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Abstract 

The blood flow in a large artery is commonly analyzed by means of constitutive 
equations. However, it is not appropriate to use these equations for small arteries 
because of the heterogeneity of the blood. In this study, we use a bead-spring model 
for an erythrocyte to simulate a low-hematocrit blood flow in a small artery with a 
stenosis. The flow field is solved using Euler coordinates, whereas the motion of 
the erythrocyte is solved using Lagrangian coordinates (two-way coupling). The 
results show that the erythrocytes are considerably deformed around the stenosis 
and that the separated region downstream of the stenosis is weakened by the 
erythrocytes. 
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1. Introduction 

The blood flow in an artery has been widely investigated because the fluid dynamical 
factor plays an important role in the development of arterial diseases. In considering the 
non-Newtonian property of the blood, flow fields are commonly analyzed by means of 
constitutive equations(1-4). The Casson model(5) is often used as a constitutive equation for 
the blood; however, it cannot express the elasticity of the blood. Another disadvantage of 
the constitutive equations is that they are not appropriate for small arteries. In a small artery, 
the distribution of erythrocytes in the flow field is important, but the constitutive equations 
assume the homogeneity of the fluid. It is, therefore, hard to explain the basic phenomena of 
blood flow such as the Fahreaus-Lindqvist effect. To simulate the blood flow in a small 
artery, it is necessary to compute simultaneously both the erythrocyte motions and the flow 
field. 

The behavior of a single erythrocyte was simulated in detail by Pozrikidis(6-8). He 
performed computations for a capsule with a biconcave unstressed shape over an extended 
range of the dimensionless shear rate and for a broad range of the ratio of the internal to 
external fluid viscosities. The membrane used in his study is nearly incompressible and 
exhibits an elastic response to shearing and bending deformation. It requires, however, a 
high computational load to compute a practical blood flow, in which five million 
erythrocytes exist per 1 mm3. Thus, we think that simplifying the erythrocyte model is 
unavoidable, so that the particle stress tensor in the momentum equation of the blood can be 
calculated with a realistic computational load. 

There are some methods that can efficiently simulate a suspension of rigid particles. 
Ladd(9-11) was able to carry out Stokesian-dynamics simulations of suspensions with up to 
32,000 rigid spheres by a lattice Boltzmann method. Sangani and Mo(12) developed a fast 
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multipole method (FMM), and carried out Stokesian-dynamics simulations of suspensions 
with up to 8,000 rigid spheres. Zinchenko and Davis(13, 14) improved the standard boundary 
element method, and were able to simulate up to 200 deformable drops in a simple shear 
flow. Some of these methods may be applicable to a suspension of red blood cells, but this 
has not yet been examined because of the difficulty of dealing with the membrane 
mechanics. 

The authors tried to improve a standard Euler-Lagrangian method for a dispersed 
two-phase flow, and proposed a bead-spring cell model(15, 16), in which a bead expresses the 
viscous drag and a spring expresses the elasticity of the membrane. We showed that the 
model could express the rheological properties of blood, such as the shear-thinning property 
and the elasticity, and could be useful in solving a blood flow. In this research, a 
bead-spring model is used for simulating the blood flow in a small artery with a stenosis. 
We restrict ourselves to low-hematocrit blood in order to avoid ad hoc assumption for 
describing the interaction between cells. The effects of erythrocytes on the flow field and 
the stress field around the stenosis are discussed. 

2. Basic Equations and Numerical Methods 

2.1 Erythrocyte model 

Most blood cells consist of erythrocytes; therefore, the blood is assumed in this research 
to be a suspension of erythrocytes and plasma. An erythrocyte is modeled using six drag 
points and fifteen springs as shown in figure 1. This model is exactly the same as the one 
proposed by Ishikawa et al. (2003) (16), so only a brief explanation will be made here. The 
drag points express the fluid-dynamical drag force acting on the membrane of the 
erythrocyte, and the springs express the elasticity of the membrane. It is considered that 
these two forces dominate the stress tensor contribution of the erythrocyte. In this model, 
the following four points are assumed: (1) The drag force acting at the drag point is 
calculated from the drag coefficients using Stokes' law, (2) the inertia of the drag point is 
neglected, (3) the isotropic membrane is expressed by changing the equilibrium lengths of 
the springs inside the erythrocyte model and (4) a dilute suspension of erythrocytes and 
plasma is assumed, and interactions between erythrocyte models are neglected (although 
they do interact through the velocity variation in the continuum phase). If the number of 
drag points is increased, it is possible to imitate the biconcave shape of an actual 
erythrocyte. However, a large number of drag points requires a high computational load, 
which is not the purpose of our research. The bead-spring model is required to express the 
particle stress tensor generated by the erythrocyte, avoiding a high computational load, 
which was demonstrated in the former studies(15, 16). 

The major axis of the octahedron (see figure 1), l1, is set as 1.3D and the minor axis, l2, 
is set as one-third of l1, where D is the erythrocyte diameter. The equilibrium length of each 
spring is given so that the springs generate no force under the natural conditions shown in 
figure 1. The drag force acting at the drag point is calculated as the sum of the force acting 
at the drag point and one-sixth of the force acting at the center of gravity of the erythrocyte 
model by assuming Stokes' law. The drag coefficients at the drag point are given as Kn = Kh 
= 1.13D, and the drag coefficients at the center of gravity are given as Kn = 1.5D, Kh = 0, 
where subscripts n and h denote the major and minor axis directions, respectively. The total 
drag coefficients of the erythrocyte model are derived as follows; Kn = 8.28D, Kh = 6.78D, 
Ln = 1.91D3 and Lh = 1.06D3, where L is the drag coefficient against the rotation. These 
values are similar to the drag coefficients of an elliptic body (Kn = 8.28D, Kh = 6.78D, Ln = 
1.91D3, Lh = 1.38D3), for which the major axis is D and the minor axis is D/3. Therefore, 
the erythrocyte model generates a drag force similar to that of an actual erythrocyte. 

There are three springs inside the erythrocyte model in figure 1, and their lengths 
change with the deformation of the erythrocyte model. Since it was reported that an 
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erythrocyte showed tank-tread motion even under a small shear rate(17, 18), the membrane of 
the erythrocyte is considered to be isotropic. In the present model, the isotropic membrane 
is expressed by passively changing the equilibrium lengths of these inside springs. The three 
inside springs are called sp1, sp2 and sp3, respectively, in increasing order of shortness. A 
coefficient Csp is calculated from lsp1 and lsp2 as )/5.01,0max( 12 spspsp llC −= , where lsp1 and 

lsp2 are the lengths of sp1 and sp2, respectively. Then, the equilibrium lengths of sp1 and sp2 
are given as follows. 

210,2120,1 )1(,)1( lClCllClCl spspspspspsp +−=+−= . (1) 

Using this equation, the equilibrium lengths of sp1 and sp2 change smoothly with the 
deformation of the erythrocyte model. 

The normal unit vector of the erythrocyte model n is also calculated using Csp as 
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where n1 and n2 are the unit vectors of sp1 and sp2, respectively. Using this equation, the 
normal vector of the erythrocyte model also changes smoothly with the deformation of the 
erythrocyte model. The motion of the present model in a simple shear flow is discussed by 
Ishikawa et al. (2003) (16), and the model showed a smooth tank-treading motion. 
 
 
 
 
 
 
 
 
 
 

(a) schema of erythrocyte model       (b) imaginary appearance of model 
Fig.1  Bead-spring model of erythrocyte 

 

2.2 Basic equations 

Since in this research the blood is assumed to be a dilute suspension of erythrocytes and 
plasma, the interactions between erythrocyte models are neglected. The governing equation 
for a drag point i in an erythrocyte model is given as: 
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where r is the position vector and v is the velocity of a drag point, u is the velocity of the 
solvent fluid calculated by equation (4). µ is the viscosity, k is the spring constant, and 
subscript g denotes the center of gravity. The left side expresses the drag force, which is the 
sum of the force acting at the drag point and one-sixth of the force acting at the center of 
gravity of the model. The drag force is calculated from the drag coefficients by assuming 
Stokes' law. The right side of the equation expresses the spring force, where subscript j is 
the drag point connected with point i by the spring, and l0 is its equilibrium length. 

The coefficients 1.13 and 1.5 are given so that the erythrocyte model generates a drag 
force similar to that of an actual erythrocyte, as explained in section 2.1. The spring 
constant k is given as 5.0× 10-6 N/m. It is confirmed that the deformation of the erythrocyte 
model with these parameters corresponds well with experimental results by Bessis and 
Mohandas(19) (cf. Ishikawa etal., 2003 (16)). These coefficients also affect the stresslet, 
eventually the particle stress tensor given by equation (5). We also confirmed that the shear 
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thinning property of the present model is consistent with the former continuum model, such 
as Casson model(5). 

The governing equation for the plasma is given by 
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where ρ is the density, p is the pressure, ∆Vi is the volume of computational cell i for the 
flow field and ∆Ni is the number of drag points in ∆Vi. Cm,i is the weight function of drag 

point m in computational cell i, which satisfies ∑ =
all

i
imC 1,

. (The detailed form of Cm,i will 

be explicitly given in the next section.) The last term in equation (4) denotes the reaction 
from the erythrocyte models in ∆V. Thus the equation inside the parentheses [ ] is exactly 
the same as the left hand side of equation (3). By solving equations (3) and (4) 
simultaneously (two-way coupling), it is possible to simulate a blood flow without using a 
constitutive equation. The cell models weakly interact through the change in the velocity 
field given by (4). 

The particle stress tensor generated by the erythrocytes can be written as(15) 
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where Ve is the volume of the erythrocyte, F is the force acting on the spring, and Hct is the 
hematocrit. 

2.3 Numerical methods 

A low-hematocrit blood flow in a small artery with a stenosis is simulated. The 
computational region is 160 µm in height, 800 µm in length and 8 µm in width as shown in 
figure 2. Initially, thousands of erythrocyte models are randomly put into the flow field with 
random attitudes. Then, the motion of the erythrocyte models and the flow field are 
computed simultaneously. The flow field is assumed to be two-dimensional, on the other 
hand, the motion of the erythrocyte models is calculated three dimensionally. In this 
simulation, the time-averaged physical quantities in the suspension are discussed, so it is 
possible to treat the flow field as two-dimensional. If the instantaneous velocity disturbance 
is discussed, for instance, the flow field has to be treated three dimensionally. Equation (3) 
is solved by a fourth-order-accuracy Runge-Kutta scheme and equation (4) is solved by an 
implicit Euler scheme. After a certain period of simulation, the velocity distribution of the 
flow field converged. The computation is continued until this convergence is obtained. 

The accuracy of the present numerical method has been discussed in some of former 
studies. The particle stress tensor generated by the erythrocyte model in a simple shear flow 
is discussed in Ishikawa etal. (2001)(15), in which the particle stress tensor and the 
deformation of erythrocyte model agreed well with the analytical results and former 
experimental results. The elasticity of a suspension of erythrocyte model was discussed in 
Ishikawa etal. (2001)(20), in which the complex viscosity qualitatively agreed well with the 
former experimental results. Two way coupling of equations (3) and (4) were first applied to 
a Poiseuille flow between flat plats(21). The results showed that the velocity profile without 
erythrocyte model had numerical error less than 0.1%. In the present paper, the computation 
was carried out until the error in the continuity equation becomes smaller than 10-3 in the 
dimensionless form. 

The computational mesh used in this study is shown in figure 3. In order to satisfy the 
continuity equation accurately, we generate a fine mesh near the wall. The weight function 
in equation (4) is calculated as Cm,i = Ai /(16π), where Ai µm2 is the area of computational 
cell i in the x-y plane within the circle of 4 µm radius from drag point m. At the inlet, the 
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velocity distribution is given as a parabolic shape, and the erythrocyte model flows into the 
computational domain with random y- and z-positions and a random attitude. We put a cell 
model at the inlet when one cell flows away at the outlet: thus, the total number of cell 
models is constant in the computational domain. At the outlet, zero pressure is assumed, and 
the erythrocyte models flow away. On the wall, the drag point of the erythrocyte model is 
assumed to show nonelastic and frictionless collision, i.e., the drag point slip on the wall, 
the rebounding and the friction between the drag point and the wall are neglected. For 
erythrocyte models, periodic boundary conditions are assumed in the z-direction. 

The particle stress tensor is proportional to the volume fraction of particles in a dilute 
regime, and the next-order term is its square(22). Thus, the rheological contribution due to 
cell-cell interaction is about one-tenth of that due to a single cell if one uses a hematocrit of 
10% in the simulation. Throughout this study, we used the hematocrit of 10%. The diameter 
of the erythrocyte D, and the volume of the erythrocyte Ve are given as 8µm and 90µm3, 
respectively(23, 24). The viscosity and the density of plasma are given as 1.5× 10-3 Pa.s and 
1.03× 103 kg/m3, respectively. The spring constant of the erythrocyte model is given as 
5.0× 10-6 N/m. By considering the actual blood flow in a vessel with the diameter of 
160µm, we can assume that the Reynolds number (Re) is in the order on one. Thus, we used 
the parameter range Re = 1-5 in this study. 

 
 
 
 
 
 
 
 
 
 

Fig.2  Geometry of computational domain 
 
 
 
 
 
 
 
 

Fig.3  Computational mesh in x-y plane 
 

3. Results and Discussions 

3.1 Flow fields 

The numerical simulation of blood flows with Hct = 10% in a small artery with a stenosis 
is performed with Re = 1, 3 and 5, where Re is based on the height of the channel and the 
mean velocity at the inlet. The streamlines and erythrocyte models of Re = 1 and 5 cases are 
shown in figure 4. We see that the erythrocyte models are not deformed so much in the case 
of Re = 1, on the other hand, that with Re = 5 case are deformed considerably around the 
stenosis. This is because the erythrocyte models in Re = 5 case experience stronger viscous 
force from the bulk flow than those in the Re = 1 case. 

Figure 5 shows the shear stress and pressure distribution along the upper wall when Re = 
1. The results are compared with the Hct = 0% case, in which only the plasma phase is 
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solved without any erythrocyte models. It is found that the shear stress and pressure 
gradient slightly increase as Hct increases. This is because the apparent viscosity of blood 
increases with increasing Hct; thus, the pressure loss in the channel increases under the 
same flow rate conditions. Since the integration of wall shear stress should balance to the 
pressure decrease, by considering the balance of forces acting on the channel, the wall shear 
stress increases with increasing Hct. Such non-Newtonian properties of blood affect the 
flow field more apparently when viscous forces are dominant in the flow field, i.e., low Re 
flows. Figure 6 shows the effect of Re on the ratio of inlet pressure with Hct = 10% to that 
with 0%. It is found that the ratio of inlet pressure increases as Re decreases, which 
indicates that the effect of erythrocytes is more significant in small Re flows. 

Streamlines in the separated region downstream of the stenosis are shown in figure 7, in 
which the stream lines are drawn in the same interval. We see that the size and strength of 
the separated region decrease as Hct increases. This is because the erythrocytes increase the 
apparent viscosity in the separated region, and the vortex is weakened by the strong viscous 
forces. We draw a plot similar to that in figure 6, but in this case we show the size and 
strength of the separated region. The effects of Re on the ratios of vortex strength and 
separated length with Hct = 10% to those with Hct = 0% are shown in figure 8. It is found 
that the ratios of both vortex strength and separated length increase as Re decreases, which 
again indicates that the effect of erythrocytes is more significant in small Re flows. This 
conclusion is consistent with previous studies for a blood flow in a large artery obtained 
using the bi-viscosity model and the pseudo-Casson model(1, 2). 
 
 

 
(a) Re = 1 

 
(b) Re = 5 

Fig.4  Effect of Re on the flow fields and the deformation of erythrocyte models 
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(a) wall shear stress 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) pressure 
Fig.5  Effect of Hct on the wall shear stress and the pressure on the upper wall 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6  Effect of Re on the ratio of inlet pressure with Hct = 10% to that with 0% 
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(a) Hct = 0%                      (b) Hct = 10% 
Fig.7  Stream lines in a separated region with Hct = 0 and 10% (Re = 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8  Effect of Re on the ratio of vortex strength and separated length with Hct = 10% to 

those with Hct = 0% 
 
 

3.2 Stress fields 

A bead-spring erythrocyte model deforms in a simple shear flow, and the deformation 
showed a good agreement with experiments(15, 16). When the erythrocyte model flows 
through the stenosis, it experiences an extensional flow as well as a shear flow. Moreover, 
the flow fields around the erythrocyte model changes with time as it passes through the 
stenosis. In such a case, the elasticities of the fluids play an important role in the flow field. 
Ishikawa et al.(23) investigated the elastic properties of a suspension of bead-spring models, 
and showed that the model could consistently express the elasticity of dilute blood. 
Actually, the flow of visco-elastic fluids through a stenosis is a troublesome problem if one 
uses constitutive equations. The constitutive equations of visco-elastic fluids usually have a 
hyperbolic shape, so they are very difficult to solve numerically without artificial numerical 
diffusion. If one uses a bead-spring model, one can easily treat the visco-elastic property of 
fluids, which is an advantage of the present method. 

Figure 9 shows the distribution of the maximum value of lsp3 / lsp3,0 during the 
computation, where lsp3,0 is the equilibrium length of longest inner spring in the erythrocyte 
model. When an erythrocyte model experiences no induced flow, lsp3 / lsp3,0 = 1; whereas 
when the model is stretched, it becomes larger than unity. We see from the figure that the  
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(a) Re = 1 
 
 
 
 
 
 
 
 
 
 
 

(b) Re = 5 
Fig.9  Distribution of maximum value of lsp3 / lsp3,0 during computation 

 
 
 
 
 
 
 
 
 
 
 
 

(a) τxy [Pa] 
 
 
 
 
 
 
 
 
 
 
 

(b) τxx [Pa] 
Fig.10  Distribution of particle stress tensor due to erythrocyte models (Re = 5, Hct = 10%) 
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deformation increases as Re is increased. Because the shear rate and extensional rate 
increase as Re is increased, a large deformation appears around the stenosis, where a high 
shear rate is induced because of the jet flow at the constriction. We see in figure 9(b) that 
the deformation is larger upstream than downstream of the stenosis. This is because the 
extensional rate is lower downstream, where there is a separated region and the flow does 
not expand fully just after the stenosis. Since the deformation of erythrocytes is an 
important quantity in discussing the burst phenomena of a cell, we can say that this 
numerical method has an advantage compared with using constitutive equations. 

It is also important to discuss the particle stress tensor in order to understand the flow 
field of non-Newtonian fluids. Figure 10 shows the time-averaged xy and xx components of 
the particle stress tensor with Re = 5 and Hct = 10%. We see a large τxy at point a in figure 
10(a), and a small τxy at point b. This kind of stress field can be easily understood if one 
looks at the deformation of the erythrocyte models at each point. Figures 11(a) and (b) show 
the deformation of the erythrocyte models at points a and b, respectively. At point a, the 
model is stretched in the direction of y = x, so it generates a positive τxy. At point b, on the 
other hand, the model is stretched in the direction of y = -x, so it generates a negative τxy in 
this case. 

In figure 10(b), we see a large τxx at point c and a small τxx at point d. This can be 
explained by the deformation of the erythrocyte models at points c and d (see figures 11(c) 
and (d)). At point c, the model is stretched in the x direction, so it generates a strong first 
normal stress difference. At point d, on the other hand, the model is stretched in the 
y-direction, so it generates a negative first normal stress difference, but a positive second 
normal stress difference. Another advantage of the present numerical method is that the 
stress field can be easily understood by considering the deformation of the erythrocyte 
models. 
 
 
 
 
 
 
 
 
 
 
 

(a) at point a                        (b) at point b 
 
 
 
 
 
 
 
 
 
 
 

(c) at point c                        (d) at point d 
Fig.11  Behavior of erythrocyte models at points a, b, c and d. 
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4. Conclusions 

In this study, a bead-spring erythrocyte model is used to simulate a low-hematocrit blood 
flow through a small artery with a stenosis. It is found that the effects of erythrocytes are 
considerable in small Re flows, which are as follows: (a) the wall shear stress and the 
pressure gradient increase as Hct is increased, and (b) the strength of the separated vortex 
and the length of the separated region decrease as Hct is increased. We have also discussed 
the stress field due to the deformation of the erythrocyte models. The results show that the 
present model can express the shear thinning property and the elasticity of blood. 
Significant deformation of the erythrocyte models appears around the stenosis, and the 
deformations are slightly greater in the upstream side. Since the deformation of erythrocytes 
is an important quantity in discussing the burst phenomena of a cell, we can say that this 
numerical method has an advantage compared with using constitutive equations. Another 
advantage of the present numerical method is that the stress field can be easily understood 
by considering the deformation of the erythrocyte models. 
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