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1. Introduction
Broad-band speech improves the performance of auto-

matic speech recognition (ASR), but the performance is
significantly degraded when broad-band speech is used for
training acoustic models and narrow-band speech is input for
ASR decoding. Many bandwidth extension (BWE) methods
have been proposed for improving a perceptual subjective
impression. One of the most effective BWE methods is a
Gaussian mixture model (GMM)-based BWE [1]. On the
other hand, recently, neural network (NN)-based signal res-
toration methods have been widely used. Recurrent structures
are effective for speech enhancement and, in particular, a long
short-term memory recurrent neural network (LSTM-RNN)
[2] has high reconstruction performance for signal restoration.
In this letter, we propose to use the LSTM-RNN for BWE,
and its performance is evaluated for the TIMIT phoneme
recognition task.

2. GMM-based BWE
In the field of voice conversion, where the speech of one

speaker is converted into that of another speaker, a GMM-
based voice conversion technique has been proposed [3].
This type of GMM-based voice conversion is applied to a
BWE task [1]. We use this method as a baseline. In the
context of voice conversion, a narrow-band speech is the
original speech and a broad-band speech is the converted
speech. Full covariance GMMs are used for modeling
concatenated feature vectors before and after BWE, as shown
in Fig. 1. Converted, i.e., BWE, speech is estimated on the
basis of the maximum likelihood criteria.

3. LSTM-RNN-based BWE
Generally, for time-series signals, RNNs have higher

performance than simple NNs because recurrent structures
can consider time-series information. The LSTM-RNN has
been proposed to relax the influence of vanishing gradient
problems in the RNN and to deal with longer contexts [2].
Its effectiveness has been shown for a speech enhancement
task [4]. The LSTM-RNN with a narrow-band speech input
and broad-band speech output is trained by an error back-
propagation method based on a least-square-error criterion,

as shown in Fig. 2.

4. Phoneme recognition experiments on the TIMIT
corpus

4.1. Experimental setups
For BWE, two types of speech features were extracted: 1)

mel cepstrum (mcep), which is widely used for speech
synthesis, and 2) mel-frequency cepstrum coefficient
(MFCC), which is widely used for ASR. In the case of a
GMM-based BWE, 1) the dimensions of mcep features were
17 for 8 kHz and 25 for 16 kHz, and a total of 84-dimensional
features in conjunction with their � features were used. For
ASR, MFCC features were extracted after signal waves in the
time domain were restored from mcep features. 2) The
dimension of MFCC features was 13 for both 8 and 16 kHz,
and a total of 52-dimensional vectors were used with their �

features. In this case, the obtained MFCC features were
directly input for ASR. SPTK toolkit (ver. 3.7)a was used.

In the case of an LSTM-RNN-based BWE, 1) the LSTM-
RNN was trained to predict 25-dimensional mcep static
features with 25-dimensional �, i.e., 50-dimensional in total,
features for 16 kHz from the 17-dimensional static mcep with
17-dimensional �, i.e., 34-dimensional in total, mcep features
for 8 kHz. 2) For MFCC, 26-dimensional MFCC features
comprising 13-dimensional static features and � features,
were used. The ‘‘currennt’’ toolkit (ver.0.2)b [4] was used.

The training data of the BWE model and ASR acoustic
model were the same as the training data of the TIMIT
phoneme recognition task, which was one of the most
standard corpora for English ASR. Their performances were
evaluated using the development set and evaluation set of the
TIMIT in terms of phoneme error rate (PER) using the Kaldi
toolkitc [5]. For ASR, maximum-likelihood GMM acoustic
models were used with MFCCþ�þ�2 features. To improve
the ASR performance, two types of advanced ASR techniques
were used. The first one was feature transformation by linear
discriminant analysis (LDA) [6] and maximum-likelihood
linear transformation (MLLT) [7]; the second one was speaker
adaptation by feature-space maximum-likelihood linear re-
gression (fMLLR) [8].
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4.2. Results and discussion
Table 1 shows the baseline performance on the develop-

ment set. The performance was the highest for the matched
case of recognizing 16 kHz speech with 16 kHz models. The
second best one was the matched case of recognizing 8 kHz
speech with 8 kHz models. These matched cases showed

much better performance than the mismatched case of
recognizing 8 kHz speech with 16 kHz models. Speaker
adaptation decreased the performance gaps between matched
and mismatched conditions. When sampling frequencies are
different between the training and the test speech, speaker
adaptation compensates for the influence of mismatch to some
extent but the recognition performance was significantly
worse than those of matched conditions.

Table 2 shows the performance after BWE for mcep
features. Both gender-dependent and gender-independent
BWE models were prepared, but their performance differ-
ences were small for both the GMM and LSTM-RNN cases.
For all cases, the LSTM-RNN outperformed the GMM. This
shows the effectiveness of a LSTM-RNN-based BWE, as in
the case of speech enhancement.

Table 3 shows the performance of directly predicted
MFCC features. Gender-independent models were used in the
experiments below. There are two cases: without and with
mean normalization of input features to the GMM or LSTM-
RNN. Mean normalization was essential for the GMM and
effective for LSTM. In the two cases of the GMM without
speaker adaptation, the performance was degraded, but in
the other cases, direct estimation of MFCC improved the
performance compared with that of the mcep-based BWE. For
the purpose of ASR, a direct estimation of the features
suitable for ASR was effective. BWE improved the perform-
ance of ASR for 8 kHz speech without switching acoustic
models.

Table 4 shows the results of the test set. The tendencies
were similar to those of the development set. The LSTM-
RNN outperformed the GMM. LSTM using MFCC features
achieved the best performance, where the differences between
matched cases and BWE cases were less than 1%.
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Fig. 1 GMM-based BWE.
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Fig. 2 LSTM-RNN-based BWE.

Table 1 Phoneme error rate (PER) [%] on the dev set of
the TIMIT phoneme recognition task, evaluating
16 kHz and 8 kHz speech. 8 kHz speech was recog-
nized using 16 kHz and 8 kHz models. MFCC features
were used for ASR with advanced ASR techniques
such as feature transformation (LDA+MLLT) and
speaker adaptation (fMLLR).

ASR feature

eval train MFCC +LDA+MLLT +fMLLR

16k 16k 23.1 21.3 18.9
8k 16k 32.3 28.8 23.4
8k 8k 23.5 22.5 20.3

Table 2 PER [%] on the dev set, evaluating GMM- and
LSTM-RNN-based BWE (8 kHz ! 16 kHz). Mel-
cepstrum features were used for BWE. Both gender-
dependent (gd) and gender-independent (gi) models
were constructed.

ASR feature

MFCC +LDA+MLLT +fMLLR

gd/gi gd gi gd gi gd gi

GMM 28.9 29.3 27.7 27.9 25.2 25.4
LSTM 25.5 25.5 23.8 23.9 22.0 22.1

Table 3 PER [%] on the dev set. MFCC features
without and with mean normalization (Mean norm.)
were used for BWE.

ASR feature

MFCC +LDA+MLLT +fMLLR

Mean norm. — P — P — P

GMM (gi) 36.0 30.4 35.3 29.0 31.9 24.7
LSTM (gi) 25.5 24.7 24.1 23.0 21.5 20.7
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There is an advantage of the proposed method compared
with the use of the matched 8 kHz acoustic model. The
proposed method does not require an acoustic model change;
thus, it can be widely used for various existing ASR systems
without troublesome acoustic model training. If matched
acoustic models are needed, training for both 16 kHz and
8 kHz is needed. The training time of acoustic models doubles
for each ASR system, whereas the training of the proposed
BWE model is required only once. Constructing two types
of acoustic models for each system is inefficient because
16 kHz speech has recently come more frequent than 8 kHz
speech.

5. Conclusion
We proposed the LSTM-RNN-based BWE and compared

its performance with that of a conventional GMM-based BWE
in an ASR experiment. Experiments using the TIMIT corpus

showed that LSTM-RNN-based BWE was more effective
than GMM-based BWE and that predicting MFCC features
directly was better than predicting mel-cepstrum features for
ASR purposes. The LSTM-RNN achieved a performance
equivalent to those of matched cases without the need to
switch acoustic models.
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recognition toolkit,’’ Proc. ASRU, pp. 1–4 (2011).

[6] R. Haeb-Umbach and H. Ney, ‘‘Linear discriminant analysis for
improved large vocabulary continuous speech recognition,’’
Proc. ICASSP 92, pp. 13–16 (1992).

[7] R. Gopinath, ‘‘Maximum likelihood modeling with Gaussian
distributions for classification,’’ Proc. ICASSP 98, pp. 661–664
(1998).

[8] M. Gales, ‘‘Maximum likelihood linear transformations for
HMM-based speech recognition,’’ Comput. Speech Lang., 12,
75–98 (1998).

Table 4 PER [%] on the test set. Mel-cepstrum features
(mcep) and MFCC features were used for BWE.

ASR feature

MFCC +LDA+MLLT +fMLLR

eval train Baseline

16k 16k 24.9 22.3 19.9
8k 16k 34.8 30.4 25.3
8k 8k 25.1 23.5 21.0

BWE

BWE feature mcep MFCC mcep MFCC mcep MFCC

GMM (gi) 31.4 32.6 29.8 29.9 26.6 26.1
LSTM (gi) 27.2 25.9 25.2 24.0 23.4 21.9
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