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Abstract 
The presence of residual stresses in bone tissue has been noted, and the authors 
have reported that there are residual stresses in bone tissue. The tensile residual 
stresses in the bone axial direction on the cortical surface of the bovine femoral 
diaphyses were measured by X-ray diffraction method with characteristic Mo-Kα 
X-rays. However, then the residual stresses inside the cortical bone could not be 
accurately determined. The study here used synchrotron white X-rays obtained 
from the BL28B2 beam line at SPring-8 and was able to measure the residual 
stresses in the bovine femoral diaphysis in depth. The measurement positions in the 
diaphysis specimen were at 1 mm intervals from the outer surface to the inner 
surface of the specimen in four parts of the diaphysis: anterior, posterior, lateral, 
and medial. The results showed that the residual stresses in the bone axial direction 
at the outer cortical surface were tensile and the stresses in the inner positions of 
the cortical bone were compressive. In the anterior part, the residual stress at the 
surface was 24.7 MPa. From 2 mm to 10 mm depths inside the diaphysis, 
compressive residual stresses were measured and the average of these stresses was 
-9.0 MPa. 
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1. Introduction 

Cortical bone has a hierarchical and composite structure composed of hydroxyapatite 
(HAp) and collagen matrix. The HAp has a hexagonal crystal structure, and X-ray 
diffraction can be used to measure the interplanar spacings of HAp crystals in cortical 
bone (1)-(4). When bone tissue deforms, the displacement of the lattice planes of the HAp 
crystals also changes (1), and the HAp strain can then be calculated by the deformation of 
the interplanar spacing from a reference stage (2)(3). 

Living tissue such as blood vessels is subject to residual stress (5), and the presence of 
residual stress in bone tissue has also been noted (6). The authors have proposed the sin2ψ 
method of X-ray diffraction as a method to measure the residual stress in bone tissue (7). In 
previous studies, the residual stresses at the outer cortical surface of the diaphysis of bovine 
femurs and rabbit limb bones were measured with characteristic Mo-Kα X-rays, and it was 
confirmed that there are tensile residual stresses in the bone axial direction (7)(8). However, 
the residual stress inside the cortical bone would not be measured by this previous method. 
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The X-rays generated by an X-ray tube in the previous study can only penetrate about 100 
μm into the specimen and the method is only effective to measure the outermost region of 
the bone. Synchrotron white X-rays form a highly collimated high-intensity X-ray beam 
that can pass through thick bone specimens like the femoral diaphysis. Some strain 
measurements of HAp crystals and collagen fibrils in bone tissue have been conducted with 
high-energy X-rays generated by a synchrotron radiation source (9)-(11). 

The aim of this study is to measure the residual stress inside diaphysis specimens using 
synchrotron white X-rays. In the experiments here, a bovine femoral diaphysis was used 
and the distribution of residual stress from the outer surface to the inner region of cortical 
bone was measured. 

 
 

2. Synchrotron Measurement Method 

As suggested in Fig. 1, the interplanar spacing d of HAp crystals is uniform at the 
non-strained state, and the interplanar spacing d varies with the direction under tensile 
loading. The angle of inclination ψ is defined as the angle between the radial direction of 
the diaphysis specimen and the diffracted lattice plane. When the cortical bone is stretched 
in the bone axial direction, the interplanar spacing in the lattice planes for the ψ = 90° 
direction is larger than that for the ψ = 0° direction. The relation between d and ψ is affected 
by the amount of the stress and the tissue stress can be estimated from the d–ψ relation. 

Fig. 2 shows the coordinate system employed here at each measurement position in the 
cortical bone. The x, y, and z-axes correspond to the bone axial, circumferential, and radial 
directions, and these axes are defined as the principal axes. Further, the study assumed that 
the diaphysis in the radial direction was not subject to residual stress. 

 
 
 
 

 

Fig. 1 Relationship between tissue stress σB and interplanar spacing d of HAp crystals. (a) 
Changes in the interplanar spacings d of HAp crystals oriented in different directions in the 
cortical bone under tensile loading. (b) Vector diagram of the interplanar spacing d of HAp 
crystals. The interplanar spacing of lattice planes oriented in the loading direction is the largest 
and that oriented normal to the loading direction is the smallest. The difference depends on the 
magnitude of the stress σB. 
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Fig. 2 Coordinate system at a measurement positio
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It is possible to measure the HAp strain εH
ψ for an angle of inclination ψ as shown in 

Fig. 2, and εH
ψ is described with εH

x and εH
z as in Eq. (5). 
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z = 0. Equation (5) can be expressed as Eq. (6) using Eq. (4). 
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where Kd is the stress constant. This allows the residual stress in the bone axial direction in 
cortical bone to be estimated from Eq. (8). 

In the current study, the interplanar spacings of the (002) plane of HAp crystal were 
measured to calculate the residual stress. In the previous study, the stress constant of the 
(211) plane was measured with characteristic Mo-Kα X-rays (λ = 0.07107 nm) as K2θ(211) = 
-660 MPa/deg (7). In the current study, the stress constant Kd (MPa/nm) of the (002) plane 
was calculated from that of the (211) plane considering the ratio of lattice strains of the 
(211) plane to the (002) plane during certain loading, as described in Eq. (9). 
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)211(0tan360
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In Eq. (9), d0(002) is the interplanar spacing of the (002) plane in the non-strained state and 
θ0(211) is the Bragg angle of the (211) plane with characteristic Mo-Kα X-rays in the 
non-strained state. Further, C indicates the ratio of lattice strains of the (211) plane to the 
(002) plane during certain loading, and was measured as C = 0.75 (1) with tensile tests in the 
previous study. 

 
 

3. Experiments 

A fresh femur was obtained from a 26-month-old bovine and frozen at -35 °C until 
further preparation. The study used the mid-diaphysis part of the cortical bone. The 
diaphysis specimen was 60 mm long in the bone axial direction and cut using a slow speed 
diamond wheel saw (SBT650: South Bay Technology Inc., USA), and the measurement 
position was the center of the femur and the diaphysis specimen respectively (Fig. 3). The 
bone marrow and the soft tissue around the surfaces were removed and the specimen was 
air dried at room temperature. To fix the specimen on the measurement instruments for the 
X-ray diffraction, one end of the specimen was bonded to an acrylic plate with epoxy resin. 
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than that in the inner positions. The distribution of interplanar spacings closely corresponds 
to the distribution of residual stresses. This suggests that the deviatoric HAp strain in the 
bone axial direction will correspond to the residual stress in the bone axial direction. This 
would suggest the conclusion that even when the study includes the radial component in the 
measured residual stress, this component may have little effect on the measured values. 

 
 

6. Conclusion 

In this study, the distribution of residual stresses in the bovine femoral diaphysis can be 
measured using synchrotron white X-ray diffraction. The residual stresses in the bone axial 
direction at the outer cortical surface were tensile and the stresses in the inner region of the 
cortical bone were compressive. In the anterior part, the residual stress at the surface was 
24.7 MPa. From 2 mm to 10 mm depths inside the diaphysis, compressive residual stresses 
were measured and the average of these stresses was -9.0 MPa. 
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