microcapsules are widely used for various medical applications such as drug delivery, 
cell therapy, and artificial organs. The mechanical properties of microcapsules are of great 
importance not only for knowledge about the deformation capacity against mechanical 
stresses applied by the surrounding environment but also for designing and controlling the 
release of encapsulated substances via changes in the transmural pressure. There are several 
experimental methods for examining the mechanical properties of microcapsules and cells, 
such as micropipette aspiration(2), poking(3), atomic force microscopy (AFM)(4), and optical 
tweezers(5,6). Another widely used technique is a compression test using two rigid parallel 
plates(7-14) in which the compression force and deformation of the microcapsule are 
monitored. The mechanical properties of the microcapsule membrane are extracted through 
(1) measurement of the compression force versus plate displacement curve and (2) fitting a 
theoretical model to the measured force–displacement curve(9,11-13). The membrane model 
proposed by Feng and Yang(15) and Lardner and Pujara(16) is often used for the theoretical 
calculations. Feng and Yang(15) considered the deformation problem of an inflated, gas-filled 
elastic membrane compressed between two rigid parallel plates, and Lardner and Pujara(16) 
extended this model by considering a sphere filled with an incompressible fluid. 

In our previous research(14), the Young’s modulus of an alginate-poly(L)lysine-alginate 
(APA) microcapsule membrane was determined by an AFM-based technique. APA 
microcapsules are widely used as vehicles for the delivery of encapsulated cells(17,18). In the 
present research, the force–displacement relationship is predicted by the theoretical 
analysis, in which the experimentally obtained Young’s modulus is used as a datum of the 
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membrane property. The deformation analysis used here is based on the works(15,16). The 
bending stiffness and permeability of the membrane are neglected, and frictionless contact 
between the plate and membrane is assumed, and the constitutive law of a neo-Hookean 
(NH) material(19) and the constitutive law proposed by Evans and Skalak(1) are applied. To 
verify the theoretical analysis, the calculated force–displacement curve, for which uniform 
and isotropic tension is assumed, is compared with the semianalytical result(14). The 
calculated and experimentally measured force–displacement curves are compared, and the 
limitations and problems of the theoretical analysis are discussed. The increase in the 
transmural pressure with increasing displacement is shown, and its medical importance is 
addressed. The distributions of the stress resultants before membrane rupture are also 
demonstrated. 

2. Theoretical analysis 

Before describing the theoretical analysis, the microcapsule compression experiment(14) 
corresponding to the present analysis is summarized. APA microcapsules 200–300 µm in 
diameter were produced following the method of Okada et al.(20) The Young’s modulus of 
the membrane E was determined by applying the Hertz contact theory(21) to the results of 
the indentation test using AFM. A value of 1.9E = MPa was obtained for an assumed 
Poisson’s ratio v of 0.5. Microcapsules 240 µm in diameter and 7.75 µm in thickness, 
confirmed with a CCD camera (CCD-IRIS, Sony Corp.) through an inverted microscope 
(IX-70, Olympus Corp.), were placed in a micromanipulator system (MMS-77, Shimadzu 
Corp.) for the compression tests. As shown in Fig.1, a microcapsule is placed between two 
flat silicon substrates; one substrate is connected to a manipulator and the other is adhered 
to a cantilever, which in turn is connected to a manipulator. The upper manipulator in Fig. 1 
was driven downward (loading) and then upward (unloading) at a speed of approximately 
15 μm/s, thus compressing and releasing the microcapsule. The compression was done up to 
approximately 40% non-dimensional displacement ( 0/ Rδ ), before membrane rupture 
occurred. Membrane rupture was observed at a non-dimensional displacement of nearly 
50%. The force applied to the microcapsule was determined from the product of the 
cantilever deflection and stiffness. 

 
 
 
 
 
 
 
 
 
 
 

Fig.1 Micromanipulator for microcapsule compression 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Geometry and coordinates of the microcapsules before and after deformation 
 
In the calculation, v  was assumed to be 0.5 based on the following. The produced 

microcapsules were preserved in saline solution for a long period of time, and the 
compression tests were performed in the saline solution immersed state; thus, the membrane 
was in a fully swollen state as a polymer gel. In such a case, the mechanical behavior of the 
membrane can be considered to be similar to that of rubber-like materials(23,24), which have 
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Poisson’s ratios of approximately 0.5 up to a stretch ratio of approximately 3.5(25). 
The theoretical analysis of the compressive deformation of a microcapsule by two rigid 

parallel plates is based on the formulations(15,16). The microcapsule is assumed to initially be 
a sphere with radius 0R , and the deformed shape is assumed to be axisymmetric. For 
simplicity, we can consider one hemisphere of the microcapsule. The meridional shapes of 
the microcapsule before and after contact with one plate are shown in Fig. 2. The cylindrical 
coordinate system ( , )r z  is taken, and the meridional lengths of the initial and deformed 
shapes are S and s, respectively, whose origins are located on the z-axis. The contact region 

*0 s s≤ ≤  corresponds to the initial region of *0 S S≤ ≤ .  
The static equilibrium equations of force for an axisymmetric membrane with 

negligible bending stiffness in the meridional, tangential, and normal directions are (22)  
 
 
 
 

 
where sT  and Tϕ  are the principal stress resultants in the meridional and circumferential 
directions, respectively; sκ  and ϕκ  are the principal curvatures in the meridional and 
orthogonal planes, respectively; and trp  is the transmural pressure defined by  

 
 

where ip  and ep  are the uniform internal and external pressures on the membrane, 
respectively. 

The principal stretches in the meridional and circumferential directions are, 
respectively, 

 
 

where R is defined as the initial coordinate of r for the same material point. The principal 
curvatures are expressed by 
 

 
 
where ψ  is the angle between the s- and r-directions as shown in Fig. 2, and the prime 
indicates differentiation with respect to S. 

The principal stress resultants of the deformed membrane are expressed as 
 
 

for which the functions sT  and Tϕ  depend on the strain-energy function of the material 
under consideration. 

Based on these assignments, Eq. (1) is transformed into the following equation. 
 
 
 

Differentiation of the λϕ equation in Eq. (4) with respect to S gives  
 
 
 

Substitution of Eq. (5) into Eq. (2) gives 
 
 

 
 
To obtain the deformed shape of the microcapsule, the following differential equations are 
used. 

 
 
 

1 ( ) 0s
s

dT dr T T
ds r ds ϕ+ − =

s s trT T pϕ ϕκ κ+ =

 , s
ds r
dS Rϕλ λ= =

sin , s
s

d
ds rϕ
ψ ψ ψκ κ

λ
′

= = =

cos ( )s s s
s s

s

T TT T
rϕ ϕ

ϕ

λ ψλ λ
λ λ

⎡ ⎤∂ ∂′ ′= − + −⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

( )0cos cos /s S R
R
ϕ

ϕ
λ ψ λ

λ
−′ =

sins
tr

s
p T

T r ϕ
λ ψψ ⎛ ⎞′ = −⎜ ⎟

⎝ ⎠

sinsz λ ψ′ = −

tr i ep p p= −

( , ) , ( , )s s s sT T T Tϕ ϕ ϕ ϕλ λ λ λ= =

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

cossr λ ψ′ = (10)

(11)



 

 

Journal of  Biomechanical 
Science and Engineering  

Vol. 8, No. 1, 2013 

43 

The boundary conditions for this problem are  
 
 
 

 
 
 
 
 

where contact( )z  in Eq. (13) is specified arbitrarily and then modified after the calculation of 
a deformed shape such that the equator of the microcapsule is always located at 0z = . Eq. 
(14) expresses the symmetry condition at the equator of the microcapsule. 

 The volume of the microcapsule is assumed to be constant during deformation under the 
assumption that the encapsulated fluid is an incompressible liquid and that the permeability 
of the membrane is neglected. This is satisfied by  
 
 
where es indicates the s coordinate at the equator of the microcapsule,  and r zn n  are the r- 
and z-components, respectively, of the outward normal unit vector to the membrane surface, 
and 3

0 0( 2 / 3)V Rπ= is the initial volume. Eq. (15) is derived by applying the Gauss 
divergence theorem to the volumetric integral of (∇ ⋅ x)/3, where x is a position vector. 

The applied compression force F is calculated by 
 
 

This equation is obtained from the force balance in the z-direction of the flat part of the 
membrane that is in contact with the plate. 

We consider two constitutive laws that have commonly been used to describe the 
behavior of thin membranes. The neo-Hookean (NH) law(19) for rubber-like materials is 
expressed by 

 
 
 

where h is the initial thickness of the membrane. The expression for Tϕ  is obtained by 
interchanging the indices s and ϕ . The second constitutive law proposed by Evans and 
Skalak(1) (the ES law) to model biological membranes is expressed by 

 
 
 
where K is the area dilatation modulus and μ  is the shear modulus. The relationships 
between these quantities and E and v under a small deformation plane stress assumption are 
as follows(12). 

 
 
 
An outline of the numerical calculation procedure is as follows: 

[1] Assign a value for *S . 
[2] Assume values for 0λ and trp . 
[3] In the contact region, apply the Runge-Kutta method to Eqs. (7), (8), and (10) with 

0ψ = . The initial conditions are given by Eq. (12). 
[4] In the no-contact region, apply the Runge-Kutta method to Eqs. (7)–(11). The initial 

conditions are given by Eq. (13).  
[5] Check the conditions expressed in Eqs. (14) and (15). If they are not satisfied, assume 

new values of 0λ  and trp  and repeat procedures [2]–[5] until the conditions are 
satisfied. 

3. Results and discussion 

To verify our analysis, the results obtained using the semianalytical method(14) were 
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compared with those calculated using the present method. In the semianalytical method, the 
assumption of a uniform and isotropic membrane tension enables Eq. (2) to be solved 
analytically with two unknown parameters that are determined numerically; only the area 
dilatation modulus K is used in the constitutive law. Therefore, performing the present 
calculation with 0μ =  for an ES material should yield the same result as the semianalytical 
method. Fig. 3 shows a comparison of the compression force versus the non-dimensional 
displacement results. The calculation results are in good agreement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Comparison of the calculation results (h = 7.75µm) 
 
The force–displacement experimental results are shown in Fig. 4 where the open circles 

denote the loading values and the open triangles denote the unloading values. The hysteresis 
seen in the curve is due to the permeation of liquid across the membrane(14). Also shown by 
the solid line with black circles are the calculation results for an NH material; these results 
are reversible for the loading–unloading process. A comparison with the experimental 
results reveals that the calculated force is slightly underpredicted in the small deformation 
region. This difference may arise from the fact that the membrane bending stiffness has an 
effect when the deformation is small(26). In contrast, the calculated force is overpredicted in 
the large deformation region. This may be due to the fact that the membrane permeability is 
not accounted for in the theoretical model.(13)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 Comparison of calculated and experimental results 

 
The influence of the constitutive law on the force–displacement curve is shown in Fig. 

5. The calculations were performed in a non-dimensional displacement 0/ Rδ  range 
smaller than 0.5 to avoid membrane rupture. The results for the NH and ES materials are 
coincident in the range of 0/ 0.25Rδ < , and the results for the NH material are smaller 
than those for the ES material in the range of 0/ 0.25Rδ > . Furthermore, the experimental 
results in Fig. 4 are smaller than the results for the NH material in the range of 

0/ 0.2Rδ > . Therefore, the results for the NH material are nearer to the experimental 
results than the results for the ES material. In the large deformation region, a microcapsule 
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with an ES material membrane has a somewhat higher bulk elastic stiffness than that with 
an NH material membrane. The difference in the large deformation region is, in a sense, 
considered to be significant, when values with the same contact angle *θ  are compared. The 
contact angle is defined as 

 
 

The difference between the ES results in Fig. 5 and the analytical data in Fig. 3 indicates the 
force induced by the shear stiffness of the membrane in the ES material. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5 Comparison of the calculation results for the NH and ES materials 

 
The transmural pressure as a function of the non-dimensional displacement for the NH 

and ES materials is shown in Fig. 6. The difference between the NH and ES materials 
follows a similar trend to that in Fig. 5. The transmural pressure is important not only for 
preservation of the microcapsule shape but also for the release of the encapsulated 
solutions. The volume flux of the liquid across the membrane is calculated from the product 
of the transmural pressure and the permeability of the membrane(13). Therefore, the results 
in Fig. 6 are crucial for controlling drug release in drug delivery systems. 

The deformed shapes of the NH and ES material microcapsules for different contact 
angles *θ  are shown in Fig. 7. As was evident in Fig. 5, for the same contact angle *θ , the 
displacement of the ES material is larger than that of the NH material in the large 
displacement region. Therefore, the deformation of the ES material (shown by the broken 
lines) in Fig. 7 is larger than that of the NH material (shown by the solid lines). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Increase in transmural pressure with increasing non-dimensional displacement 
 
In Fig. 8, the distributions of the principal stress resultants sT  and Tϕ  are shown for 

contact angles of *θ  = 40°  and 50° . The points indicated by the black circles are the 
boundary points between the contact and no-contact regions. The stress resultant Tϕ  is 
always larger than sT  for both the NH and ES materials, and both stress resultants for the 
ES material are always larger than those for the NH material because the deformation of the 
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ES material is larger than the NH material when both materials are compared at the same 
contact angle *θ , as shown in Fig. 7. Negative tensions in the contact region are seen at 

* 40θ =  for both the NH and ES materials and at * 50θ =  for only the NH material. 
Buckling may take place in the negative tension region; however, the 0ψ =  constraint 
over the contact region prevents this. At a contact angle of * 50θ °= , where the 
non-dimensional displacement is close to 0.5 as shown in Fig. 5, the state of the membrane 
tension is that just before rupture. The tensions are a maximum at the equator of the capsule 
and rupture will take place there. This prediction is consistent with the experimental 
observations(9). As shown in Fig. 5, the non-dimensional displacement at a contact angle of 

* 50θ =  for the ES material is 0/ 0.495Rδ = , which is close to the state of membrane 
rupture. The calculated distributions of the tensions sT  and Tϕ  for the NH material at 

0/ 0.495Rδ =  (not shown here) are smaller than those for the ES material, showing the 
same trend as the right-hand side figure in Fig. 8. Therefore, the NH material is considered 
to have a higher resistance against membrane rupture than the ES material. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Shapes of the deformed microcapsules for the NH and ES materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.8 Distributions of the tensile stress resultants 

 
The relationship between sλ  and sε (strain) in the small deformation range is 

1s sε λ= − , and a similar relationship holds for ϕλ  and ϕε . The small deformation 
assumption ignores the second- and higher-order terms of sε  and ϕε . Therefore, the 
application range of Eq. (19), which assumes small deformation, is considered to be the 
range for which the differences of sλ  and ϕλ  from unity are smaller than 0.1. Calculation 
results (not shown here) indicate that ϕλ  becomes slightly larger than 1.1 in the no-contact 

-1 0 1

-1

0

1

r / R0

z 
/ R

0
 NH
 ES

θ = 15°27.5°
37.5°

45°
50°

*

0 0.2 0.4 0.6 0.8 1-0.5

0

0.5

1

T s
 , 

T 
   

[N
/m

]

S / (πR0 / 2)

　   NH    ES
Ts    
T     φ

θ* = 40°

φ

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

T s
 , 

T 
   

[N
/m

]

S / (πR0 / 2)

　   NH    ES
Ts    
T     φ

θ* = 50°

φ



 

 

Journal of  Biomechanical 
Science and Engineering  

Vol. 8, No. 1, 2013 

47 

region when the contact angle exceeds * 45°θ = . Thus, the calculation results in Figs. 5–8 
for the ES material are valid in the range where the contact angle is smaller than 45°  and 
those that exceed the contact angle of 45°  involve errors due to second-order terms of the 
strain. However, according to Carin et al.(11), a larger force is needed for the ES material 
than for the NH material for the same compression. Carin et al.(11) did not apply the small 
deformation assumption in Eq. (19) but obtained the same force–displacement relationship 
as that shown in Fig. 5. Therefore, Eq. (19) may be used in the finite deformation region. In 
this study, only the value of / 3K μ =  was examined, which is derived from Eq. (19) with 

0.5.v =  Carin et al.(11) varied the value of /K μ  from 0.1 to 3 and calculated the 
corresponding force–displacement curves. This variation is necessary to solve the inverse 
problem for extracting mechanical parameters from the fitting of the calculated and 
measured force–displacement curves. 

4. Conclusions 

An analysis of the compressive deformation of APA microcapsules by two rigid parallel 
plates was performed for NH and ES material membranes. The calculated compression 
force due to the plate displacement was smaller than the experimentally measured force in 
the small deformation region and was larger in the large deformation region. The difference 
between the predicted and experimental results can be decreased by incorporating the 
bending stiffness and permeability of the membrane into the theoretical model. The 
calculated results for the NH and ES material constitutive laws were in good agreement in 
the small and medium deformation regions, but a difference appeared in the large 
deformation region. A theoretical prediction of the resistance against membrane rupture is 
therefore dependent on the selection of the constitutive law of the membrane. Judging from 
the calculation results, the NH material has a somewhat higher resistance against membrane 
rupture than the ES material. The calculation of the increase in transmural pressure with 
increasing compressive deformation is an important result for the application of 
microcapsules as a drug delivery system because the transmural pressure is directly related 
to drug release across the membrane. 

In calculations(9,11-13) similar to the present study, the mechanical parameters of the 
membrane were determined such that the calculated force–displacement curve fitted well 
with experimentally measured curve. The validity of such a method in determining the 
mechanical parameters should be examined. In the present study, the Young’s modulus was 
determined experimentally using AFM, and Poisson’s ratio was determined from a 
consideration of the compressive experiment in which the fully swollen state of the polymer 
gel membrane can be assumed. The degree of coincidence between the calculated and 
measured force–displacement curves was shown to be a good measure for judging the 
validity of the parameter-fitting method. The problem of the present study in determining 
the Young’s modulus is that the constitutive equation of the material used in the AFM 
experiment, i.e., that of a three-dimensional homogeneous isotropic Hookean material, is 
different from that used in the compressive experiment, i.e., that of an NH or ES material. 
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