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Abstract 
Pulse diagnosis in traditional Chinese medicine is said to be able to detect not only 
illness but also decline of health in the patients from tactile sense of the pulse in the 
radial artery at the wrists. This diagnosis, however, is not supported by concrete 
scientific evidence. The authors have proposed a non-linear spring model of 
subcutaneous tissue on the radial artery and one-dimensional arterial blood flow 
model in an arm for the purpose of scientific verification of the pulse diagnosis. 
They performed, in the former study, a numerical experiment with this 
mathematical model in which the radial artery was indented in a stepwise manner 
by a pressure sensor, which extract the fundamental mechanism of the pulse 
diagnosis, to validate the subcutaneous tissue model and to find the appropriate 
coefficient to fit the experimental result. They investigated, in this research, 
contribution of parameters of supply pressure of the blood and tube law of the 
artery on the change in the pressure pulse waves with the indentation steps with 
respect to mean value Poav and amplitude ∆Po of the pressure. It was shown that 
mean supply pressure affects both Poav and ∆Po, while amplitude of the supply 
pressure affects ∆Po. It was also shown that profile of ∆Po vs. distance of the 
indentation changes drastically as the artery becomes hard. Lastly, it was examined 
to reproduce the experimentally obtained pressure pulse waves during the 
indentation in their former work with the mathematical model by adjusting the 
parameters. The result showed better agreement than the former result, but it 
implied that ulnar artery had to be taken into consideration for quantitative fitting 
of the pulse waves to the range where the radial artery was nearly flattened by the 
indentation. 

Key words: Pulse Diagnosis, Pressure Wave, Mathematical Model, Numerical 
Simulation, One-Dimensional Analysis 

 
1. Introduction 

Integrated medicine (IM) that combines complementary and alternative medicine 
(CAM), such as traditional Chinese medicine, Ayurveda or aromatherapy, with modern 
Western medicine has recently attracted our attention. Research on IM is being carried out 
with the expectation of health maintenance, a decrease of medical expenses by prevention, 
early stage detection of diseases and perfect recovery from disease. It is hoped that 
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custom-made medical treatment based on individual patients’ conditions can be realized. 
Traditional Chinese medicine, represented by herbal medicine, acupuncture or 

moxibustion, is a well-known CAM. Pulse diagnosis is also a traditional Chinese medical 
technique. In the pulse diagnosis, a doctor places his fingers at both wrists of a patient to 
indent the radial arteries with various indentation patterns and diagnoses his/her diseases 
from the tactile sense of the pulse detected by the fingers. This is a simple and non-invasive 
technique and is said to be able to diagnose not only the diseases but also the patient’s 
physical condition or presence of latent disease. The pulse diagnosis has been established 
with accumulated experiences of the doctors, and thus, neither scientific evidence of the 
diagnosis nor rigorous quantitative guideline for the diagnosis exist but qualitative image of 
tactile sense of the pulse waves specific to diseases. So, various researches have been 
performed on the objectification of the diagnosis(1)-(5). In those researches, the pulse waves 
of the patients were measured by an applanation tonometry or a photoelectro- 
plethysmograph focusing on finding significant characteristics on the pulse waves for a 
specific disease and giving interpretation on them from medical point of view, but 
mechanism of the pulse diagnosis, i.e. cause-and-effect relationship between diseases and 
change in the waveform, was left unknown. This is an issue in integrating the pulse 
diagnosis to the modern Western medicine. Then, numerical simulation is a powerful tool 
for the fundamental understanding of the mechanism and analytical verification of the 
pulse diagnosis, because the mathematical model is grounded on rigorous physical laws. 

Since blood flow is pulsatile by the heartbeat, some change in the circuit theoretically 
appears on the waveform of the pulsation by considering the blood circulatory system as a 
hydraulic circuit. For example, Konno et al.(6) examined the change of the waveform in 
their experimental research on the pulsatile flow in a closed circuit. For the investigation of 
the propagation or reflection of the pressure pulse waves, mathematical models of arterial 
vasculature have been proposed and numerical simulations have been performed(7)-(10). In 
those researches, blood flow was expressed in one dimension, and the blood flow and the 
propagation of the pressure waves were solved simultaneously with deformation of the 
vessels under the physiological condition. The artery, however, has to be indented to 
reproduce the pulse diagnosis, because the authors have expected that essence of the 
diagnosis is in the change in the pulse waves by the indentation. For this purpose, we have 
to take into consideration the subcutaneous tissue between the radial artery and the finger. 
The authors proposed a non-linear spring model of subcutaneous tissue on the radial artery 
and one-dimensional blood flow in the artery of an arm to reproduce indentation of the 
radial artery by a finger(11). They also developed an experimental setup to press down a 
pressure sensor against the radial artery at the wrist, and performed an experiment in which 
the radial artery was indented stepwise by a pressure sensor, which extracted the 
fundamental mechanism of the pulse diagnosis, to measure the change in the pressure pulse 
waves with the indentation steps. Quantitative agreement of the numerical and the 
experimental results is a necessary condition for the numerical reproduction of the pulse 
diagnosis and further investigation on the diagnosis. They then numerically reproduced the 
indentation experiment with the mathematical model to validate the subcutaneous tissue 
model and to find the appropriate parameter to fit the experimental result, and concluded 
that supply pressure and physical characteristics of the artery had to be adjusted for the 
quantitative agreement. 

Therefore, in the present paper, the authors performed the numerical experiment to 
examine the contribution of the parameters of supply pressure of the blood and tube law of 
the artery to the change in the pressure pulse waves with the indentation steps with respect 
to the mean value and amplitude of the pressure, and lastly to verify their contribution to the 
pressure pulse waves detected by the sensor, parameters were adjusted to fit the numerical 
result with the experimental result. 
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Nomenclatures 

A(x): Cross-sectional area of artery at axial position x [m2] 
A0(x): Cross-sectional area of artery at axial position x at φ = 13.3 kPa [m2] 
AC(x): Cross-sectional area of artery at the inflection point of the tube law [m2] 
Cv: Capacitance of venous system [m3/Pa] 
D(x): Peripheral length of artery at axial position x [m] 
dy: Local displacement of arterial wall under pressure sensor [m] 
dya: Time-averaged displacement of arterial wall under the center of pressure sensor [m] 
dyav: Mean displacement of arterial wall under pressure sensor [m] 
ft: Resistance coefficient of artery (= λ/4) 
P(x): Inner pressure of artery at axial position x [Pa] 
PE: Pressure at downstream end of artery [Pa] 
Pe(x): External pressure of artery at axial position x [Pa] 
Po: Pressure measured by pressure sensor [Pa] 
Psav: Mean supply pressure [Pa] 
∆Po: Amplitude of pulsation pressure [Pa] 
∆Ps: Amplitude of supply pressure [Pa] 
Pra: Pressure in right atrium [Pa] 
Pv: Venous pressure [Pa] 
Q(x): Flow rate of blood in artery at axial position x (= A(x)u(x)) [m3/s] 
Qd: Flow rate of blood at downstream end of artery [m3/s] 
Qvi: Flow rate of blood into vein [m3/s] 
Qvo: Flow rate of blood out of vein [m3/s] 
Rex(x): Local Reynolds number in artery at axial position x (= u(x)(A(x)/w(x))/ν) 
Rm: Flow resistance in microvasculature [Pa·s/m3] 
Rv: Flow resistance in vein [Pa·s/m3] 
T: Tension of arterial wall in axial direction [N/m] 
t: Time [s] 
∆t: Time step for computation [s] 
u(x): Mean flow velocity of blood in artery at axial position x [m3/s] 
w(x): Width of artery at axial position x when its cross section is assumed to be rectangle 

[m] 
x: Axial position of artery from its upstream end [m] 
Y: Displacement of pressure sensor [m] 
y(x): Height of artery from its center at axial position x when its cross section is assumed 

to be rectangle [m] 
γ: Damping coefficient to the change in cross-sectional area of artery [Pa·s/m2] 
λ: Friction coefficient of pipe 
ν: Kinematic viscosity of blood [m2/s] 
ρ: Density of blood [kg/m3] 
φ: Tube law [Pa] 
φ0: Transmural pressure (= P – Pe) at A/A0 = 1 [Pa] 

2. Method 

In this section, measurement of pressure pulse waves by a pressure sensor and 
mathematical model to numerically reproduce the measurement are briefly explained. See 
Refs. (3) and (11) for the details. 

2.1 Measurement of Pressure Pulse Waves by Pressure Sensor 
Figure 1 shows the experimental setup for the measurement of pressure pulse waves in 

the radial artery at the wrist(11). The pressure sensor moves vertically by the screw to indent 
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the radial artery. The signal from the sensor was stored in a PC via a low-pass filter of 1 
kHz of the strain amplifier and an A/D converter. 

In the experiment, the pressure sensor was set at the position where pulsation was 
detected most clearly on the radial artery of a healthy 24 y.o. male volunteer, and 
measurement of the pulse waves was performed by the following steps, following the ethics 
regulation of Tohoku University and under the supervision of a medical doctor; 
1: Displacement of the pressure sensor Y is set to 0 mm at the point the sensor touches wrist 

of the volunteer: 
2: Press the sensor 0.5 mm down on the wrist and hold for 5 s to measure the pressure pulse 

waves. 
3: Repeat step #2 until Y reaches 10 mm or the volunteer feels pain. 

Figure 2 shows an example of the measured pressure pulse waves Po. Here, each 
indentation period is not exactly 5 s because the screw was rotated by hand for the safety of 
the volunteer. The mean value of Po in each indentation step correlates with physical 
characteristics of skin, subcutaneous tissue, blood vessel and mean blood pressure. 
Amplitude of the pulsation of Po correlates with the pulsation of the blood flow. The mean 
value of Po denoted as Poav in the following has a non-linear profile with respect to 
indentation having an inflection point. The amplitude denoted as ∆Po has the maximum 
around the inflection point of Poav. This profile matches the principle of the applanation 
tonometry(12). That is, pressure pulse waves in a cylindrical blood vessel that propagate 
outward are the balance of the inner pressure and radial projection of circumferential 
tension of the vessel wall. When the blood vessel is pressed between two flat surfaces, the 
circumferential tension can be ignored in the flattened area for the pulsatile inner pressure 
to directly propagate through that area. If the vessel is pressed more, blood flow itself 
ceases and the pulsation disappears. In this figure, pulsation of the blood flow is still 
observed in the range of t ≥ 100 s where Y reaches 10.0 mm. This implies that the blood 

        

Fig. 1  Experimental setup for measurement of pulse waves(11). 

 

  Fig. 2  Measured pressure waves Po during the indentation(11). 
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flow was not fully ceased by the pressure sensor. The data shown in Fig. 2 is used for the 
comparison with the numerical results in the following. 

2.2 Mathematical Model of Measurement of Pressure Pulse waves 
Figure 3 shows a schematic of the mathematical model. This model is based on the 

collapsible tube model derived by Hayashi et al.(13). In this research, we treated the series of 
subclavian artery, axillary artery, brachial artery and radial artery, neglecting the ulnar artery 
for the sake of simplicity. The arteries were assumed to be a tapered collapsible tube with a 
length of 700 mm. The inlet radius of the collapsible tube was 4.23 mm and the outlet 
radius was 1.74 mm, corresponding to those of the subclavian and radial arteries, 
respectively(14). The linear resistance of the microvasculature, and the venous capacitance 
and the resistance of the Windkessel model were connected to the downstream end of the 
artery. 

Blood was considered to be an incompressible Newtonian fluid with a density ρ of 
1,050 kg/m3 (15) and a kinematic viscosity ν of 3.8×10-6 m2/s (16). One-dimensional equation 
of momentum and continuity of blood in the artery are expressed as follows(13): 
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Here, friction coefficient λ of a pipe with a rough surface was 64/Rex for the laminar flow 
region and was approximated by 0.06 in the turbulent flow region for the sake of 
simplicity(17). 

To describe deformation of the collapsible tube, the initial cross section of the tapered 
collapsible tube was assumed to be a square whose cross-sectional area was same as that of 
the tube at all axial positions, i.e., both height y and width w of the tube were 7.50 mm at 
the inlet and 3.08 mm at the outlet. The width w was fixed along the collapsible tube and 
only the height y was changed to describe the deformation of the tube. Cross-sectional area 
A of the tube at arbitrary axial position x was expressed as A0 when transmural pressure 
P–Pe was 13.3 kPa(18). Force equilibrium acting on the tube wall in the normal direction to 
the wall was expressed as(13) 
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where T was approximated to be 130 N/m neglecting the variation of the tension, e.g. 107 
N/m for the brachial artery and 138 N/m for the radial artery, because the series of the 
arteries was modeled as a tapered collapsible tube in this research(11). 
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Fig. 3  Schematic of mathematical model. 
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The third term of the right-hand side of Eq. (4) is the tube law of the artery. The tube 
law φ is the relationship between transmural pressure P–Pe and the cross-sectional area A 
of the tube to represent stiffness of the blood vessel. The tube law introduced in the former 
researches on propagation and reflection of the pulse waves was based on the Laplace’s 
law(7)-(10). This model, as Olufsen mentioned(7), has a property that the area becomes infinite 
at a finite transmural pressure. In contrast, Shimizu and Ryumae(18) presented a tube law 
based on experimental data of canine carotid artery and femoral artery, which reproduces 
stiffening of the artery in the positive transmural pressure range. The authors introduced 
this model expressed as follows assuming human arteries have qualitatively the similar 
tendency as the canine arteries: 
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where the parameters are as follows: φ0 = 13.3 kPa, C1 = 0.1 and C2 = 0.05. The AC is the 
cross-sectional area at the connecting point of the two equations of Eq. (5), and C3, C4 and 
C5 were determined to smoothly connect the two equations and the first differentiation at A 
= AC. In this research, the gradient of φ at A/A0 = 1.0 was doubled from the original 
model(18) and the absolute value of transmural pressure at A/A0 = 0.0 was assumed to be 
twice of the mean blood pressure13.3 kPa (100 mmHg), considering the fact that Young’s 
moduli of the canine aorta and the human radial artery are 0.43 MPa and 0.8 MPa, 
respectively(14), (19), and the fact that blood could not be stopped by an external pressure 
more than three times the mean blood pressure as shown in Fig. 2. Consequently, the 
parameters were determined as n1 = 5, n2 = 6, Ac/A0 = 0.3, and φ = -26.6 kPa at A/A0 = 0. 

Y

Artery wall

Sensor

Tissue

Artery

dyav

y0

dy

8.0 mm

 

Fig. 4  Schematic of deformation of arterial wall and compression of subcutaneous tissue. 

 

Fig. 5  Waveform of supply pressure Ps. 
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Here, the Young’s modulus of human radial artery was compromised to be compared with 
that of canine aorta as the representative of canine arteries due to limitation of available 
data, though it should normally be compared with that of canine carotid artery or femoral 
artery with which the tube law was presented. The Young’s modulus correlates with the 
gradient of φ at A/A0 = 1.0, and is larger in peripheral arteries than central arteries(14). The 
determined parameters, however, were used as the reference values and contribution of the 
Young’s modulus to the pressure pulse waves was discussed in section 3.2. 

The forth term of the right-hand side of Eq. (4) is viscous resistance to the change in 
cross-sectional area of the artery by the surrounding tissue. The damping coefficient γ 
against the change in the cross-sectional area of the artery was obtained as 2.5×108 Pa·s/m2 
from experimental data of loss of elastic coefficient of the canine artery(20). However, since 
this value was so big for stable computation that we compromised by giving the largest 
coefficient γ = 2.5×107 Pa·s/m2 among the range of stable computation. The 
microvasculature was approximated by a linear resistance with the resistance coefficient Rm 
of 4.3×109 Pa·s/m3, and the venous system was approximated by the Windkessel model with 
the resistance coefficient Rv of 8.3×108 Pa·s/m3 and capacitance Cv of 1.95×10-9 m3/Pa(11). 

We also have to take into consideration the transfer characteristics of the subcutaneous 
tissue between the pressure sensor and the arterial vessel wall to reproduce the indentation 
experiment explained in section 2.1. The relationship between the compression of the tissue 
by the pressure sensor and vessel wall, and repulsion pressure of the tissue to artery Pe is 
given as 

2)( ave dyYaP += , (6) 
where a = 10.0×108 Pa/m2 is the coefficient of the subcutaneous tissue model(11), and dyav is 
the mean value of dy under the center of the sensor as shown in Fig. 4, where dy is 
displacement of the artery wall from its steady state y0. Here, both Y and dyav are positive in 
the direction of compression of the tissue, and pressure detected by the sensor Po equals the 
external pressure of the artery Pe according to the principle of reaction. 

Numerical simulation was performed by the 4th-order Runge-Kutta method with the 
time step of ∆t = 10-7 s to solve pulsatile blood flow and deformation of blood vessel 
simultaneously. Here, as for the supply pressure, the waveform shown in Fig. 5 was 
determined from the measured data at the brachial artery(21) as the mean value Psav = 13.3 
kPa (100 mmHg) and amplitude ∆Ps = 5.5 kPa (41.25 mmHg) (11). The artery was divided 
into 284 cells with non-uniform meshing so that the mesh under the pressure sensor was 
accumulated to 16 cells(11). 

3. Results and Discussion 

In the following sections, the indentation experiment introduced in section 2.1 was 
numerically reproduced with the mathematical model to investigate the contribution of the 
supply pressure of the blood and the tube law of the artery to the changes in mean value Poav 
and amplitude ∆Po of the pressure Po detected by the sensor with the indentation steps. 
Lastly to verify their contribution to the pressure pulse waves detected by the sensor, it was 
examined to reproduce the pressure pulse waves measured in the indentation experiment 
with the mathematical model by adjusting the parameters. 

3.1 Effect of Supply Pressure 
In this section, the contribution of the supply pressure Ps at the upstream end of the 

collapsible tube to Poav and ∆Po was examined numerically. For this purpose, mean value 
Psav and amplitude of pulsation ∆Ps of Ps were changed from the original values, Psav = 13.3 
kPa and ∆Ps = 5.5 kPa, keeping the waveform shown in Fig. 5. In the classification of blood 
pressure range put forwarded by the Japan Society of Hypertension, normal ranges of the 
systolic pressure, diastolic pressure and amplitude of the pulsation are less than 140 mmHg, 
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less than 90 mmHg, and 30 to 50 mmHg, respectively(22). Therefore, mean pressure of 13.3 
kPa (100 mmHg) and amplitude of 5.5 kPa (41.3 mmHg) is in the normal range, 
respectively. 

First, Psav was chosen from among 9.3, 13.3, 17.3 and 21.3 kPa while keeping the 
amplitude ∆Ps = 5.5 kPa. Figures 6(a) and 6(b) show the numerically obtained relationship 
between Y and Poav, and Y and ∆Po, respectively. In Fig. 6(a), Poav is higher for high Psav in 
the range Y < 8.0 mm. This is explained as follows: Figure 7 shows the relationship between 
Y and time-averaged displacement of the vessel wall under the center of the sensor dya. We 
can say from this figure that dya increases with the increase in the inner pressure Psav at a 
fixed Y to compress the subcutaneous tissue from inside the arm by the vessel, and thus, 

 

(a) Mean pressure Poav.     (b) Amplitude of pulsation ∆Po. 

Fig. 6  Numerical reproduction of indentation experiment with four mean supply pressure Psav. 

 

Fig. 7  Relationship between indentation Y and time-averaged displacement of vessel wall under the 
center of the sensor dya. 

(a) Mean pressure Poav.     (b) Amplitude of pulsation ∆Po. 

Fig. 8  Numerical reproduction of indentation experiment with four amplitude of supply pressure ∆Ps.
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Poav, which equals the time-averaged value of Pe in Eq. (6), increases with the increase in 
Psav since dyav increases with the increase in dya. On the contrary, the difference in Poav 
between high and low Psav becomes small in the range of Y ≥ 8.0 mm, and the lines in Fig. 
6(a) follow the tube law in negative φ. 

In Fig. 6(b), Y which gives the maximum ∆Po increases with the increase in Psav. This is 
explained as follows: Filled symbols in Fig. 7 correlate with those in Fig. 6(b). In Fig. 7, dya 
which gives the maximum ∆Po is almost constant and A/A0 was about 0.15 independent of 
Psav while dya at Y = 0 mm increases with Psav. Therefore, displacement of the sensor Y to 
press the vessel wall down to this point increases with the increase in Psav. Here, the peak 
value of ∆Po slightly decreases with the increase in Y. This implies that, though the precise 
mechanism is unknown, the peak value decreases as the subcutaneous tissue is compressed. 

Next, ∆Ps was chosen from among 3.5, 5.5, 7.5 and 9.5 kPa while keeping Psav = 13.3 
kPa. Figures 8(a) and 8(b) show the numerically obtained relationship between Y and Poav, 
and Y and ∆Po, respectively. In Fig. 8(a), Poav is not influenced by ∆Ps. This is because that, 
since φ correlates with the supply pressure Ps, mean value of A/A0 at each Y does not change 
with ∆Ps so far as Psav is fixed. On the contrary, as shown in Fig. 8(b), ∆Po increases with 
the increase in ∆Ps, and the value of ∆Po at each Y is nearly proportional to ∆Ps. This is 
because that amplitude of A/A0 becomes large with the increase in ∆Ps. 

Here, it is generally said to be low blood pressure when systolic blood pressure is less 
than 100 mmHg, and it is said to be high blood pressure when systolic and diastolic blood 
pressures are 140 mmHg or more and 90 mmHg or more, respectively(22). When Psav = 9.3 
kPa, systolic blood pressure at ∆Ps = 3.5 kPa is 87 mmHg and is determined to be in the low 
blood pressure. When Psav = 21.3 kPa, systolic and diastolic blood pressures at ∆Ps = 11.5 
kPa are 207 mmHg and 136 mmHg, respectively, and it is classified to be in the serious 
high blood pressure in which systolic and diastolic blood pressures are 180 mmHg or more 
and 110 mmHg or more, respectively. Therefore, the combination of Psav and ∆Ps covers 
from the low blood pressure to the high blood pressure. 

3.2 Effect of Tube Law of Artery 
Although the tube law is an important parameter which expresses the stiffness of the 

arterial vessel wall, there have been few attempts to observe it directly. Many research 
studies have been performed to observe the relationship between transmural pressure and 
the diameter of an artery to predict the physical characteristics of the vessel wall, and a 
non-dimensional parameter named the stiffness parameter β has been introduced(23). The 
relationship between inner pressure P and radius R of an artery under the physiological 
condition is expressed as 
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where Pb is an arbitrary inner pressure (generally Pb = 13.3 kPa), and Rb is the radius at P = 
Pb. Assuming that the cross section of the artery is a circle under the physiological 
conditions, we can obtain β from the tube law as 
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The stiffness parameter of human arteries is known to increase with aging or 
progression of diseases(23). In this section, the influence of the stiffness of the artery on the 
measured pressure pulse waves is examined numerically. For this purpose, a parameter of 
the tube law n1 was chosen from among 2, 3, 6 and 12, taking into consideration the 
stiffness parameter obtained with the carotid and femoral arteries of human(24). The 
correspondence of n1 and β of the above-mentioned n1 is shown in Table 1 together with 
that of the original n1 = 5. The n1 influences the gradient of the tube law at A/A0 = 1, the 
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artery in the physiological range of the transmural pressure, 10.5 kPa < φ < 16.0 kPa, 
becoming hard as n1 increases, as shown in Fig. 9. Here, the authors compromised by giving 
almost the same tube law in the range of φ < 0.0 kPa (A/A0 < 0.2) because they have neither 
measurement data of the tube law out of the range of blood pressure nor knowledge of the 
influence of such factors as aging or arteriosclerosis on the tube law. The gradient of the 
tube law is decreased as the increase in n1 in the positive range of small transmural pressure 
φ. This represents the cross section A decreases drastically with a small decrease in φ. 

Figures 10(a) and 10(b) show the numerically obtained relationship between Y and Poav, 
and Y and ∆Po, respectively, for the four variations of n1. Here it was confirmed that the 
displacement of the artery under the center of the pressure sensor |dya| was smaller for large 
n1 in the range of Y < 8 mm. Since dya is negative in the direction of indentation, measured 
pressure Po becomes larger for large n1 as understood from Eq. (6). Therefore, Poav is large 
for large n1, as shown in Fig. 10(a) in the range of Y < 8 mm, and thus, it can be said that a 
soft artery reduces the measured mean pressure. On the contrary, Poav in the range of Y ≥ 8 
mm is almost the same independent of n1 and follows the tube law in the negative φ region 
of A/A0 < 0.15. 

The profile of the relationship between Y and ∆Po in Fig. 10(b) drastically changes in 
the range of Y ≤ 5 mm, i.e., it is convex-up for small n1 but becomes convex-down with the 

Table 1  Correspondence table between parameter n1 of tube law and stiffness parameter β. 

n1 2 3 5 6 12 
β 4.0 5.9 9.7 11.6 23.0 

 

 

Fig. 9  Variation of tube law by n1. 

 

 

(a) Mean pressure Poav.     (b) Amplitude of pulsation ∆Po. 

Fig. 10  Numerical reproduction of indentation experiment with four tube laws. 
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increase in n1. This is because, as seen in Fig. 9, in the range of small Y, change in the 
cross-sectional area for a certain amplitude of φ is small for large n1 owing to difference in 
the gradient of φ around A/A0 = 1. This difference in the profile can be an index to predict 
the stiffness parameter. Here, the reason for the kink at Y = 7.5 mm is unknown. 

3.3 Reproduction of Experimental Data 
To verify the contribution of the parameters of the subcutaneous tissue model(11), the 

supply pressure and the tube law to the changes in Poav and ∆Po, numerical reproduction of 
the experimentally obtained pressure pulse waves shown in Fig. 2 was examined. The 
parameters determined to best fit the experimental result are listed in Table 2, and the 
resultant numerically obtained pressure pulse waves are shown in Fig. 11. The relationship 
between Y and Poav, and Y and ∆Po are shown in Fig. 12(a) and 12(b), respectively. Both 
Poav and ∆Po show better agreement to the experimental data than the former result(11). In 
Fig. 12(b), however, the discrepancy in ∆Po in the range of Y ≥ 7 mm is relatively larger 
than that in the range of Y < 7 mm. This is considered to be because pressure pulsation 
propagates backward to the collapsed radial artery via the ulnar artery and the palmar arch 
in addition to arbitrary determination of the tube law in the negative transmural pressure 
range. 

Table 2  Parameters which best fit the experimental data. 

a [Pa/m2] Psav [kPa] ∆Ps [kPa] n1 
11.0×108 8.3 4.5 8 

 

 

Fig. 11  Pressure pulse waves obtained by numerical simulation with the parameters shown in Table 2. 

 

(a) Mean pressure Poav.     (b) Amplitude of pulsation ∆Po. 

Fig. 12  Comparison of numerical result with experimental data. 
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4. Conclusions 

A simple mathematical model of one-dimensional blood flow in the artery of an arm 
and the subcutaneous tissue on the radial artery was developed, while in a previous study, 
an experimental setup to press a pressure sensor against the radial artery at the wrist was 
designed for the purpose of collecting scientific evidence for pulse diagnosis(11). An 
experiment to indent the radial artery in a stepwise manner by the pressure sensor was 
performed to measure the change in the pressure pulse waves with the indentation steps. 
The experiment was then numerically reproduced with a mathematical model, suggesting 
that the mathematical model has a potential to quantitatively reproduce the pulse diagnosis. 

In the present study, contributions of parameters of the supply pressure of blood and the 
tube law of the artery to the changes in the mean value and amplitude of the pressure pulse 
waves when the pressure sensor was pressed down on the radial artery were examined using 
the mathematical model. Obtained results summarized in terms of the displacement Y of the 
sensor are enumerated as follows: (1) The mean pressure increased with the increase in 
mean supply pressure. However, it followed the tube law in the negative transmural 
pressure range after the artery was nearly collapsed by the sensor. The Y which gave the 
maximum amplitude of the pulsation increased and the peak value slightly decreased with 
the increase in the mean supply pressure. (2) The Y which gave the maximum amplitude of 
the pulsation did not change, but the amplitude increased nearly in proportion to the 
amplitude of the supply pressure. (3) The profile of the amplitude of pulsation in the range 
of Y ≤ 5 mm drastically changed from convex-up to convex-down with the increase in n1 of 
the tube law. This change in the profile is a possible index to predict the stiffness parameter 
of the artery. 

It was examined to reproduce the pressure pulse waves measured in the indentation 
experiment with the mathematical model by adjusting parameters taking into consideration 
these results. It was suggested that pressure pulsation propagates backward to the collapsed 
radial artery via the ulnar artery and the palmar arch. Therefore, the authors are planning to 
extend the blood circulation system of an arm to take into consideration the blood perfusion 
through the ulnar artery. 
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