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Abstract 
The effects of hematocrit (Hct) on blood flow in microcirculation were investigated 
by computer simulation using a particle method.  Deformable red blood cells 
(RBCs) and blood plasma were modeled by assembly of discrete particles.  It was 
assumed that an RBC consisted of an elastic membrane and inner viscous fluid, and 
that plasma was viscous fluid.  The particles for the RBC membrane were 
connected with their neighboring membrane particles by stretch/compression and 
bending springs.  The motion of all the particles that was subjected to 
incompressible viscous flow was solved by the moving particle semi-implicit 
(MPS) method based on Navier-Stokes (NS) equations.  The forces induced by the 
springs to express the elastic RBC membrane were substituted into the NS 
equations as the external force, which enabled coupled analysis of elastic RBC 
motion and plasma fluid flow.  Two-dimensional simulations of blood flow 
between parallel plates were carried out for various Hct values.  As a result, it was 
shown that at higher Hct, RBCs were less deformed into a parachute shape during 
their downstream motion, indicating that mechanical interaction between RBCs 
restricted the RBC deformation.  Mechanical interaction between RBCs had a 
significant influence on RBC deformation and the velocity profile of plasma flow 
when the Hct value was more than 0.20～0.30.  Apparent blood flow resistance 
increased with Hct, corresponding to previously reported in vitro experimental 
results compiled to an empirical formula. 
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1. Introduction 

Blood is a suspension of elastic red blood cells (RBCs) in viscous plasma fluid (1)−(3).  
In microcirculation, the volumetric ratio of RBCs to whole blood, so called hematocrit 
(Hct), greatly affects the rheological properties of the blood (1), (2), (4).  Extensive in vitro 
experimental studies have been conducted to establish an empirical formula that relates 
blood flow resistance to Hct (1), (2), (4).  This phenomenon includes the mechanical factors of 
(1) the shape and deformation of an RBC and (2) mechanical interaction between RBCs and 
plasma.  Furthermore, these mechanical factors lead to (3) RBC to RBC interaction via 
plasma fluid.  Theoretical and computational approaches have been useful for 
understanding the role of these mechanical factors in blood flow phenomena (2), (5).  *Received 17 May, 2006 (No. 06-0026) 
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However, there is little investigation on the combined effects of these mechanical factors on 
blood flow depending on Hct because established numerical methods (usually with Euler 
grids) have not enabled the computation of these factors at the same time. 

Recently, the motions of multiple RBCs have been investigated by computer 
mechanical simulation to explain the mechanism of how the Hct determines the rheological 
properties of blood in microvasculature.  Sun and Munn (5) proposed the two-dimensional 
lattice Boltzmann method to simulate blood flow considering individual blood cells 
suspending in plasma.  They qualitatively reproduced the motions of multiple blood cells 
observed in experiments, such as the axial migration of RBCs and appearance of a plasma 
layer near the vascular wall, and suggested that the RBC behavior determines the resulting 
flow resistance that depends on Hct as observed in experiments.  However, they modeled 
RBCs as a rigid body and did not consider their deformabilities.  On the other hand, 
Boryczko et al. (6) simulated three-dimensional blood flow in capillary including multiple 
RBCs using a discrete particle model, and suggested that combined effects of Hct and RBC 
deformation play an important role in apparent blood flow properties.  However, they 
modeled an RBC as a solid elastic body, and the inner fluid of the RBC was ignored. 

As denoted above, recent advances in computational techniques combined with 
increasing computing power allow us to calculate the complicated mechanical interaction 
among blood cells suspending in plasma.  In particular, a particle method, which has been 
used to analyze fluid, solid and fluid-solid coupled mechanical problems (7), has begun to be 
applied to blood flow simulation (6), (8)−(12).  This method does not need mesh generation 
such as that used in the finite element method, and only uses the discrete particles as 
computing points that are traced in Lagrangian coordinates.  The motion of each particle is 
determined by its mechanical interaction with neighboring particles, which is modeled to 
express the analyzing object.  The method is advantageous in directly modeling each blood 
component (6), (8)−(12), such as a blood cell and plasma, using an assembly of discrete particles 
that are assigned the characteristic properties of the corresponding blood component.  In 
addition, the complex mechanical/biological interaction between blood components can be 
expressed in the blood flow simulation by taking into account only the interaction between 
these particles. 

The purpose of this study is to investigate the effects of Hct on blood flow properties on 
the blood cellular scale from the viewpoint of computational mechanics.  A particle 
method was used to simulate two-dimensional blood flow between parallel plates, which is 
a simplified flow model of microcirculation.  Blood was considered as a suspension of 
multiple RBCs, consisting of an elastic surface membrane and inner viscous fluid, in 
viscous fluid of blood plasma.  Parametric simulation studies on Hct clarified the 
relationships among Hct, RBC deformation and apparent blood flow resistance. 

2. Methods 

2.1  Particle method for blood flow simulation 
In the previous study (12), we proposed a particle method for blood flow simulation to 

investigate the motion of a single deformable RBC interacting with viscous plasma fluid.  
In this study, this method was extended to include multiple RBCs.  The simulation 
procedures (1)−(4) are as follows, which are schematically illustrated in Fig. 1.  The 
following equations are written for a two-dimensional problem with unit length in the 
thickness dimension. 
(1) The blood region was discretized by particles that are assumed to have the 

characteristics of RBCs and plasma, as shown in Fig. 2.  It was assumed that an RBC part 
consists of a surface membrane and inner fluid particles.  Each particle i has physical 
quantities such as the position ri , velocity ui , pressure pi , and constant density ρ. 

(2) A spring network model (13) was applied to RBC membrane particles to express the 



 

 

Journal of  Biomechanical 
Science and Engineering  

Vol. 1, No. 1, 2006

161 

elastic behavior of deformable RBCs, in which the membrane particles were connected 
with the neighboring membrane particles by springs for stretch/compression L and 
bending B, as shown in Fig. 2.  The elastic energy stored in the stretch/compression 
spring due to the change in the length l from its reference l0 was expressed as 

∑
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For bending, the elastic energy can be expressed as a function of the angle θ between two 
neighboring stretch/compression spring elements.  Here, to avoid the folding of spring 
elements, we determined the elastic energy for bending as 

∑
=







=

N

I

Ib
b

kE
1

2

2
tan

2
θ .      (2) 

In Eqs. (1) and (2), I is a spring element, N is the total number of spring elements, and kl 
and kb are spring constants for changes in length and bending angle, respectively.  Using 
total elastic spring energy of the RBC membrane, 

bl EEE += ,       (3) 

the elastic spring force acting on the membrane particle i was obtained on the basis of the 
principle of virtual work as 
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This force was calculated from position ri according to the results of vector analysis. 
(3) Assuming incompressible viscous flow, the motion of all the particles was determined 

under a given boundary condition using the moving particle semi-implicit (MPS)  
method (14), (15).  In the MPS method, particle motion is modeled on the basis of the 
equation of continuity and the Navier-Stokes (NS) equations with a semi-implicit 
time-marching algorithm.  The gradient vectors and Laplacian of the scalar quantity φi 
for particle i, which appear in the NS equations, are expressed by considering the 
interaction to the neighboring particles j as 
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Fig. 1  Algorithm of computer 
simulation of blood flow  
using particle method. 

Fig. 2  Discretization of RBCs and plasma 
using particles.  Particle motion was 

determined on the basis of NS equations using 
the MPS method.  Particles for the RBC 

membrane were connected by springs to express 
the membrane's elastic behavior. 
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and 
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respectively (15).  In these equations, w(|rj − ri|) is a kernel function that monotonically 
decreases with the distance |rj − ri| between two particles i and j, d is the number of space 
dimensions, n0 is the objective value of the number density of particles, and λ is the 
constant that expresses the increase in the statistical diffusion of the distribution of 
physical quantities (15).  With respect to RBC membrane particles, the elastic spring force 
described in Eq. (4) was substituted to the NS equations as the external force term and 
explicitly solved, which enabled us to perform a coupled analysis of viscous fluid 
(plasma and inner fluid of RBCs) and an elastic membrane (RBC membrane).  Thus, for 
a membrane particle i a discrete form of the NS equations can be written as 

i
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ii
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m
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Dt
D Fuu 11 2 +∇+∇−=
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,    (7) 

where mi is the representative mass of particle i and can be regarded as constant ρd0
2 with 

d0 being the mean distance between two neighboring particles.  Equation (7) assumes 
that membrane particle i can be modeled as an elastic thin membrane surrounded with the 
fluid in a volume d0

2. 
(4) The procedures (2)−(3) were repeated to obtain the change in blood flow with time. 

There are several methods of expressing the elasticity of RBCs in blood flow simulation 
with a particle method.  Boryczko et al. (6) connected all the particles of the RBC part, 
including both the membrane and inner fluid.  Therefore, the inner fluid of an RBC was 
modeled as an elastic solid but not as a fluid.  In another approach, an elastic membrane can 
be expressed by at least a few layers of elastic particles.  However, this method would need 
an extensive number of particles to discretize the entire simulation region.  In this study, the 
particles of an RBC membrane were modeled by an assembly of particles in one layer and 
they were explicitly connected by stretch/compression and bending springs.  This gives a 
practical way to simulate the large deformation of RBCs considering the mechanical 
properties of both the elastic membrane and inner fluid of an RBC. 

2.2  Two-dimensional model of blood flow between parallel plates 
A two-dimensional simulation model was constructed for blood flow between parallel 

plates, as shown in Fig. 3.  The model consisted of RBCs, plasma and rigid plates.  The 
length of the flow channel L and the distance between the plates D were 90.0 µm and 9.0 
µm, respectively.  Biconcave RBCs were arranged at equal distances dRBC apart, and their 
long axes were set perpendicular to the flow direction.  The biconcave RBC shape was 
obtained as the final state of the shape change simulation based on the spring network 
model (13), the details of which are described in the Appendix.  The blood flow models 
were constructed for various Hct values from 0.10 to 0.49 by adjusting the distance dRBC 
between RBCs from 22.0 µm to 4.5µm. 

As a boundary condition, a constant and uniform velocity u0 = 1.1× 10−2 m/s was 

 
Fig. 3  Two-dimensional model of blood flow between parallel plates.  Biconcave 

RBCs were placed with various distances dRBC to adjust Hct values from 0.10 to 0.49. 
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applied to the inlet, where the Reynolds number with respect to the plate separation distance 
D was 0.10.  Inflow of RBCs was intermittent, and the interval of RBC inflow was 
determined from the Hct value.  A zero-pressure condition was applied to the outlet.  A 
nonslip condition was assumed between the plasma and the RBC, and between the plasma 
and the plates.  The viscosity and density were 1.0 × 10−3 Pa s⋅  and 1.0 × 103 kg/m3, 
respectively, set to be the same as those of water.  The mean distance between two 
neighboring discrete particles was set to 0.25 µm, and thus the simulation area contained 
approximately 15000 particles.  The spring constants of the RBC membrane were set as  
kl = 5.0× 10−8 N m⋅  in Eq. (1) for stretch/compression, and kb = 5.0× 10−10 N m⋅  in Eq. (2) 
for bending (see the Appendix for spring constant values).  The reference length of the 
stretch spring was l0 = 0.25 µm , the same as the mean distance between two neighboring 
particles. 

3. Results and Discussion 

3.1 RBC deformation and movement 
The dynamical behavior of elastic RBCs in flowing blood between parallel plates was 

investigated by computer simulation.  Figure 4 shows the characteristic movement and 
deformation of RBCs in blood flow in the case of Hct = 0.49.  The simulation time t is 
normalized by the time T0 = L/u0 .  The RBCs moved downstream in the flowing plasma at 
a constant velocity.  At the onset of the flow (t/T0 = 0 and 0.10), the RBCs maintained their 
concave shape at the upstream and were deformed into a convex shape at the downstream, 
similar to the parachute shape observed in experiments (2).  From t/T0 = 0.30 to 0.60, the 
RBCs were kept deformed into a parachute shape, and the blood flow reached a steady state. 

Figure 5 shows the mechanical behavior of RBCs in blood flow at time t/T0 = 1.0 for 
various Hct values from 0.10 to 0.49.  This parametric study on Hct demonstrated that at 
higher Hct, RBCs were less deformed.  The degree of deformation of RBCs was quantified 
by a deformation index ε = |(h − h0)/h0|, where h and h0 are the projection length of an RBC 
against the cross section of the flow channel and its initial value, respectively, as shown in 
Fig. 6.  This figure shows the time course of the change in the mean value of the 
deformation index, εM, in the middle part of the flow channel with a length of L/3 indicated 
by the dotted box in Fig. 5.  Deformation index εM monotonically increased for all the 

 
Fig. 4  Simulation results of time course of change in RBC behavior in blood flow in 

the case of Hct = 0.49.  The open-circle marker inside an RBC indicates  
the same RBC at a different time. 

 



 

 

Journal of  Biomechanical 
Science and Engineering  

Vol. 1, No. 1, 2006

164 

values of Hct, and remained constant from time t/T0 = 1.0 to 3.0, although the value was 
fluctuated due to the numerical instability of the particle method and the intermittent inflow 
condition of RBCs.  Figure 7 shows the mean value of the deformation index over the time 
from t/T0 = 1.0 to 3.0, Mε , as a function of Hct.  Average deformation index Mε  
remained constant when Hct was smaller than 0.20, and monotonically decreased with 
increasing Hct.  The deformation index Mε  for Hct = 0.49 was smaller by 37% than Hct 
= 0.10.  The result agrees with the suppressing effects of Hct on RBC deformation 
observed in in vitro experiments (16). 

Previous experimental work suggests that high Hct in tubes greater than 7 µm can cause 
transition of RBC flow from single-file with parachute shapes to multi-file with slipper 
shapes (2).  At high Hct in our simulations multi-file flow was not predicted.  This could be 
because the initial RBC arrangement in our simulation was set to straight single-file.  The 
mulit-file flow observed experimentally could be explained by an initial random 

Flow

Hct = 0.49

Hct = 0.40

Hct = 0.30

Hct = 0.20

Hct = 0.10

0 [Pa]150Inlet (u = u0) Outlet

 
Fig. 5  RBC behavior in blood flow at normalized time t/T0 = 1.0 for various Hct values 
from 0.10 to 0.49.  The middle part of the flow channel with a length of 3/L indicated by 

a dotted box is used to evaluate apparent flow properties in Figs. 6, 7, 11 and 12. 
 

Fig. 6  Change in deformation index of 
RBCs in middle part of flow channel for 

various Hct values. 
 

Fig. 7  Mean value of deformation index 
over time from time t/T0 = 1.0 to 3.0 as 

function of Hct. 
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arrangement.  Thus future work is necessary to test the effects of initial RBC arrangement 
and the causes of single- to mulit-flow transitions. 

3.2 Mechanical interaction among RBCs and plasma 
Figure 8 shows the fluid force acting on an RBC membrane in the cases of Hct = 0.10, 

0.30 and 0.49.  Arrows on RBCs shown in Fig. 8 illustrate the fluid force vectors per the 
unit length on the membrane, RBC

Fluidf [N/m], that were calculated from the viscous and 
pressure force terms in NS equations.  The force RBC

Fluidf  is normalized by the 
stretch/compression spring constant kl and the reference length of the membrane element, l0, 
introduced into the elastic RBC model as ll kllkl /)//( 2

0
RBC
Fluid00

RBC
Fluid ff = .  The force vectors 

were tangential to the RBC membrane in the vicinity of the parallel walls, as shown by 
closed circles in Fig. 8.  This indicates that the viscous drag force was generated by the 
difference in velocity between the fixed parallel walls and the RBC.  Approaching the 
central region of the flow channel, force vectors became normal to the RBC membrane, as 
shown by closed squares in Fig. 8.  The normal force vectors indicate that the pressure 
force is dominant in the fluid force on the RBC membrane.  Figure 9 shows the magnitude 
of the fluid force, lklF /2

0
RBC

Fluid , acting on the RBC membrane as a function of Hct.  

 

Fig. 9  Magnitude of fluid force, lklF /2
0

RBC
Fluid , acting on RBC membrane as function of 

Hct.  The definition of RBC
FluidF  is explained in Sec. 3.2.  The magnitude of the force  

lklF /2
0

RBC
Fluid  is illustrated for pressure force, viscous force, and total fluid force  

(sum of pressure and viscous forces). 
 

 

Fig. 8  Fluid force 0
RBC
Fluidlf  acting on RBC membrane for Hct values of 0.10, 0.30 and 

0.49.  The force is normalized by stretch/compression spring constant kl and the 
reference length, l0, of the stretch spring as lkl /2

0
RBC
Fluidf .  The length of an arrow 

indicates the magnitude of the normalized force. 
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RBC
FluidF [N/m] was defined as 
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dl
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FluidRBC
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where la [m] is the total peripheral length of the RBC membrane.  The magnitude of the 
total fluid force (sum of pressure and viscous forces) increased with decreasing Hct.  This 
was due to an increase in pressure force with decreasing Hct, whereas viscous force did not 
change with Hct, as shown in Fig. 9.  The total fluid force remained constant when Hct 
was smaller than around 0.20. 

The dependence of the fluid force acting on the RBC membrane on Hct was associated 
with fluid flow.  Figure 10 shows the velocity vectors of the flow of plasma and the inner 
fluid of an RBC (left) in the cases of Hct = 0.10, 0.30 and 0.49, and their components on the 
axial direction of the flow channel as a function of y coordinate, which is set perpendicular 
to the axial direction (right).  This graph demonstrates that at lower Hct, the axial velocity 
of plasma was spatially more distributed in the central region of the flow channel.  
Comparing the distribution of plasma flow around an RBC (Fig. 10) and the fluid force 
acting on the RBC (Fig. 8), it was suggested that the velocity distribution of plasma flow 
caused the force distribution acting on the RBC membrane, and that this fluid force 
distribution enhanced RBC deformation into a parachute shape.  The velocity profile of the 
inner fluid of the RBC was flat, demonstrating that the velocity of the inner fluid was not 
spatially distributed and was the same as that of the RBC membrane because the inner fluid 
flow was restricted by its surrounding RBC membrane.  In the high-Hct cases, the velocity 
profile of plasma was flat because the plasma fluid was packed in between the neighboring 
RBCs and its flow was restricted, similar to the mechanism of the restriction of the RBC 
inner fluid flow by the RBC membrane.  On the other hand, the flat velocity profile did not 
generate the distribution of the fluid force acting on the RBC membrane, resulting in 
restriction of RBC deformation.  This indicates that both the effects of plasma on RBCs 
and vice versa worked to restrict RBC deformation in high-Hct cases. 

Both the degree of RBC deformation (Fig. 7) and the magnitude of the fluid force 
acting on RBC membrane (Fig. 9) as a function of Hct did not change when Hct values 
were less than 0.20～0.30, in which case the distance between RBCs was more than 7.0～
11.0.  When the Hct values were less than 0.20～0.30, the plasma flow profiles obtained 
by simulation were the same as the flow profiles of plasma without RBCs when the distance 
between plasma and RBCs ranged from 2/D (= 4.5 µm) to D (= 9.0 µm).  These results 
demonstrate that mechanical interaction between RBCs has a significant influence on RBC 
deformation and plasma flow properties when the Hct values are more than 0.20～0.30, in 
which the distance between RBCs is within the size of an RBC. 

3.3 Blood flow resistance 
Figure 11 shows the time course of the change in apparent pressure drop ∆p in the 

middle part of the flow channel.  In this graph, pressure drop ∆p is normalized by the 
pressure drop (∆p)0 of plasma flow without RBCs.  Pressure drop ( )0pp ∆∆  increased at 
the onset of flow, and gradually decreased until time t/T0 = 1.0.  After that, pressure drop 

( )0pp ∆∆  converged to a constant value.  The solid line in Fig. 12 shows the mean value 
of the pressure drop over the time from t/T0 = 1.0 to 3.0, ( )0pp ∆∆ , as a function of Hct.  
Average pressure drop ( )0pp ∆∆  monotonically increased from 1.02 to 1.36 with 
increasing Hct from 0.10 to 0.49.  This result is consistent with previously reported results 
of in vitro experiments compiled to an empirical formula (1), (4), as shown by a dotted line, in 
which the difference in pressure drop ( )0pp ∆∆  between the simulation and in vitro 
experiments was less than 2.2%. 

The blood flow resistance obtained by simulation as a function of Hct qualitatively 
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agrees with in vitro experimental results using a micro flow channel (4).  The difference of 
2.2% between the simulation and experiments might indicate the quantitative correspondence 
between simulation and experiments.  However, the simulation result is two dimensional, 
whereas the experimental results are three dimensional.  In addition, model parameters 
introduced in RBCs, such as membrane spring constants and the viscosity of inner fluid, 
were determined to express both the RBC deformation into parachute shape and the apparent 
flow resistance expressed by an empirical formula.  Therefore, it is an important future 
work to compare the results of a three-dimensional simulation with experimental results, 

 
Fig. 10  Velocity vectors of plasma around RBC (left) and their components in axial 

direction of flow channel (right) for Hct values of 0.10, 0.30 and 0.49.  The magnitude 
of velocity is normalized by the inlet velocity value u0 on the right.  The focus of 

interest is the square region with D = 9.0 µm on each side in the middle part of the flow 
channel. 
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which will provide us a quantitative evaluation of the relationships of mechanical behaviors 
in microcirculation between blood components and the resulting rheology of blood. 

4. Conclusions 

A two-dimensional computer simulation of blood flow was carried out using a particle 
method to consider the mechanical behaviors of deformable multiple RBCs.  Simulation 
results demonstrated a suppressing effect of Hct on RBC deformation into a parachute 
shape.  This was associated with the fluid force acting on an RBC, which was determined 
by the mechanical interaction among RBCs and plasma.  The mechanical interaction 
determined RBC deformation and plasma flow properties, determining blood flow 
resistance as a function of Hct. 
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Appendix 

The shape change of a swollen RBC was simulated on the basis of the spring network 
model (13), as shown in Fig. 13.  As an initial state, the RBC was assumed to have a circular 
shape with a diameter of Φ = 6.0 µm.  The circular RBC was discretized into N = 76 RBC 
membrane particles that were connected by stretch/compression and bending springs with 
the neighboring particles, as denoted in Sec. 2.1.  The RBC membrane particles moved so 
that the total elastic energy became minimum by solving a set of motion equations for each 
particle, 

iiim Frr =+ γ ,       (9) 
by the finite difference method (FDM).  Here, a dot )

.
(  denotes the time derivative, and 

m and γ are the representative mass and viscosity of the RBC, respectively.  Force Fi due 

Fig. 11  Change in apparent pressure drop 
in middle part of flow channel for various 

Hct values.  Pressure drop ∆p in the 
longitudinal axis is normalized by pressure 

drop (∆p)0 in the case of plasma flow 
without RBCs. 

 

 

Fig. 12  Mean value of pressure drop over 
time from t/T0 = 1.0 to 3.0 as function of Hct.  
Solid and dotted lines show the results of the 
simulation and in vitro experiments complied 

to an empirical formula (1), (4), respectively. 
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to total elastic spring energy E is expressed as 
( )

i

s
i

E
r

F
∂

Γ∂ +
−= ,      (10) 

instead of Eq. (4) in order to introduce an areal constraint with penalty function Γs.  This 
penalty function was defined as 
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s sk

s
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where s and s0 are the RBC area and its reference value, respectively.  The spring constants 
in Eqs. (1) and (2) were set to have the same values as those used in Sec. 2.3.  The other 
parameters were set as follows; the mass m = 2.0× 10−4 µg and viscosity γ = 1.0× 10−2 
N s⋅ /m in Eq. (9), and the penalty coefficient ks = 1.0× 10−5 N m⋅  in Eq. (11).  As a result 
of shape change simulation in the case of volumetric reduction to 70% of the initial circular 
shape (that is, reference volume s0 was set to 70% of the initial shape), a biconcave RBC 
was obtained at the final state.  The size of the biconcave RBC was h0 = 8.0 µm in axial 
length and w0 = 2.6 µm in the thickness of the concave part.  This biconcave shape 
corresponds to that observed in a normal RBC. 

Spring constants kl and kb in Eqs. (1) and (2) determine the elastic properties of RBC 
membrane in the blood flow simulation.  The bending constant, kb, can be reduced to a 
bending stiffness coefficient B of the membrane by comparing bending elastic energy Eb in 
Eq. (2) with the analytical solution Eb

’ calculated by coefficient B and membrane curvature 
C (13).  Assuming a two-dimensional circular shape of RBC membrane as shown in the left 
side of Fig. 13, the bending energy Eb

’ is calculated by line integrals along the 
circumference L = πφ with the constant curvature C = 1/(φ /2), 
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Based on previous reported constant B values (B = 0.4～3.0× 10−19 N m⋅ )(17), kb = 0.6～
4.8× 10−12 N m⋅ .  In a preliminary calculation, however, these values of kb resulted in 
excessive deformation of RBC in a two-dimensional blood flow simulation.  This is due to 
the fact that a membrane structure in two-dimensional problem is more easily deformed than 
that with three-dimensional shape.  Therefore, the constant kb was set approximately a 
hundredfold in this study to compensate for the decreased stiffness of the membrane in 
two-dimensional problem and to express realistic RBC deformation.  In our two-dimensional 
simulations this adjustment resulted in RBC deformation and pressure drop comparable to real 
three-dimensional cases.  Stretch/compression constant kl in two-dimensional problem 
represents both planar shear deformation and incompressibility of membrane in 
three-dimensional one.  The value of the constant kl in this study was chosen to ensure that 
RBCs in no flow state have a biconcave shape which is determined by the ratio of kl to kb. 

 
Fig. 13  Shape change simulation of swollen RBC due to volumetric reduction using 
spring network model based on minimum energy principle.  An initial circular RBC 

changed to have a biconcave shape at the final state of the simulation. 
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Nomenclature for Normalized Values 

Hematocrit values:     Hct 
Reynolds number:     Re = u0 D/ν 
Normalized simulation time:    t/T0  (T0 = L/u0) 
Deformation index:     ε = |(h − h0)/h0| 
Time average of deformation index:   Mε  
Normalized fluid force acting on RBC membrane:  lkl /2

0
RBC
Fluidf  

Magnitude of normalized fluid force acting on RBC: lklF /2
0

RBC
Fluid  

Normalized pressure drop:    ( )0pp ∆∆  
Time average of normalized pressure drop:  ( )0pp ∆∆  
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