Genes and Environment, Vol. 31, No. 4 pp. 105-118 (2009)

Review

Spontaneous and Induced gpt and Spi— Mutant Frequencies
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Transgenic rodent mutation assays are useful models for
investigating the genotoxicity of chemicals in vivo. Trans-
genic gpt delta mice contain multiple copies of chro-
mosomally integrated lambda EG10 phage shuttle vector,
which contains reporter genes that allow detection of mu-
tations. This system can identify both point mutations by
the gpt assay (6-thioguanine selection) and certain types
of deletions using the Spi~ assay. Transgenic gpt delta
rats, which have the same lambda EG10 DNA copies as
gpt delta mice, have also been developed. The average
spontaneous gpt mutant frequency (MF) in both gpt delta
mice and rats is approximately 4.5 X% 10-6. In the Spi~ as-
say, the average spontaneous Spi- MF is approximately
2.7 X 1076 in gpt delta mice, similar to that of gpt delta
rats. More than 20 chemicals and irradiations have been
analyzed with these systems, and this review summarizes
the MFs and treatment conditions. The data demonstrate
that these transgenic rodent models are useful for detec-
tion and analysis of point mutations and deletions in vivo.

Key words: gpt delta transgenic rodent, mutant frequency,
gpt assay, Spi~ assay

Development of gpt delta Transgenic Rodents
A number of transgenic rodent mutation assays using
transgenic animals with reporter genes directly integrat-
ed into the chromosome (1,2) have been developed to in-
vestigate in vivo genotoxicity. In these systems, gene
mutations occurred in the rodents can be detected by
recovering the transgene, delivering the transgene into a
bacterial host and analyzing the subsequent phenotype.
These models permit not only quantification of muta-
tions, but also allow identification of mutations at the
sequence level in any tissue in the body. The lacZ, lacl
and cII genes have been employed as reporter genes in
transgenic rodent systems, such as the Muta™mouse,
and the Big Blue® mouse and rat (3-7). A transgenic
“‘gpt delta’’ assay system was developed for the efficient
detection of both point mutations and deletions (1,8).
The lambda EG10 phage vector constructed for this sys-
tem contains two positive selection methods: the gpt as-
say [6-thioguanine (6-TG) selection] using the gpt gene
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of E. coli, which mainly detects point mutations such as
base substitutions and frameshifts, and the Spi~ assay
(Spi~ selection) that utilizes the red/gam genes of lamb-
da phage to detect deletions, including frameshifts (Fig.
1).

The principles and method of the gpt assay have been
previously described (1,8,9). The gpt gene of E. coli en-
codes guanine phosphoribosyltransferase, which func-
tions in the purine salvage pathway. This enzyme phos-
phoribosylates 6-TG, which is subsequently incorporat-
ed into DNA and exert toxicicty to the cells. E. coli cells
expressing the wild-type gpf gene cannot survive on
plates containing 6-TG, and only cells harboring muta-
tions in gpt can form colonies on 6-TG plates. The cod-
ing region of gpt is only 456 bp, a suitable size for easy
sequencing analysis. When an E. coli strain expressing
Cre recombinase is infected with lambda EG10 rescued
from DNA of gpt delta rodents, the lambda EG10 DNA
plasmid region is efficiently excised by Cre-lox recombi-
nation, circularized and propagated as multi-copy plas-
mids carrying the gpt and chloramphenicol acetyltran-
sferase (CAT) genes. Bacteria harboring mutated gpt
genes can then be selected as colonies on plates contain-
ing 6-TG and chloramphenicol (Cm). The number of
rescued phages can be determined by plating cells on
plates containing Cm alone. The gpt mutant frequency
(MF) is calculated by dividing the number of gp? mutant
(6-TG") colonies by the number of rescued Cm-resistant
colonies.

The Spi~ assay is a unique selection technique that de-
tects deletions rather than base substitutions. The
methodology and characteristics of the chemical- and
radiation-induced Spi~ mutations have been described
in detail (1,10). Spi~ selection takes advantage of the
restricted growth of wild type lambda phage in P2 lyso-
gens (11), a phenotype known as Spi (sensitive to P2
interference). Only mutant lambda phages that are
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Schematic outline of the gpt delta transgenic rodent mutation assays (1,8,10,34). Genomic DNA is extracted from transgenic rodent tis-

sue, and lambda EG10 DNA is rescued as phage particles by in vitro packaging reactions. Two E. coli host strains are infected with the rescued
lambda EG10 phages: E. coli expressing Cre recombinase for the gpt assay and the E. coli P2 lysogen for the Spi~ assay.

deficient in the functions of both gam and red genes can
grow in P2 lysogens and exhibit the Spi~ phenotype.
Simultaneous inactivation of both the gam and red
genes is normally induced by deletions. Because of the
size limitation for in vitro packaging reactions (there
must be two cos sites separated by 38-51 kb of lambda
DNA), Spi~ selection can detect deletions up to 10 kb.
Thus, the mutants are mostly intrachromosomal dele-
tions.

The gpt delta transgenic mouse model employs both
the gpt and Spi~ assays (1,8). Lambda EG10 DNA was
microinjected into the fertilized eggs of C57BL/6J mice.
The transgenic mouse harbors approximately 80 copies
of the transgene in a head to tail fashion at a single site
in chromosome 17 and is maintained as a homozygote
(9,12). The same lambda EGI10 transgene was in-
troduced into the genome of a Sprague-Dawley (SD) rat
to establish the gpt delta rat (13). The gpt delta rat con-
tains approximately 5 to 10 copies of the transgene in
chromosome 4 and is maintained as a heterozygote. The
outbred gpf delta SD rat was backcrossed with an F344
rat to establish an inbred gpt delta rat (F344).

Transgenic rodent mutation assays require the repli-
cation of the isolated DNA in a bacterial host. Thus,
there is the possibility of ex vivo mutations arising in the
bacterial host, not in a rodent, by lesions present in the
isolated DNA. However, several observations suggest
that these types of mutations are extremely rare (14). E.
coli host strains used to detect mutant transgenes are
recA~, which greatly reduces the mutagenic potential of
DNA lesions derived from a variety of mutagenic a-
gents. In addition, the positive selection systems using
gpt, Spi~, lacZ and clI genes are unlikely to detect ex
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vivo mutations, since cells containing the wild type
phages will be selected against before the mutations
arise. There is a general consensus that ex vivo muta-
tions unlikely to contribute in any significant way to
spontaneous or induced MFs in a properly conducted
assay (14). Indeed, the predominant type of spontane-
ous mutations in the gpt gene on a plasmid in E. coli cell
is an insertion of IS/, which is a transposable element of
E. coli. This insertion was rarely observed in the gpt mu-
tations recovered from untreated gpt delta mice (9).

Spontaneous MFs in gpt and Spi~ Assays

The spontaneous gpt MFs in various organs of gpt
delta rodents were summarized in Table 1. Tissue type,
age and sex are indicated. The experiments listed in
Table 1 were performed in the same laboratory (Divi-
sion of Genetics and Mutagenesis, NIHS). Therefore,
variation of the values does not reflect inter-laboratory
differences. The average spontaneous gpt MF in the gpt
delta mice is 6.0 X 10~°. No differences in MF among tis-
sues were detected, except for the skin (epidermis and
dermis), which shows a relatively higher MF. If epider-
mis and dermis are excluded from the calculation, the
average MF is 4.6 X 10™°. Although the number of stu-
dies that analyzed multiple tissues is limited, the spon-
taneous MFs were similar in various tissues (liver,
spleen, colon, testis, brain and bone marrow) collected
from the same animals (12). It is reported that the spon-
taneous MF values for male germline cells appear to be
lower than that of somatic cells (14). The spontaneous
MF in the testis of gpt delta rodents should be evaluated
in more thoroughly. No significant differences were ob-
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Table 1. Spontaneous gpt MFs of gpt delta rodents
gpt MF (X 107°) No. of animal Sex Age (week) Ref.
gpt delta Mouse (C57BL/6J)
Liver 5.8 45 M&F 8-22 (12) (19) 35 (36) 37) U
Lung 3.4 15 M&F 11-13 (30)* (36)
Colon 7.4 11 M&F 19-22 (12) (19) 37)
Epidermis 11.5 6 M&F 13-18 38 U
Bone marrow 2.9 5 M 13-22 (12) U
Kidney 5.7 5 M 17 8]
Stomach mucosa 5.0 5 M 21 U
Spleen 3.3 3 M 22 (12)
Testis 3.0 3 M 22 (12)
Dermis 12.1 2 M&F 18 (38)
Brain 5.0 2 M 22 (12)
Average 6.0
gpt delta Rat (SD)
Liver 4.6 21 M&F 10-30 U
Mammary gland 4.4 5 F 10-12 8]
Kidney 4.0 5 M 17 U
Average 4.5
gpt delta Rat (F344)
Liver 4.4 10 M 20-24 U
Average 4.4

*Instead of mutant frequency, mutation frequency is cited. U: Unpublished data.

served in the spontaneous MFs in liver and colon be-
tween males and females (12). In most studies, the spon-
taneous gpt MFs in mice range around 5 X 10~° whether
the studies assessed mutant frequencies (not sequenced)
or mutation frequencies (sequenced, and clonally cor-
rected). This spontaneous MF is lower than that of
other transgenic rodent mutation assays, such as
Muta™mice and Big Blue® mice, which are usually
higher than 1 X 1073, The lower MF of the gpt assay may
be caused by the different selection method and the se-
quence of the gpt gene. Phenotypic selection requires
complete loss of enzymatic activity of the mutated gpt
gene product; thus even if a mutation was introduced
into the gpt gene, the residual enzymatic activity, if
remains, may still be sufficient to catalyze enough 6-TG
to kill the cells. It is reported that the spontaneous MF
increases with age in most somatic cells in Muta™mice
and Big Blue® mice (15-18). In gpt delta mice, the spon-
taneous MF in the liver in 85 weeks old was 2-fold
higher than in 19 week old (19). This tendency could
differ in brain and germ tissue, where MFs do not in-
crease with age in adult mice (20-22). Interestingly, the
spontaneous MFs varied among the knockout mice. The
spontaneous gpt MF in the liver of oggl gene knockout
mice, which lack 8-oxo-guanine DNA glycosylase activi-
ty, is significantly higher than that in wild type mice
(23). IL-10-deficient mice, which spontaneously develop
intestinal inflammation, have a gpf MF five times higher
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in the colon than that in wild type (24). In the transcrip-
tion factor Nrf2-null (nrf27/~) mice, the spontaneous
gpt MF in the lung was approximately three times higher
than that in heterozygous (nrf2*/~) or wild-type
(nrf2*’*) mice. The MF in the liver was higher in
nrf27’~ and nrf2*’~ mice than in nrf2*/* mice. In con-
trast, no difference in MF was observed in the testis
among the three genotypes (25). These results suggest
that the intracellular environment, including oxidative
stress and/or detoxification systems, may contribute to
spontaneous mutation. In the gpt delta rat, the average
of spontaneous gpt MF is 4.4 X 107%. No difference was
observed in MF between the SD (4.5% 107°) and F344
(4.4%x107% backgrounds. Although the data are very
limited, these values are comparable to those in mice. In
contrast, Hayashi et al. reported that the spontaneous
gpt MF in the liver of rats was lower than that of mice
(13). The similar observation was reported in Big Blue
mice and rats (7). Additional studies are needed to in-
vestigate the effect of genetic strain background, tissue
type, and age on spontaneous MF.

Table 2 summarizes the spontaneous Spi~ MFs of gpt
delta rodents. The average MF is 2.7 X 10~¢ in mice and
2.8% 107 in rat. No marked difference in MF has been
observed between SD (2.9 X 107°) and F344 (2.8 X 1079
rats, although additional studies are needed to confirm
this finding. In most experiments, the spontaneous Spi~
MFs of gpt delta mice were approximately 1to 5% 1076,
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Table 2. Spontaneous Spi~ MFs of gpt delta rodents
Spi~ MF (x 1079 No. of animal Sex Age (week) Reference
gpt delta Mouse (C57BL/6J)
Liver 2.0 35 M&F 8-85 12) 35) 31 U
Lung 2.8 16 M&F 11-12 30)* U
Colon 2.4 6 M&F 22 (12)
Epidermis 1.5 6 M&F 13-18 (B8 U
Bone marrow 5.4 5 M 13-22 (12) U
Kidney 5.1 9 M 10-17 3B5)U
Spleen 3.2 17 M&F 10-22 (12) 35) U
Testis 2.2 4 M 10-22 (12) (35)
Brain 1.8 12 M&F 12-22 (12) U*
Average 2.7
gpt delta Rat (SD)
Liver 4.4 5 M 30 U
Kidney 1.3 5 M 17 U
Average 2.9
gpt delta Rat (F344)
Liver 2.8 3 M 24 U
Average 2.8

*Instead of mutant frequency, mutation frequency is cited. U: Unpublished data.

which is lower than MFs of other transgenes, such as
lacZ and lacl. Because the predominant types of point
mutations induced in vivo are base substitutions, the
spontaneous MF of Spi~, which specifically detects dele-
tion mutations, may be lower than that of lacZ, lacl or
gpt. No difference in spontaneous Spi~ MFs among tis-
sues or between males and females was detected (12),
although the number of studies evaluating these groups
is limited. The effect of age on spontaneous Spi~ MF
has not been well characterized.

Interestingly, Parp-I knockout mice showed tenden-
cies of higher Spi~ MFs at 18 months of age, compared
to Parp-1*/* mice, in the liver and brain (26). Several
studies investigated the spontaneous Spi~ MFs of p53
and Atm knockout gpt delta mice; no significant differ-
ences were reported among these groups (27,28).

Induced MFs of the gpt delta Rodents

The gpt and Spi~ assays have been validated in both
mice and rats with various chemical mutagens/carcino-
gens, UV and ionizing radiations. The previously pub-
lished experimental data from chemicals and physical
(irradiation) agents are shown in Table 3. Among 23
agents, 4 chemicals showed a negative response.
Acetaminophen is noncarcinogen and did not induce
gpt mutations in the liver of SD rats. Di(2-ethyl-hex-
yl)phthalate (DEHP) and flumequine are known as non-
genotoxic hepatocarcinogens. DEHP did not increase
gpt or Spi~ MFs in the liver of SD rats. Flumequine did
not significantly increase gpt and Spi~ MFs in the liver
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of B6C3F1 mice, a target organ of carcinogenicity in
CD-1 mice. 3-Chloro-4-(dichloromethyl)-5-hydroxy-
2(5H)-furanone (MX) is strongly mutagenic in
Salmonella typhimurium without metabolic activation.
However, MX was not mutagenic in both gp¢ and Spi~
assays in the liver or lung of C57BL/6J mice, although
MX induced tumors in rats (29). These results suggest
that the in vivo mutagenicity should be evaluated in a
target organ of carcinogenicity to investigate the
mechanism of carcinogenesis. Nineteen agents showed
positive response in these assays. 2-Amino-3,8-
dimethylimidazo[4,5-f]qoinoxaline (MelQx) was used
in a dose-response study. MelQx induced gpf mutations
in the liver of mice that were fed more than 30 ppm for
12 weeks. However, no significant induction was ob-
served in mice fed 3 ppm. As an example of organ
specificity, 2-amino-1-methyl-6-phenylimidazo[4,5-b]
pyridine (PhIP) induced gpf and Spi~ mutations in the
colon mucosa, spleen and liver, but not in the testis,
brain and bone marrow. No significant differences were
observed in the MFs in liver and colon of PhIP-treated
mice between males and females. Dicyclanil may exhibit
gender differences in mutagenicity, as the gpt MF in the
liver was elevated only in females. Also interesting is the
induction of gpt mutations but not Spi~ mutations in
the same organ by N-ethyl-N-nitrosourea (ENU) and 4-
(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)
treatment. This may be because these are alkylating a-
gents that preferentially induce base substitutions. On
the other hand, a carbon ion beam induced Spi~ muta-
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tions in the liver of mice, but not gpt mutations, possi-
bly due to the efficient induction of DNA double strand
breaks by carbon particle irradiation that leads to dele-
tions. It should be noted that chronic gamma-ray irradi-
ation at low dose rates (0.5, 1.0 and 1.5 mGy/h) did not
cause a significant increase in gpt and Spi~ MFs in the
lungs of mice; however, DNA sequencing analysis of the
recovered Spi~ mutants showed a dose-dependent in-
duction of large deletions over 1 kb (30). This suggests
that sequence analysis is a useful method to identify the
specific type of mutations. Determining the mutational
spectrum could be important in providing mechanistic
information of the mutagenic agents. The induced MFs
were modified in various knockout mice. KBrO; treat-
ment for 12 weeks gave rise to increased gpt MF in the
kidney of oggl knockout mice higher than that of wild
type mice (31). In the Nrf2-null (nrf2~/~) mice, a single
intratracheal instillation of benzo[a]pyrene (B[a]P) in-
creased gpt MF in lung higher than that of B[a]P-treated
nrf2*/~ mice (25). The p53 defect markedly enhanced
the Spi~ MF in the kidney of mice exposed to carbon-
ion irradiation. The enhancement of Spi~ MF in kidney
of p53~/~ mice was primarily due to an increase in com-
plex or rearrangement-type deletions (27). After X-ray
irradiation, A¢m status did not significantly affect either
the induced Spi~ MF or the type of Spi~ mutations in
the mouse liver (28). After treatment with an alkylating
agent, N-nitrosobis(2-hydroxypropyl)amine (BHP), the
Spi~ MF in the liver of Parp-1~/ mice increased 1.6-
fold higher than that of Parp-1*/* mice. In contrast, the
gpt MFs in the liver of Parp-1~'" and Parp-1*’" mice
after BHP treatment were both elevated and there was
no significant difference between these genotypes (32).

Remarks

Transgenic mutation assays can evaluate mutagenesis
in vivo in a broad range of tissues using neutral reporter
genes that are integrated into the genome of the animal
model. Many agents have been assayed using this ap-
proach over the past several decades (14). The data were
weighted by strong mutagens. In these cases, shorter
treatment time such as a single administration was
sufficient to detect mutagenic effects. However, the
majority of mutagenic chemicals in the environment are
likely to be weak mutagens. The International Work-
shop on Genotoxicity Testing IWGT) provided recom-
mendations for the assays, treatment protocols and
post-treatment sampling procedures for regulatory as-
sessment of safety (2,33). Based on observations that
mutations accumulate with each treatment, a repeated-
dose regimen for a period of 28 days is strongly en-
couraged, with sampling at 3 days following the final
treatment. Because this treatment protocol is commonly
used in toxicological testing, transgenic rodents may be
used for 28-day repeat dose toxicity assays for analysis
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of both genotoxicity and pathological alterations.
However, it has not conclusively been determined if the
28-day treatment period is sufficient to detect a sig-
nificant increase of MF of weak mutagens. Also uncer-
tain is the effect of daily compared to weekly adminis-
trations on the MF, and whether 3-day sampling time
after repeated administrations is sufficient in both
slowly and rapidly dividing tissues. Published reports in
which a 28 consecutive daily treatment protocol was ap-
plied are limited. It will be particularly important to
evaluate mutagenesis using this protocol in different tis-
sues, particularly for weak mutagens. Flexibility of
route of administration and tissues for analysis is an ad-
vantage of in vivo transgenic rodent assays. Researchers
can select the most appropriate mode of administration
based on absorption, distribution and metabolism. Hu-
mans are chronically exposed to most environmental
chemicals at low doses. Long-term exposure of a low
dose is an important approach to investigate the ob-
served threshold effects or adaptive responses. In addi-
tion, humans are exposed to a variety of chemical and
physical agents; these factors may interact and the ac-
tion of one agent may be influenced by exposure to
another agent. The risk from combined exposure to
more than one agent could be more complicated, and
worth further investigation.

To analyze the various types of in vivo mutations, gpt
delta transgenic rodents were established to detect dele-
tions as well as point mutations. Because most carcino-
genesis studies are undertaken in rats rather than mice,
the gpt delta rat could be useful to investigate the
mechanisms of carcinogenesis in target organs. The
mouse model is useful to investigate how specific genes
function in these processes, as specific gene knockout
mice can be crossed and studied. Understanding how
the specific molecular alterations induced by chemicals
in the various tissues will be helpful for elucidating the
molecular mechanisms underlying environmental muta-
genesis and carcinogenesis.
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