Journal of Biomechanical Vol1, No.1, 2006

Science and
Engineering

o ———

*Received 10 Aug., 2006 (No. R-06-B002)
[DOI: 10.1299/jbse.1.51]

[ Review Paper]

From Passive Motion of Capsules to Active
Motion of Cells*

D. BARTHES-BIESEL**, T. YAMAGUCHI***, T. ISHIKAWA** and E. LAC**
** Génie Biologique, Université de Technologie Compiegne
UMR CNRS 6600 Biomécanique et Génie Biomédical, BP 20529 - 60205 Compiégne cedex, France
E-mail: dbb@utc.fr
“** Dept. Bioeng. Robotics, Grad. Sch. Eng., Tohoku University
6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
E-mail: takami @ pfsl.mech.tohoku.ac.jp

Abstract

In the past three decades, there has been great progress in the mathematical modeling
and computational methods for fluid mechanics of suspensions of micron-scale parti-
cles. In medical or biological applications, the particles can be very deformable, self
propelled or both. Research on mathematical and computational methods for the mod-
elling of suspensions of such particles is currently very active. In this review paper, we
introduce some of the concepts that are used to analyse suspensions of either passive
deformable particles or active locomotive particles. To simplify matters, we consider
simple model particles that are initially spherical. In one case, the particle is a liquid
droplet enclosed by a thin deformable membrane (a ‘capsule’) and is deformed by hy-
drodynamic forces. In the other case, the particle remains spherical but propels itself
by means of a velocity wave on its surface. Athough the basic equations for locomo-
tive spherical cells and for capsules are similar, the resulting suspension characteristics
are quite different owing to the different boundary conditions on the surface of the
particles.

Key words : Capsule, Locomotive Cell, Stokes Flow, Hydrodynamic Interaction, Sus-
pension

1. Introduction

In the past three decades, there has been great progress in the development of mathemat-
ical and computational models for the mechanics of suspensions of micron-scale particles.
When the particles are rigid and non-Brownian, some efficient numerical approaches, such as
Stokesian dynamics(l), the lattice Boltzmann method®~® the fast multipole method® allow
to model efficiently the dynamics of a suspension of particles. In medical or biological ap-
plications however, the particles can be very deformable (e.g., red blood cells), self propelled
(e.g., bacteria) or both. This adds considerable difficulties to the modelling of the dynamics of
such particles and leads to active research on the development of mathematical and computa-
tional methods. In this review paper, we aim to introduce some of the concepts that are used
to model suspensions of either passive deformable particles or active locomotive particles. To
simplify matters, we consider simple model particles that are initially spherical. In one case,
the particle is a liquid droplet enclosed by a thin deformable membrane (a ‘capsule’) and is de-
formed by hydrodynamic forces. In the other case, the particle remains spherical but propels
itself by means of a velocity wave on its surface. Although the basic equations for locomotive
spherical cells and for capsules are similar, the resulting suspension characteristics are quite
different owing to the different boundary conditions on the surface of the particles.

These two cases correspond to two related fields of research where recent progress have
been made. The study of encapsulated drops has applications in many industries like phar-
maceutical, cosmetic, food industries for controlled release of active principles, aromas or
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flavours. They are also used for bioengineering applications like drug targeting or cell culture
encapsulation for artificial organs®. Similarly, locomotion of cells in a suspension plays an
important role in many physical and biological phenomena; such as plankton blooms in the
oceans that affect the oceanic ecosystem, red tides in the coastal region that cause serious
damage to fish farms, bioreactors for medicine or food, human digestion assisted by enter-
obacteria, ... In section 2, we present the mechanics of passive initially spherical capsules
and show how the particle intrinsic physical properties affect its deformation in flow. We then
present some first results obtained on the hydrodynamic interaction between two capsule in a
semi-dilute suspension. In section 3, the basic equations for the locomotion of cells are ex-
plained, and the fluid mechanics of a dilute and concentrated suspension of locomotive cells
is introduced.

2. Passive motion of spherical capsules in shear flow

A capsule consists of some internal medium enclosed by a semi-permeable membrane
that controls exchanges between the environment and the internal contents and has thus a pro-
tection role. Natural capsules are cells, bacteria or eggs, but artificial capsules are widely used
in many industries. Artificial capsules are usually obtained through interfacial polymerisation
of a liquid droplet and are thus nearly spherical. The membranes that are used are natural or
synthetic polymers such as poly-L-lysine, alginate or polyacrylates. In most situations, cap-
sules are suspended into another liquid and are thus subjected to hydrodynamic forces when
the suspension is flowing. The motion of the suspending and internal liquids creates viscous
stresses on the membrane and may lead to capsule break-up. The control of this process is of
course essential for the design of artificial capsules or for the protection of natural capsules
but is difficult to achieve unless we have models of the underlying mechanics.

We focus here on artificial capsules that are initially spherical with an internal liquid core
and that are enclosed by a very thin hyperelastic membrane. The mechanical properties of this
membrane are essential in determining the motion and deformation of the capsule. We thus
first present different constitutive laws that are commonly used to describe the rheological be-
haviour of thin membranes. We then consider the motion and deformation of a single capsule
freely suspended in a simple shear flow and discuss the effect of the membrane constitutive
law and of initial pre-stress. This situation is encountered in very dilute suspensions or in
devices specially designed to measure the deformability of capsules”® . We then turn to the
semi-dilute case and show how the hydrodynamic interactions between two identical capsules
lead to large deformations and to irreversible trajectory shifts of the particles.

2.1. Membrane mechanics

The capsule is initially spherical with radius a. It is filled with a Newtonian incompress-
ible liquid with viscosity 4 and enclosed by an infinitely thin hyperelastic membrane with
surface shear elastic modulus G, and area dilation modulus K. We assume that the membrane
is isotropic in its plane and thus that the principal directions of deformation and stress are co-
linear. The membrane constitutive law relates the principal elastic tensions (forces per unit
arclength measured in the membrane plane) 7| and 7 to the two principal extension ratios
Ay and 1. A number of laws have been proposed to model thin membranes, but we consider
only the simplest ones with constant material coefficients. One candidate is the neo-Hookean
law (NH) that corresponds to an infinitely thin sheet of a three-dimensional isotropic volume
incompressible material

G 1
Ty =——|1 - 1
: /h/lz[ ! (1112)2} )

Owing to the hypothesis of volume incompressibility, area dilation is balanced by membrane
thinning and the area dilation modulus K| is then shown to be 3G,). Another approach
consists in treating the membrane as a two-dimensional continuum with in-plane isotropy.
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Fig. 1 Schematics of an isolated capsule freely suspended in a simple shear flow.

Correspondingly, starting from general principles of elasticity and thermodynamics, Skalak et
al.!"” derived the following law (SK)

G,
= 2 [0 - 1+ Ca ) - 1] @

where the area dilation modulus is given by K; = G4(1 + 2C). The SK law was initially
designed to model the area incompressible membrane of biological cells such as red blood
cells, corresponding to C > 1. However, this law is very general and can be used also to
model other types of membranes for which K and G are of the same order of magnitude as
is the case for alginate membranes!". The expression for T, is obtained by interchanging
the roles of indices 1 and 2 in (1) and (2) . When C = 1, NH and SK laws predict the same
small deformation behaviour of the membrane with K; = 3G,. However, they lead to different
nonlinear tension-strain relations under large deformations. In particular, it is easily checked
that NH law is strain softening under uniaxial stretching (7} # 0, T, = 0), whereas SK law is
strain hardening®.

2.2. Motion of a capsule freely suspended in linear shear flow

An initially spherical capsule is suspended in an unbounded shear flow with far field
velocity v*°(x) and characteristic shear rate y (figure 1). We use a reference frame centred on
the capsule and moving with it. The unknown deformed surface of the capsule is denoted M.
The internal (superscript @) and external (superscript ®“?) liquids are Newtonian and have
equal density p. The flow Reynolds number based on the capsule dimension is assumed to be
very small pya®/u®? < 1, so that the motion of the internal and external liquids is governed
by the Stokes equations

Vp(int) - “(inl)v2v(int) , V.V(mt) — 0;
Vp(ouz) — /J(OW)VZV(OW) , V.V(UW) =0. (3)
Continuity between the internal and external velocities is imposed on M
v, 1) = vO(x, 1) = 0x(X, 1)/t xeM, )

where x is the current position of a membrane material point that was at position X in the
reference state. The membrane equilibrium equations relate the elastic tensions tensor T to
the load due to the jump in viscous tractions across the interface

V. T + [0”)(x) — o™ (x)].n = 0, xeM, (3)

where o denotes the stress tensor in one of the liquids, n the outward unit normal vector to
M and V; the gradient along M. An important parameter of the problem is the ratio between
viscous and elastic forces &€ = u”“'ya/G;,, that acts as an equivalent capillary number where
surface tension is replaced by the membrane shear elastic modulus. For a given capsule, &
may also be viewed as a non-dimensional shear rate.

The solution of (3) to (5) with constitutive equation (1) or (2) is difficult to get, because
the problem involves a strong coupling between fluid and solid mechanics, in the domain
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where the shell deformations may be large and where the hydrodynamic forces are due to
pressure and viscous shear stresses. When the capsule deformation is small, asymptotic solu-
tions can be developed!?). To first order in &, the capsule takes an ellipsoidal shape, inclined
at an angle ® = 45° with respect to the far field streamlines, while the membrane continuously
rotates around the steady profile. In the case of large deformations, it is necessary to resort
to numerical models. For thin membranes with negligible thickness, the boundary integral
method is particularly well adapted and has been used extensively over the years!¥~(%_ The
technique consists in first recasting the Stokes equations (3) in integral form. For the particu-
lar case where the viscosity of the two liquids are equal, ™ = u©) = y, as will be assumed

hereafter, the interfacial velocity is given by®?

1 )
V) = V0 - g 95 3%, ). [0(y) — ™ (y)].n(y) dS (), ©)
M

where v (x) is the undisturbed simple shear flow and J the Oseen tensor for Stokes flow

_ 5,'j rirj
Ji_j(X, Y) =—+ 3 (7)
r r

withr =y —xand r = ||r|.

Then the usual technique of resolution consists in injecting the undeformed capsule in
the flow field and in following numerically the time evolution of the capsule motion and de-
formation until a steady state is reached. At a given time, the position x(X, 7) of the membrane
material points is thus known. By comparison with the initial reference state, the deformation
and extension ratios of the capsule membrane are easily computed. Given a constitutive law
(1) or (2), the equilibrium equation (5) leads to the value of the traction jump [0 — """ ].n
on the membrane. Then, for points x on M, the boundary integral equation (6) gives the ve-
locity of the membrane points. The time integration of (4) leads to the new position of the
membrane material points, and the process is repeated. From a purely numerical point of
view, different discretisation techniques have been used, but the general principle is the same.

The validation of the numerical results is not easy. One way of doing it is to consider
an intitially spherical capsule subjected to vanishingly small flow strength and to compare the
numerical deformation to the asymptotic analytical deformation'> developed for that case.
Another check of numerical precision is done by monitoring the capsule volume during de-
formation and ensuring that it remains constant. Finally it is also useful to compare results
obtained with different numerical procedures (see for example Lac et al.??).

2.3. Deformation of an initially unstressed capsule in a simple shear flow

(b) (0

P :

Fig.2 Deformed profiles of a capsule in simple shear flow. (a) For low flow strength
(¢ < €L), the equilibrium profile is unstable and the membrane buckles. (b) For
medium flow strength, the equilibrium profile is stable and the membrane rotates
around the steady shape. (c) For high flow strength (¢ > &p), no equilibrium
profile is found and high curvature tips appear.

We now consider specifically the case of an initially unstressed capsule freely suspended
in a simple shear flow with shear rate y in the x, x, plane. The capsule deformation can
be evaluated by means of the Taylor deformation parameter D = (L — B)/(L + B) where L
and B denote respectively the maximum and minimum profile diameters in the shear plane.
This configuration has been studied for different shear rates and initial capsule shapes when
the membrane obeys a neo-Hookean law(!?-(10-(7.21D.(22) - Areqa incompressible membranes
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Table I Minimum and maximum values of capillary number and deformation, for
which steady equilibrium exists as functions of the membrane constitutive law
(from Lac et al.??).

| NH SK(C =0.5) SK(C=1) SK(C = 10)
L 0.45 0.8 04 0.06
Dy 0.47 0.5 0.37 0.09
e 0.63 ~12 2.4 ~15
Dy 0.53 ~0.55 0.6 0.61

have been considered to model the behaviour of red blood cells or lipid vesicles!!®» 123
with non-spherical initial shapes. The bending rigidity of the membrane has also been taken
into account!® 23,

Recently, Lac et al.?? studied the effect of the membrane constitutive law on capsule
deformation and compared NH and SK laws when the shear and area dilation modulus were
of the same order of magnitude. They show that at shear rates lower than some critical value
€1, the capsule reaches an equilibrium deformed state that is unstable owing to the presence of
negative principal tensions. These cause membrane buckling because bending resistance has
been neglected (figure 2a). Folds do occur and have been observed experimentally by Walter
et al.®® on spherical artificial capsules with a polysiloxane membrane (G, ~ Kj). In that case,
folds appear about the equator with the same orientation as those shown in figure 2a. As the
shear rate increases, the membrane deformation and subsequent area dilation also increase and
the tensions in the membrane become all positive. The capsule then reaches a steady deformed
shape (figure 2b) with the membrane continuously rotating around it (fank-treading rotation),
as has been reported experimentally”®- 25 However, for large shear rates such that & > gy,
no equilibrium state seems to exist, the capsule exhibits high curvature tips and undergoes
continuous extension until burst occurs (figure 2c). Such tips have also been observed exper-
imentally for capsules with nylon membranes by Chang & Olbricht” right before break-up,
albeit for small values of the viscosity ratio. The values of £, and &y, and of corresponding
deformation D, and Dy, depend on the membrane constitutive law as indicated in table 1.
In particular, as we go from a strain-softening (NH) to an increasingly strain-hardening law
(SK with increasing C), € and D, decrease, while &y increases significantly but Dy reaches
an asymptotic value that is more or less independent of membrane law. It appears that the
stability interval is quite narrow for NH and SK(C = 0.5) laws. Accounting for a finite bend-
ing stiffness of the membrane, may remove the folds (depending on the bending modulus)
and prevents the low shear instability. The steady deformed profile, however, then depends
on the bending stiffness of the membrane. In particular, the tip curvature can be significantly
decreased!”.

2.4. Deformation of a pre-stressed capsule in a simple shear flow

VAN A
N7

Fig.3 Aslight pre-inflation measured by « creates pre-stress in the membrane and may
prevent buckling (¢ = 0.0375); (@) @ = 0; (b) a = 1.5%

A positive pressure difference may occur between inside and outside of the capsule, par-
ticularly in bioengineering applications where the membrane is semipermeable, i.e., perme-
able to small molecules such as water or small ions but impermeable to large molecules®.
The pressure difference is then due to osmotic effects. For example, in the case of a simple
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capsule consisting of a drop of saline solution enclosed by an alginate membrane, some partial
dissolution of the membrane occurs and leads to an unknown concentration of large molecules
that are trapped inside the capsule®®. As a consequence, the internal concentration is usually

P underestimated. Thus when the capsule is suspended in a saline solution with supposedly
l the same concentration as the internal medium, there exists a concentration jump across the
membrane that leads to osmotic effects.

D

Fig. 4 Steady deformation in the shear plane as a function of pre-inflation and
membrane constitutive law. A: @ = 0; ¢: @ = 2.5%; O: a = 10%; filled
symbols: NH law; open symbols: SK law (C = 1). Reproduced from Lac &
Barthes-Biesel?”, Copyright 2005, American Institute of Physics

We thus now assume that the capsule is subjected to such a positive osmotic pressure
difference p® between the internal and external phases. Consequently, since the capsule
is spherical, the membrane is pre-stressed by an isotropic elastic tension T given by the
Laplace law

p(O)

a
T1=T2=T(0)=T

where a is the radius of the inflated capsule. The membrane is stretched with an initial

®)

isotropic elongation 4| = A, = a/ag = 1 + @, where ay is the capsule radius in the unstressed
configuration. The relation between 7® and a depends on the membrane constitutive law®?,
In particular, for a neo-Hookean membrane, T is obtained from (1) and in the limit of small
inflation, we find T©® = 6a G,. In all that follows, the capillary number & will be based on the
inflated capsule radius a, rather than the unstressed capsule radius ay, because it is a that is
usually measured. As shown by Lac & Barthés-Biesel?”, when such a pre-inflated capsule is
suspended in a simple shear flow, the pre-stress can compensates the negative tensions that ap-
pear at low shear rates and membrane buckling can thus be avoided (figure 2.4). Altogether,
the global effect of pre-stress is to decrease the capsule deformation for a given shear rate
and to increase significantly the elastic tension in the membrane at a given deformation level.
Furthermore, as shown in figure 4, the effects of pre-stress and of strain hardening add-up to
decrease the membrane deformation for a given flow strength. Correspondingly, a capsule
with a 10% pre-inflation and a SK membrane necessitate quite large values of capillary num-
ber & to reach a 60% deformation. Lac & Barthés-Biesel®” also show that for a preinflated
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capsule, there is still a maximum shear rate &5 above which no equilibrium could be found.
The main effect of prestress is to increase slightly the value of gj.

2.5. Capsule interaction in simple shear flow

X2

X

Fig.5 Two capsules in simple shear flow

It is now of interest to consider the case of dilute suspensions of capsules and study
the hydrodynamic interaction between capsules. The first study of this situation is due to
Breyiannis & Pozrikidis®®, who modeled a two-dimensional suspension of capsules in sim-
ple shear flow for two surface fractions. They thus obtained a constitutive law for the two-
dimensional suspension. However, the studies of a single capsule in shear flow all show that
three-dimensional effects play an important role in determining the deformation and the ten-
sion distribution in the membrane.

Correspondingly, Lac et al.?® considered the three-dimensional situation where two
identical capsules interact in simple shear flow. The situation is the same as the one stud-
ied in sections 2.2 and 2.4, except that now there are two capsules (figure 5) with their centres
of mass G| and G, located in the same shear plane x;, x,. The relative position of the two
capsules is given by the vector Ax:

Ax = x(G1) — x(G»). 9

The capsule centres G; and G, are initially separated by Ax’. When Ax{ < 0 and Ax) > 0
the capsules are naturally convected toward each other by the flow. The membrane obeys NH
law and in order to avoid the buckling instability, the capsules are first slightly pre-stressed by
inflation (@ = 5%, T® ~ 0.254G,) with pre-inflated radius a. The problem solution follows
essentially the same lines as for a single capsule, except that the integral in (6) has to be taken
over the surfaces of the two capsules.

Lac et al.?®” find that the interaction remains weak as long as the distance between the
two centres of mass is larger than a few initial capsule diameters. However, for small ini-
tial cross flow separations, the capsules deform a lot during the crossing over process. The
corresponding sequences of capsule shapes are shown in figure 6 for two values of &, cor-
responding to low (¢ = 0.75) and high (¢ = 0.45) flow strengths or equivalently to rigid or
deformable particles. When Ax;/a = —3, the capsules start to interact and their shapes are no
longer exactly symmetrical with respect to their centre of mass (figure 6a,A). As separation
decreases (—3 < Ax;/a < 0), the centres of mass are shifted across streamlines and parts of the
membranes flatten (figure 6b, ¢) or become concave (figure 6B, C). After crossing (Ax; > 0),
the capsules are convected away from each other and the membranes recover a convex shape
(figure 6d, D). For large separations Ax;/a > 7, the hydrodynamic interaction between the
particles is no longer visible and both capsules have relaxed to the steady deformed shape
obtained for a single capsule subjected to the same flow conditions (figure 6e, E).

The hydrodynamic interaction leads to increased elastic tensions in the membrane in ex-
cess of 24% to 12% of the maximum tension in a single capsule. In most cases, the peak
of tension in the membranes appears as the capsules overlap. However, for closely spaced
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Fig. 6 Sequence showing, from top to bottom, the motion of two capsules for Axg/ a=
0.5 and @ = 5%; (a—e) € = 0.075, Ax(l)/a =-8;(A-E) e =045, Ax(l’/a = -10.

The color mapping corresponds to the normal load on the interface (scaling is
different for the two sequences). From Lac et al.®®

trajectories and small capillary numbers, high tensions appear in the near-contact regions dur-
ing the separation phase. Such extra-tensions might damage the membranes. Even when the
capsules are pre-inflated, the interaction generates negative tensions in the membrane (and
thus possible buckling instabilities) in two different processes. For very small capillary num-
ber and preinflation ratio, the instability develops during the collision, as the capsules start
overlapping. For high prestress levels (¢ > 2.5% for a NH membrane), it appears above a
maximum capillary number, as the two capsules separate and the membranes quickly evolve
from a concave to a convex shape. This indicates that it would be quite interesting to include
bending resistance in the membrane mechanical model to see how the post-buckling behaviour
influences the particle interaction.

Furthermore, owing to the particle deformability and the inner and outer viscous flows,
the collision is irreversible and the capsule separation increases after they have passed each
other. The difference Ax(zf ) Ax(zo) between the final and initial centre of mass separation

can be as large as 0.6a when Ax(zo)

= 0.5a. It decreases with capsule separation and is no
very sensitive to flow strength. This irreversible trajectory shift must obviously lead to non-

Newtonian and self diffusion effects in a semi-dilute suspension of identical capsules.
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Fig. 7 Formation of folds in the flattened film during the separation phase. Each

capsule has been artificially cut in half to show the film region. From Lac et
al.?®

There are a number of experimental studies of the collision of liquid droplets in different
flow regimes. In particular for Stokes flow, high deformations as well as irreversible trajectory
shifts are observed®”. To our knowledge however, there is no published experimental study
of the interaction of two capsules in shear flow. This is obviously a research domain that
would be worth investigating.

2.6. Conclusion

Understanding and controlling the flow of a suspension of capsules represents an impor-
tant challenge for many industrial processes. In particular, it is essential to ensure that no
damage will occur when the particles are subjected to flow induced deformations. Presently,
the few available theoretical results pertain essentially to an isolated capsule freely suspended
in shear flow. They show that the membrane constitutive law plays an essential role in de-
termining the capsule behaviour in shear flow. Another important parameter is the osmotic
pressure inside the capsule that tends to rigidify the membrane while making it more fragile.
It is clear that for membranes with a finite thickness, some bending rigidity must be taken into
account. Bending resistance is the main membrane effect for lipid bi-layers that have very lit-
tle shear elasticity. However, for thin hyperelastic membranes, the bending rigidity becomes
important only when the ratio of thickness to curvature radius is larger than 0.1. This effect
has not yet been studied in enough detail and it would be interesting to couple the roles of
bending and of membrane constitutive law. The models developed for small or large deforma-
tions of a single capsule can be used to conduct an inverse analysis of experiments and thus
obtain information on the mechanics of the capsule membrane”> ®- 2.2 However, except
for the pioneering work of Chang & Olbricht”) there are very few experimental observations
of flow induced burst, because the capsules were too resistant or the flow strengths not large
enough. This is certainly a domain where more information is needed.

There are very few theoretical or experimental results regarding flow of a suspension
of capsules, although this is a situation with many industrial or biological applications. The
analysis of the hydrodynamic interaction between two capsules represents a first step in the
direction of semi-dilute suspensions models. There is certainly need for powerful numerical
techniques that can study the hydrodynamic interactions of a collection of capsules and predict
the apparent viscosity of the suspension as well as the normal stress effects that are expected
to occur. There is also need for experimental observations of interacting capsules.

3. Locomotion of cells

Another important characteristic of biological cells, other than the deformability, is the
locomotion. Though the basic equations for the locomotive cells and those for capsules are
similar, the output results of the suspension characteristics are quite different.

Modeling the locomotion of cells mathematically is a massive undertaking. Locomotive
cells such as micro-organisms exist over a large range of length scales (roughly 1 pm—500 pm)
and alter their behaviour depending on many parameters relating to their environment. The va-
riety of shapes both inter- and intra-species is also vast. Any model capable of being analysed
mathematically will therefore need to make severe simplifications.
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A wide variety of fundamental models for locomotive cells have been proposed so far.
The mathematical models for the locomotion of a solitary cell, such as a ciliate or a flagellant,
were reviewed by Brennen®?, and the mathematical models for the mass transport around a
32 To simplify matters, we focus on a
squirmer model in the following sections (the details will be explicitly explained in section
3.1). We first present the basic equations and the motion of a solitary squirmer. We then con-
sider the hydrodynamic interactions between two squirmers. This situation is encountered in

locomotive cell were reviewed by Karp-Boss et al.

the semi-dilute suspension. Finally, we present a integral property of a concentrated suspen-
sion of squirmers.

3.1. Locomotion of a solitary cell

Swimming speeds of locomotive cells such as micro-organisms range up to several hun-
dred um/s for the largest ones. However, the Reynolds number based on the swimming speed
and the radius of individuals is usually less than 1072, so the flow field around the locomotive
cells can be assumed to be Stokes flow with negligible inertia compared to viscous effects.
Brownian motion is usually not taken into account, because typical locomotive cells are too
large for Brownian effects to be important. Although our discussion is restricted to a solitary
cell in this section, we present basic equations for many cells in order to utilise those in the
following sections. When there are N cells in an infinite fluid, the Stokes flow field external

to the cells can be given in integral form as®?> 33):

v(x) = 0™ (x) - ,; S fM,_ J(x.y).qy)dS i(y) (10)

where M; is the surface of cell i, and q is the single-layer potential, which is same as the
traction force on the surface if the cell shows rigid motion. This equation is analogous to
equation (6) for a capsule, but in this case we considered N particles in the suspension.

The motions of locomotive cells are determined by the force conditions. When cell
i is supposed to be subjected to known external forces F; and torques L;, the equilibrium
conditions for cell i are:

Fi:fM,-q(x)dSi’ , L,-:fMix/\q(x)dS,'. (11)

Locomotive cells are sometimes assumed to be neutrally buoyant, because the sedimenta-
tion velocity for typical aquatic micro-organisms is much less than the swimming speed, i.e.
F; = 0. The centre of buoyancy of the cells may not coincide with its geometric centre, and
in that case the torque L; is generated. This tendency is called bottom-heaviness, and experi-

Fig. 8 Velocity vectors relative to the translational velocity vector of a squirmer.
Uniform flow coming from far right. (B; = B,)
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mentally investigated by Kessler®® for algae cells. Equations (10) and (11) can be solved by
the boundary element method with specific boundary conditions on the cell surfaces®”- 3,

The main difference between the capsules and the locomotive cells come from the bound-
ary conditions. To simplify matters, we focus on a very simple cell model. Firstly we assume
a spherical shape without any deformation. This assumption is made for obvious mathemati-
cal convenience, but a number of real micro-organisms, notably ciliates such as Opalina and
colonies of flagellates such as Volvox are roughly spherical. Cyanobacteria also have no ex-
ternal appendages, and the cell body is approximately a spheroid with aspect ratio about two.
Secondly, the cell model is assumed to propel itself by generating tangential velocities on its
surface. In fact, it is a reasonable model to describe the locomotion of certain ciliates, which
propel themselves by beating arrays of short hairs (cilia) on their surface in a synchronised
way. In particular, the so-called symplectic metachronal wave employed by Opalina, for in-
stance, in which the cilia tips remain close together at all times, can be modelled simply as the
stretching and displacement of the surface formed by the envelope of these tips, and this can
be regarded as approximately spherical®>> 3% The cell model swims due to the squirming
motion on the surface, so it is referred to as a squirmer. The model of a squirmer was first
proposed by Lighthill®”, and his analysis was then extended by Blake®®.

The tangential surface velocity on a squirmer up to the second mode may be given as;

22 err ,
v, =) mBn (—— —e)Pn(e.r/a), (12)

n=1 a a

where P, is the n Legendre polynomial, e is the unit orientation vector of a squirmer, r is the

th

position vector and a is the radius. B, is the strength of n™ swimming mode. The boundary

condition for the squirmer is given by:
vxX) =V, + QAN(x—x)+v,; , xX€EM, (13)

where V; and Q; are the translational and rotational velocities of squirmer i. x; is the centre
of squirmer i, and vy is the squirming velocity of squirmer i defined by (12). The swimming
speed of a solitary squirmer is 2B, /3. The velocity field generated by a solitary squirmer with
By = B; is shown in figure 8 as an example.

3.2. Interactions between two squirmers

Two-cell interactions are the basics of many-cell interactions, thus it should be clarified
before proceeding to the many-cell interactions. It is to be expected that in the presence of a
nearby cell, a locomotive cell will not behave as if it were alone. It may consider reproducing
sexually or attempting to consume (or avoid being consumed by) its neighbour. Ishikawa &
Hota®® experimentally investigated the interactions between two Paramecium Caudatum, in
which the motion of cells were restricted between flat plates. The characteristics of a solitary
Paramecium are well understood. Naitoh®” investigated two kinds of biological reaction
of a solitary Paramecium to mechanical stimulations. Avoiding reaction occurs when a cell
bumps against a solid object with its anterior end. It does backward swimming first, then
the cell gyrates about its posterior end, then resumes normal forward locomotion. Escape
reaction occurs when the cell’s posterior end is mechanically agitated. The cell increases
its forward swimming velocity for a moment, then resumes normal forward locomotion. In
the experiments by Ishikawa & Hota®®, they observed hydrodynamic interactions as well as
avoiding and escape reactions. The results showed, however, that the cell-cell interactions
were mainly hydrodynamic and the biological reactions were minor incidents.

There have been a few analytical investigations of hydrodynamic interactions between
locomotive cells. Guell*” discussed the flow field far from a spherical body with a rotating
helical flagellum (modelling a swimming bacterium). Ramia*? and Nasseri*? also investi-
gated the interaction between two spheroidal bodies with rotating helical flagella by using a
boundary element method. Their computational conditions were limited to two cases, swim-
ming side by side and swimming along one line. The minimum distance between the two
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bodies was taken to be approximately equal to the minor axis of the spheroidal body, and they
did not examine bodies in near contact. Lega and Passot®® have derived a hydrodynamic
model for bacterial colonies suspended on an agar plate. While including the modelling of
nutrient transfer and hydrodynamics, the authors had to include an ad hoc interactive force
acting between the micro-organisms. Thus, two micro-organisms in near contact were not
analysed mechanistically in these former studies.

t=3.0 t=4.0 t=4.5

%G QQ \

=5.0 =6.0 t=7.0

@ @ o
e e e

Fig.9 Sequences showing the interactions between two squirmers initially facing each
other (Bl = Bz)

=27.0 =29.5 t=31.0

o %

=315 =325 t=37.0

Fig. 10  Sequences showing the interactions between two squirmers whose orientation
vectors initially have the angle of 7/4 (B = B;)

The hydrodynamical interactions of pairs of squirmers, including two bodies in near
contact, are reported by Ishikawa et al.*¥. Figure 9 shows the interactions between two
squirmers initially facing each other, where ¢ is the dimensionless time and 7 = 0 is the initial
instant. The squirming motion of a sphere’s surface is assumed to be invariant, so only the
hydrodynamic interactions are considered. The orientation vectors of the squirmers are shown
as big arrows on the spheres, and a thin solid line is added so that one can easily compare the
angle between two squirmers. It is found from the figure that the two squirmers come very
close to each other, then change their orientation in the near field, and finally move away from
each other. The final directions of two squirmers are different from the initial directions in this
case. Figure 10 also shows the interactions between two squirmers whose orientation vectors
initially have the angle of /4. Basically, the results of trajectories show that the squirmers
attract each other at first, then they change their orientation dramatically when they are in near
contact, and finally they separate from each other. The similar tendency is also observed in
the experiment by Ishikawa & Hota®® using Paramecium.
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3.3. A concentrated suspension of squirmers

Fig. 11 Instantaneous positions of 216 identical squirmers with B; = B, in a fluid
otherwise at rest. The volume fraction of cells is 10%. Solid lines are
trajectories of the squirmers during the five previous time intervals.

Recently Dombrowski et al.*> have reported a meso-scale structure in a concentrated
suspension of Bacillus subtilis. In a concentrated suspension, a B. subtilis cell tends to swim
in the same direction as its neighbours, generating a flow pattern larger than the scale of an
individual cell but smaller than the scale of the container used in the experiment. The meso-
scale structure changes its direction randomly in a manner reminiscent of turbulence, so they
named this phenomenon slow turbulence. Mendelson et al.® also observed a meso-scale
motion of whorls and jets generated by B. subtilis. The diffusivity of such a suspension was
investigated experimentally by Wu and Libchaber®”. They drew a stable two-dimensional
soap film, and seeded bacteria (Escherichia coli) and micron-scale polystyrene beads in it.
They investigated the effect of bacterial motion on the diffusivity of micron-scale beads in a
freely suspended film, and the results showed that the diffusivity is 2-3 orders of magnitude
larger than that of Brownian diffusivity. Since the meso-scale collective motions dramatically
change the macro-scopic suspension property, it is important to clarify the microstructure in a
suspension of locomotive cells.

The numerical simulation for the concentrated suspension of locomotive cells is currently
one of the most challenging tasks in this research field. The main difficulty for this simulation
is that the lubrication flows in the thin intercellular space have to be solved accurately as well
as the large scale flow structure, so the scale of flow field to be solved diverges considerably.
When the deformation of cells can be neglected, however, one can utilize the efficient nu-
merical methods for rigid particles as explained in the introduction, even with the boundary
conditions with the surface squirming velocities.

In the absence of Brownian motion and at negligible particle Reynolds number, the equa-
tion of motion for N particles suspended in a Newtonian solvent undergoing a bulk linear flow
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field can be written in the general form as (see a standard text book by Kim and Karrila®®,
for instance);

F V —(v)
L |=[R]| Q-(w) (14)
H —(E)

where F, L, H are respectively the force, the torque, the stresslet, and (E) is the rate of strain
tensor of the bulk suspension. R is the grand resistant matrix, which is the invert of the
grand mobility matrix. In the case of many body interactions, it is convenient to introduce the
resistance (or mobility) matrix. Because the unknown parameters per particle, in this case, is
just 11; whereas the standard boundary element method requires thousands of unknowns per
particle, if one generates hundreds of boundary mesh per particle. The derivation of R for
rigid and inert particles as well as accuracy of this method have been extensively discussed by
Brady"-*9, the computational method so-called Stokesian-dynamics. The surface squirming
motion can be included in this framework, but the detailed explanation is omitted here because
it is far beyond the scope of this paper.

Ishikawa & Pedley®? investigated the diffusive behaviour of swimming micro-organ-
isms, in order to obtain a better continuum model for a cell suspension (for experimental
studies, see®"~%) The movement of 216 identical squirmers in a cubic region of fluid
otherwise at rest, with periodic boundary conditions, are simulated by the Stokesian-dynamics
with the help of a data-base of near-field pairwise interactions compiled by the boundary
element method. The volume fraction of cells in this case is 10%. The instantaneous positions
of the squirmers and their trajectories during five time intervals are shown in figure 11. It is
found that the trajectories of squirmers are not straight, because the hydrodynamic interaction
between squirmers generates translational-rotational velocities between them.
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Fig. 12 Translational-rotational square displacement. When time interval is long
enough, the square displacement and the time interval have the proportional
connection.

In order to discuss the effective translational diffusivity, which is a measure of the increas-
ing displacements between pairs of particles, one calculates the mean square displacement. If
it grows more rapidly than linearly in time, then the spread is not diffusive (if proportional
to £2, it is as if the relative velocity of two spheres is constant), but if it becomes linear in
time then the spread is diffusive. The results for the square displacement as a function of
the elapsed time interval, are shown in figure 12. The square displacements linearly increase
with square time interval for short time, which indicates that the translational and rotational
velocities do not change so much during this short time interval. When the time interval is
long enough, on the other hand, both translational and rotational square displacements linearly
increase with time intervals. Therefore, the spreading of squirmers is correctly described as
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a diffusive process over a sufficiently long time scale, even though all the movements of the
individual squirmers are deterministically calculated.

3.4. Conclusion

The size of individual locomotive cell is often much smaller than that of the flow field
of interest, so the suspension is usually modeled as a continuum in which the variables are
volume-averaged quantities®¥~®®_ The continuum models proposed so far are, however,
restricted to dilute suspensions. If one wishes to analyze a wide variety of suspensions, it
will be necessary to consider the interactions between cells. Then the macro-scopic proper-
ties in the continuum model, such as the translational-rotational velocities of the locomotive
cells, the particle stress tensor and the diffusion tensor, will need to be replaced by improved
expressions. Though the introduced squirmer model is a very simple model, it can express
macro-scopic properties of a suspension of locomotive cells, such as the effective diffusivity.
We expect that such analysis will improve our understandings of the suspension and enable to
predict a wide variety of phenomena in the suspension.

There are still a lot of difficulties in modeling and analyzing a suspension of real loco-
motive cells. One of them is the complex geometry of the cells. A bacterium, for instance, has
several thin flagella composed of a helical protein, which has an amorphous core and a radius
of about 10 — 20nm. These flagella change their shapes according to the locomotive motion,
and sometimes associate in a flagellar bundle. Such complex shape change is the mechanism
of the locomotion, however, it is not easy to analyze their motion mathematically and com-
putationally. Another difficulty is the biological reaction of locomotive cells. As explained in
section 3.2, even a solitary cell shows biological reactions to mechanical stimulations. The
mechanism of such biological reactions has not been fully clarified, so the mathematical mod-
eling of this phenomena is still an open question. Not only the mechanical stimulations but
also chemical, optical, gravitational, electrical and magnetic stimulations may affect the lo-
comotion of cells. These biological reactions also need to be taken into account in future
work.

4. Concluding remarks

Two classes of biomechanical problems at the cellular scale have been presented. In
one case, the particle is passive but highly deformable, while in the other case, the particle
deformation is neglected but a mechanism for self propulsion is accounted for. When the cells
are deformable and have an elastic surface such as a membrane, the unknown geometry of the
particles has to be determined as part of the solution. This complicates the formulation of the
problem and has prevented up to now the computation of the bulk properties of a suspension.
The techniques presented here for dilute suspensions where only two capsules interact could
be extended to suspension of red blood cells that are well represented by a capsule model
with a non spherical initial geometry. The case of a more concentrated suspension is difficult
to model and approximations must certainly be made if the computational cost is to be kept
within reasonable limits.

For self propulsive particles, only simplified models with undeformable spherical cells
allow for the computation of the behaviour of a collection of identical particles. The extension
of the technique to non-spherical locomotive particles is feasible if difficult. A very challeng-
ing problem is the modelling of suspensions of deformable locomotive particles such as sperm
and enterobacteria.

Consequently, better mathematical models and computational methods are needed for fu-
ture developments in the study of suspensions of biological particles such as cells or bacteria.
In particular, the case of heterogeneous suspensions containing particles with different sizes
and properties represents a realistic situation that constitutes another modelling challenge.
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