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Abstract 
Objective: Purpose of the paper is to present and validate a device for cartilage 
compression for assessment of MR parameters (T1, T2, ADC) in cartilage explants 
before, during and after compression operating with novel features. 
Design: This device fits into a BGA-12 micro-imaging gradient system capable of 
delivering 200mT/m. A 35 mm inner diameter resonator was used. The 
reproducibility and accuracy of cartilage compression possible with the device were 
evaluated. Sixteen human cartilage explants from knee joints were examined by 
delayed Gadolinium enhancement MRI of cartilage (dGEMRIC) for T1 mapping, 
T2 mapping and ADC measurements.  
Results: Cartilage compression studies demonstrated both low inter-observer (CV 
4.7 %) and intra-observer (CV 11.9 %) variation. No undesired movements were 
observed. The compressive piston could be moved with high accuracy (error ~ 
1.07 %). The waterproof chamber of the compression device allowed contrast 
enhanced T1 mapping without repositioning the cartilage samples. Preliminary 
results of MR parameters depending on compression are presented. 
Conclusions: In vitro MR cartilage compression studies are feasible with the 
custom-build device with high reproducibility and accuracy. Valuable information 
about biomechanical cartilage properties can be recorded using this device. 
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1. Introduction 

Magnetic resonance imaging (MRI) is a very useful modality for cartilage imaging [1]. 
It is frequently used for noninvasive diagnosis of cartilage diseases, such as osteoarthritis 
[2-4], articular cartilage injury patients and for monitoring of conservative and surgical 
cartilage therapies [5-7]. However, early diagnosis of cartilage lesions using MRI still poses 
a problem since morphological alteration of cartilage tissue represents a relatively late 
manifestation which is preceded by biochemical and biomechanical changes in the 
cartilage. In addition, to the visualization of morphological structure of articular cartilage 
the visualization of changes in cartilage tissue (healthy and/or diseased) exposed to a static 
(or dynamic) load can provide important information regarding cartilage function. 
Investigators have used MRI to evaluate mechanical properties by measuring deformation 
in response to an applied load [8-10]. Some MR-compatible devices have been built to 
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provide controlled loading of cartilage explants and intact joints [11-13]. Recent in vivo 
studies demonstrated the ability to measure changes in cartilage volume with mechanical 
function (i.e., exercise) [14,15]. Other investigators have observed changes of T2 after load 
in-vitro [16-18] and in-vivo [19]. The common problem while comparing pre- and 
post-compression states is to align corresponding pixels (or regions of interest). To date, 
only a limited number of studies evaluating T1 and apparent diffusion coefficient (ADC) 
[20] in a post-compression state have been conducted. To our knowledge a 
contrast-enhanced study for dGEMRIC under compression has not been reported so far. 

The purpose of our study was to introduce a specially designed compression device 
which can be used to reproducibly and accurately evaluate changes of MR parameters in 
cartilage explants under load. This device allowed us to keep samples in the solution and 
change the solution content “on the fly”, a requirement to perform dGEMRIC. The 
feasibility of the device and compositional techniques to be applied within the device was 
evaluated, and, additionally the preliminary results of MRI parameters comparison between 
pre- and post-compression states are presented. 

 
 

2. Materials and Methods 
 

Experiments were performed on a Bruker 3T Medspec whole-body scanner (Bruker, 
Ettlingen, Germany). A BGA 12 micro-imaging gradient system capable of delivering a 
200mT/m gradient, and 35 mm inner diameter resonator was used. The test equipment for 
micro-imaging of cartilage under compression consists of a micro-gradient (figure 3a), a 
coil holder (figure 3b) for fixing the coil, a custom built waterproof chamber for holding the 
sample (figure 3c), a further plastic chamber (figure 3f) and compression rod with a 
displacement scale (figure 3e). The micro-gradient system is actively shielded and 
water-cooled with an aperture diameter of 25 mm. In order to fasten the rig into the whole 
body 3T scanner two nylon screws fixed the rig to appropriate holes in the patient table. 

 
Fig. 1 Function diagram of compression device: I. Syringes used for liquid content swapping; II. Coil holder (fig 

3.b); III. Hoses connected to waterproof chamber; IV. Coil with 35mm inner diameter; V. Plastic chamber; VI. 

Cartilage sample - brighter area represents bone tissue, darker area represents cartilage tissue; VII. Compressive 

piston - there are more types with different contact areas, the one depicted has contact area of 3mm2; VIII. The 

body of the microgradient insert (fig. 3a); IX. Screw that produces compressive force with direction represented by 

the large left- arrow; X. 90 cm rod allows to perform compression out of the magnet; XI. Scale (fig. 3e) for exact 

displacement of compressive piston. 

 
The feasibility of the compression device was determined by means of several 

parameters. First, the accuracy of compression rod rotation was evaluated. Movement of 
compression piston depends on screw pitch. 360º rotations were repeated twenty-one times 
after each imaging with standard protocol (details below). Each 360º rotation produces axial 
displacement of 1.50 mm.  
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Absence of compression device related movements was validated. Chamber filled with 
PBS solution only was imaged in the way that piston head and chamber body are visible on 
the images.  Subsequently, distances between 1) piston axis and edge of image (left and 
right) and 2) chamber body and the edge of image (left and right) were acquired. We 
obtained 4 values (dL2, dL3, dR2 and dR3) as depicted on figure 1a. All values were 
measured in millimeters. After each acquisition compression was performed - in other 
words, piston head was displaced for 1.5 mm. This was repeated 7 times. Our aim was to 
validate that no undesired movements of any device parts appear after the compression 
process. Absolute standard deviation less than in-plane resolution (.234 mm in all 
measurements) was considered to be a sufficient confirmation of the device accuracy. Image 
reconstructions and distance measuring was performed with the help of ParaVision 
Software (Bruker, Ettlingen, Germany). 

 
Fig. 2 MR images used for validating of stability of the compression device. a) measuring of the accuracy of the 

displacement of compression piston, d1 is the measured distance between piston head surface and the bottom of the 

chamber (in millimeters); I - plastic chamber, II - PBS solution, III - compressive piston; b).d2 and d3 were used to 

show that no movements appear during the compression process; c) cartilage sample was used to prove accuracy of 

accomplishing 15% of cartilage thickness - observers were challenged to achieve expression (100 * d5/d4)% to be 

as close as possible to 15%. 

 
 Cartilage samples of human femoral condyle cartilage were obtained from 16 patients 

undergoing total knee joint replacement. At the time of surgery the cuts off were wrapped in 
gauze soaked in phosphate buffered saline (PBS) containing protease inhibitor and then 
frozen until required for testing. Subsequently, the specimens were thawed at room 
temperature and 10 x 10 mm blocks of cartilage-bone plugs were fashioned from the 
surgical femoral off cuts. These specimens were then inserted into the plastic specimen 
holder and inserted into the chamber which was filled with a solution of PBS with 
GdDTPA2- (Magnevist, Schering, Berlin, Germany) with a concentration of 1:500. Three 
independent observers performed compression of 15% of cartilage thickness. Each observer 
did it on the 6 different cartilage samples. Using data measured from three observers, we 
calculated the alpha coefficient and coefficient of variation for intra- and inter-observer 
variability of our measurements. An alpha coefficient value above 0.9 indicates excellent 
agreement among the measurements [21]. For statistical calculation SPSS statistical 
software (SPSS Inc, Chicago, IL) was used. For image acquisition a multi-slice multi-echo 
protocol was used with TR/TE 343 msec/15 msec. We acquired 10 slices of 1.5 mm 
thickness, with no intersection gap. Field of view was set to 30 x 30 mm. The imaging 
matrix was 128 x 96, reconstructed to 128 x 128 pixels images. Evaluation was performed 
on 512 x 512 pixels zoomed images.  
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Fig 3. a: Micro-gradient system BGA 12: I – body of a device, II – center mark, III – top fixing screw, IV – hoses 

for water cooling, V – supply cables. b: Coil holder – top view: I – discs to fit this part into a micro-gradient insert, 

II – mark for correct direction, III – connecting cylinder, IV – mark for correct position in scanner. c: Sample 

holder – top view: I, II – screw for generating compression movement, III – milled disc for fixing holder to coil 

holder, IV – waterproof chamber with cartilage sample, V – slender hoses. d: Sample holder – left view: 

compression of cartilage is accomplished by rotating screw in direction I, decompression in direction II. e: I – 

compression rod, II – scale (the smallest segment corresponds to 1/150 mm). f: Sample holder: I – plastic body, II 

– screws for cartilage fixing, III – screw holes for holder fixing, IV – piece of the cartilage. 

 
T1 mapping was realized by spin echo pulse sequence with inversion recovery, TI times 

were set to 15, 30, 60, 160, 400 and 2000 ms, for T2 mapping multi-echo multi-slice spin 
echo sequence with TE times 15, 30, 45, 60, 75 and 90 ms was used. ADCs were calculated 
from data from pulsed gradient spin echo (PGSE) with 6 different b-values (10.472, 220. 
627, 452.8, 724.5 and 957.7). Each of parameters was calculated by fitting on pixel-by-pixel 
basis to appropriate function, T1 [22], T2 [22] and ADC [23]. Fitting routines were written 
in IDL (Interactive Data Language, Research Systems, Inc.) using mpcurvefit routine (Craig 
B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770; 
craigm@lheamail.gsfc.nasa.gov). Region of interests (ROI) were set in appropriate place 
where the intender was in contact with cartilage surface. Measurement setup and the 
specificity of the device allowed choosing one ROI only for pre- and post-compression 
state. Kruskall-Wallis ANOVA test was used to assess statistical significance of the 
difference in MRI parameters before and during compression. 

 
3. Results 
 
Accuracy of compression screw 

Eighteen compression cycles were recorded with mean moving distance of 1.48 ± 0.03 
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mm. The mean difference from the expected distance (1.50 mm) was 1.07%. Measured 
values are summarized in the table 1. 

 
# d1 ∆ # d1 ∆ # d1 ∆ 

1 1.5 0.00 7 1.5 0.00 13 1.34 -0.16 

2 1.43 -0.07 8 1.6 0.10 14 1.51 0.01 

3 1.47 -0.03 9 1.47 -0.30 15 1.49 -0.01 

4 1.7 0.20 10 1.41 -0.09 16 1.46 0.04 

5 1.4 -0.10 11 1.55 0.05 17 1.5 0.00 

6 1.41 -0.09 12 1.47 -0.03 18 1.5 0.00 

Tab 1 Values that prove accuracy of compression piston displacement. Symbol # denotes measurement 

number, d1 denotes piston head displacement and ∆ is difference from expected value (1.50 mm). 

 
Stability of the compression device 

The relative distance between chamber and edge of the image was 3.48 ± 0.05 mm for 
left side (dL2) and 2.22 ± 0.05 mm for right side (dR2). In percentage representation, 
standard deviation is approximately 1.3% and 2.4%, respectively. Measured distance 
between axis of piston head and the edge of the image was 8.43 ± 0.03 (0.36%) mm for left 
side (dL3) and 7.31 ± 0.02 (0.26%) for right side (dR3). Values are summarized in the table 
2. 

measurement # 
dL2 

[mm] 

dR2 

[mm] 

dL3 

[mm] 

dR3 

[mm] 

1 3.4 2.17 8.44 7.32 

2 3.46 2.17 8.44 7.27 

3 3.52 2.29 8.44 7.32 

4 3.52 2.23 8.44 7.32 

5 3.52 2.29 8.44 7.32 

6 3.46 2.17 8.44 7.32 

7 3.46 2.23 8.36 7.32 

Average [mm] 3.477 2.221 8.429 7.313 

Std. Dev. [mm] 0.045 0.054 0.030 0.019 

Std. Dev. [%] 1.304 2.430 0.359 0.258 

Tab 2 Measured values according to fig. 2b. 

 

 T1 [ms] T2 [ms] 
ADC [mm2/s] × 

103 

pre-compression 173.13 (49.83) 27.70 (6.74) 1.04 (0.12) 

post-compression 159.51 (42.08) 23.84  (6.08) 1.14 (0.11) 

difference (in %) -7.68 -13.93 8.74 

p-value 0.232 <0.05 <0.05 

Tab 3 Values of MRI parameters before and during compression. Values in brackets are standard deviations. 

 
 

Inter- and intra-observer variability 
Mean cartilage thickness was 2.75 ± 0.78 mm. The precision of compression piston 

displacement from the three independent observers showed good intra- (mean CV 11.9%) 
and inter-observer agreement (mean CV 4.7%). The alpha coefficient for intra-observer 
variability was good (0.872) and for and inter-observer variability was excellent (0.955).  
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Changes in T1, T2 and ADC during compression 

Relaxation parameters T1 and T2 as well as ADC in pre- and post-compression states 
are shown in the Table 3. The results showed significant change in T2 (decrease) and ADC 
(increase). T1 decreased during compression, but the change was not statistically 
significant. 

 

Fig. 4 Quantitative changes of MRI parameters while applied load 

 
 
4. Conclusions 

 
The main function of cartilage is to provide hydrostatic pressurization and evently 

distribute the load to the subchondral bone [24]. The unique ultra-structure of articular 
cartilage grants it a distinct ability to bear loads and to withstand stresses occurring in 
synovial joints. Mechanical properties of cartilage under compression have been studied 
widely [2,25,26]. Attempts have been made to develop an MR-compatible device to provide 
controlled loading of cartilage explants and intact joints [13,27]. Importantly, studies of 
cartilage under load are necessary to improve our understanding of the biochemical and 
biomechanical properties of articular cartilage. In particular, in vivo biochemical MR 
imaging continues to gains more importance by the use of dGEMRIC [28-30], T2 mapping 
[31], T1rho [32,33] mapping and diffusion-weighted imaging [34]. To validate these 
techniques under load in vitro compression studies are necessary. 

In this study we reported a novel, custom built compression device for assessment of 
biomechanical properties of cartilage in vitro. One of the most important features of this 
device is its water-proof seal and the possibility to flush the specimen chamber in order to 
exchange the fluid, which allows dGEMRIC to be performed in vitro. Furthermore, 
multi-parametric MR of cartilage (dGEMRIC, T2, diffusion weighted imaging) can be 
performed without having to reposition the cartilage sample during examinations. The low 
standard deviations imply that the influence of movements of compression device and test 
rig during imaging is negligible. Furthermore, we have demonstrated that the compression 
piston can be moved accurately and reproducibly, since measured applied compression was 
1.48 ± 0.03mm and differed from the expected value (1.5mm) by 1.07%. The inter- and 
intra-observer variability was 11.9% and 4.7%, respectively.  

These results verified the accuracy and robustness of our compression device. No fluid 
leaks or movements of outer or inner parts were observed during the experiments.  

During the course of the experiments we noted some minor short comings of the 
system; firstly, unwanted air bubbles were sometimes seen within specimen chamber, 
typically immediately after filling with liquid. Fortunately the air bubbles could be easily 
eliminated with repeated flushing of the liquid. All the measurements were performed at 
12°C, which does not correspond to physiological temperature in vivo. This was necessary 
since the compression device is placed inside a micro-gradient system that must be cooled 
down. Thus, all parts of compression device are cooled down to temperature of cooling 
water. In the future, we plan to incorporate heating device in order to maintain the sample 
temperature as close to physiological body temperature as possible.  
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Preliminary results of the change of MRI parameters also proved the accuracy and 

robustness of the compression device. The significant decrease of T2 correlates to the 
collagen matrix deformation and is in the good agreement with previously published results, 
either ex-vivo [35] or in-vivo [17]. T1 is believed to be a marker of proteoglycans content. 
Although the total amount of proteoglycans content in the compressed area was not 
changed, the distribution of the proteoglycans over the volume was altered. Mean T1 
decreased; however, the decrease was not statistically significant. The mean value of ADC 
increased of 8.74%. To the contrary, previously published results of the biochemical based 
studies showed the decrease of diffusivity in the cartilage after applied load [36]. Improving 
the evaluation procedures and increasing the number of samples should validate our results. 

In conclusion, we have presented a novel compression device with unique properties 
including a watertight specimen chamber, the ability to exchange the bathing solution 
without moving any components; which is both accurate and reproducible. A particularly 
important application of the reported compression device is for the study of cartilage 
samples, including cartilage transplant samples, with different MR techniques with and 
without load in order to assess the biomechanical properties of different repair tissues 
compared to native cartilage. 
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