
Performance estimation of noisy speech recognition

using spectral distortion and recognition task complexity

Ling Guo�, Takeshi Yamaday, Shigeki Miyabez,
Shoji Makinox and Nobuhiko Kitawaki}

Graduate School of Systems and Information Engineering, University of Tsukuba,
1–1–1 Tennodai, Tsukuba, 305–8573 Japan

(Received 2 December 2015, Accepted for publication 1 June 2016)

Abstract: Previously, methods for estimating the performance of noisy speech recognition based on
a spectral distortion measure have been proposed. Although they give an estimate of recognition
performance without actually performing speech recognition, no consideration is given to any change
in the components of a speech recognition system. To solve this problem, we propose a novel method
for estimating the performance of noisy speech recognition, a major feature of which is the ability to
accommodate the use of different noise reduction algorithms and recognition tasks by using two
cepstral distances (CDs) and the square mean root perplexity (SMR-perplexity). First, we verified the
effectiveness of the proposed distortion measure, i.e., the two CDs. The experimental results showed
that the use of the proposed distortion measure achieves estimation accuracy equivalent to the use of
the conventional distortion measures, the perceptual evaluation of speech quality (PESQ) and the
signal-to-noise ratio (SNR) of noise-reduced speech, and has the advantage of being applicable to
noise reduction algorithms that directly output the mel-frequency cepstral coefficient (MFCC) feature.
We then evaluated the proposed method by performing a closed test and an open test (10-fold cross-
validation test). The results confirmed that the proposed method gives better estimates without being
dependent on the differences among the noise reduction algorithms or the recognition tasks.

Keywords: Performance estimation, Noisy speech recognition, Noise reduction, Spectral distortion,
Recognition task complexity
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1. INTRODUCTION

Speech recognition services are becoming more prev-

alent with the spread of smartphones and tablets. However,

current speech recognition systems still have a serious

problem, namely, the recognition performance is degraded

in noisy environments [1]. The degree of performance

degradation depends on the nature of ambient noise. To

ensure a satisfactory quality of experience (QoE) and to

determine a system configuration suitable for each indi-

vidual noise environment before starting a speech recog-

nition service, it is essential to establish a method that can

be used to efficiently investigate recognition performance

in different noisy environments.

One typical approach is to prepare noisy speech data in

the target noise environment and then perform a recog-

nition experiment. However, this has high computational

complexity and is time-consuming. An alternative ap-

proach to this problem is to estimate recognition perform-

ance based on the spectral distortion between noisy speech

and its original clean version [2–4]. The original clean

speech is available since we assume that the noisy speech

is generated by recording the noise in different noisy

environments and artificially adding it to the clean speech.

This assumption is reasonable for both approaches from

the viewpoint of reducing the recording cost. In the latter

approach, a significant reduction of the amount of speech

data to be processed is expected by using artificial voice

signals with average speaker characteristics [3].

These methods give an estimate of recognition per-

formance without actually performing speech recognition.

Previously, we proposed a performance estimation method

using the perceptual evaluation of speech quality (PESQ)
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[5] as a distortion measure [3]. In this method, an estimator,

which is a function of the PESQ score, is trained on the

basis of the relationship between the recognition perform-

ance and the PESQ score. Fukumori et al. also proposed a

method using the PESQ and room acoustic parameters to

estimate recognition performance in noisy and reverberant

environments [4].

Although these methods can give an accurate estimate

of recognition performance, no consideration is given to

any change in the components of a speech recognition

system. For example, a noise reduction algorithm, which is

used in the preprocessing stage, may be changed depending

on the nature of the ambient noise in order to achieve better

recognition performance. A recognition task, which de-

cides what a speech recognition system is capable of

recognizing, is often changed according to the content of a

service. In general, a complex task makes speech recog-

nition difficult. These changes require an estimator speci-

alized for each individual noise reduction algorithm and

recognition task. The training of such a specialized

estimator is however labor intensive and time-consuming.

To solve this problem, we recently proposed a perform-

ance estimation method using the signal-to-noise ratio

(SNR) of noise-reduced speech in addition to the PESQ

as distortion measures [6]. This method can estimate

recognition performance without being dependent on the

differences among noise reduction algorithms. We also

proposed a method using the PESQ as a distortion measure

and square mean root perplexity (SMR-perplexity) [7] as a

task complexity measure [8]. It allows recognition per-

formance to be estimated for different recognition tasks. In

this paper, we integrate these two methods to handle both

different noise reduction algorithms and different recog-

nition tasks, and propose a novel performance estimation

method. The proposed method estimates recognition

performance using two cepstral distances (CDs) and the

SMR-perplexity. The estimator is defined as a function of

these three variables and can be used with different noise

reduction algorithms and for different recognition tasks

without any additional training.

The rest of this paper is organized as follows. In

Sect. 2, the proposed method is explained in detail. In

Sect. 3, we evaluate the effectiveness of the proposed

method. Section 4 summarizes the work.

2. PROPOSED METHOD

Figure 1 shows an overview of the proposed method.

First, a distortion value, which represents the spectral

distortion between the noisy/noise-reduced speech and its

original clean version, is calculated. Then recognition

performance is estimated from the distortion value and a

task complexity value. In the proposed method, the

distortion measure, the task complexity measure, and the

estimator are all issues that need to be addressed and are

therefore described in detail below.

2.1. Distortion Measure

As mentioned above, we previously proposed a

performance estimation method using the PESQ and the

SNR of noise-reduced speech as distortion measures [6].

Although this method can estimate recognition perform-

ance without being dependent on the differences among

noise reduction algorithms, one problem remains, namely,

that the waveform of noise-reduced speech is required for

the calculation of the PESQ score. Therefore, it is not

easily applicable to noise reduction algorithms that directly

output a speech feature for speech recognition.

To cope with this problem, we propose the use of two

CDs instead of the PESQ and the SNR of noise-reduced

speech. One is the CD calculated in the speech frames and

the other is the CD calculated in the non-speech frames.

In this paper, the mel-frequency cepstral coefficient

(MFCC) with the 0th-order coefficient is used for calculat-

ing the two CDs. The MFCC is widely used as a speech

feature for speech recognition. There are many noise

reduction algorithms that directly output not the waveform

but the MFCC. The CD in the speech frames, CDs, is

defined by

CDs ¼
1

NMs

X
m2Ms

1

K þ 1

XK
k¼0

jcdðk;mÞ � crðk;mÞj2
( )

; ð1Þ

where m is the frame index, k is the cepstral index, K is

the cepstral analysis order, and crðk;mÞ and cdðk;mÞ are the

MFCC of the reference speech (original clean speech) and

the degraded speech (noisy speech or noise-reduced

speech), respectively. Ms is a set of indexes of speech

frames and NMs
is the number of elements of Ms. Although

there are several distance measures including the

Mahalanobis distance, we first used the simplest Euclidean

distance. The CD in the non-speech frames, CDn, is

calculated in the same manner. The PESQ is one of the

objective quality measures for coded speech and it

Original clean speech Noisy speech

Noise reduction

Calculation of distortion value

Estimation of recognition performance

Estimated recognition performance

Task
complexity

Fig. 1 Overview of the proposed method.
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evaluates the speech quality on the basis of speech

distortion. CDs also represents the spectral distortion; thus,

we adopted CDs in place of the PESQ. The SNR of noise-

reduced speech corresponds to the ratio of the power in the

speech frames to the power in the non-speech frames. On

the other hand, CDn represents the spectral distortion of the

noise, but this distortion value is strongly affected by the

noise power since the 0th-order coefficient is used. Because

the SNR of noise-reduced speech changes according to the

noise power when the speech power is constant, we

adopted CDn in place of it. In the proposed method, a

conventional power-based speech/non-speech detection

algorithm, which is used in the PESQ [5], is applied to

the original clean speech.

2.2. Task Complexity Measure

As a task complexity measure, the size of vocabulary,

the perplexity, and its derivation, can be taken into account.

Since it was confirmed that the SMR-perplexity is

appropriate for estimating recognition performance for

different recognition tasks [8], the SMR-perplexity is also

adopted in the proposed method.

The SMR-perplexity is expressed in the following

form:

� ¼

(
1

nþ 1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pðw1j�Þ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pðw1jw2Þ

s
þ

� � � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pð�jw1 � � �wnÞ

s !)2

;

ð2Þ

where Pð j Þ is the word occurrence probability,

w1;w2; � � � ;wn are the words, and n is the number of

words. The symbol ‘‘�’’ means the beginning or ending of a

sentence. This measure overcomes a drawback that the

conventional perplexity does not exactly represent the task

complexity because the deviations of the sentence length

and the number of branches are insufficiently normalized.

The SMR-perplexity changes according to both the

vocabulary size and the language model used. The larger

the SMR-perplexity, the more difficult the recognition task

is.

2.3. Estimator

In the previous method [3], the estimator was expressed

in the following form:

y ¼ f ðxÞ ¼
a

1þ e�bxþc
; ð3Þ

where y and x represent the estimated word accuracy and

the PESQ score, respectively. The constants a, b, and c

correspond to the word accuracy for clean speech, the rate

of performance degradation, and robustness against spec-

tral distortion, respectively. These constants are determined

by data fitting using the iterative least-squares method, that

is, by approximating the relationship between the word

accuracy and the PESQ score obtained by using a single

noise reduction algorithm in different noisy environments.

The estimator in Eq. (3) was then expanded to deal

with two types of distortion values: the PESQ score and the

SNR of noise-reduced speech [6],

y ¼ f ðx1; x2Þ ¼
a

1þ e�b1x1�b2x2þc
; ð4Þ

where x1 and x2 indicate the PESQ score and the SNR of

the noise-reduced speech, respectively. These constants are

determined by approximating the relationship between the

word accuracy, the PESQ score, and the SNR of the noise-

reduced speech obtained by using different noise reduction

algorithms in different noisy environments. The estimator

in Eq. (3) was also modified as follows to introduce the

SMR-perplexity as a task complexity measure [8]:

y ¼ f ðx; �Þ ¼
gað�Þ

1þ e�gbð�Þxþgcð�Þ
; ð5Þ

where x and � indicate the PESQ score and the SMR-

perplexity, respectively. These constants are determined by

approximating the relationship between the word accuracy,

the PESQ score, and the SMR-perplexity obtained by using

a single noise reduction algorithm in different noisy

environments and for different recognition tasks. In

Eq. (5), each constant in Eq. (3) is replaced by a function

of the SMR-perplexity �. This was motivated by the fact

that the task complexity considerably affects the constants

in Eq. (3) as shown in the experiment below. In this paper,

we newly integrate Eqs. (4) and (5) to handle both different

noise reduction algorithms and different recognition tasks.

The estimator in the proposed method is expressed by

y ¼ f ðx1; x2; �Þ

¼
gað�Þ

1þ e�gb1
ð�Þx1�gb2

ð�Þx2þgcð�Þ
; ð6Þ

where x1 and x2 represent the two CDs.

To decide the form of the function of the SMR-

perplexity � in Eq. (6), we first trained the estimator

defined by Eq. (4) for each of different recognition tasks

with different SMR-perplexity values. Here, note that two

CDs are used, x1 and x2 in Eq. (4). In the training, four

different noises, seven values of SNR (including clean

speech), and five different noise reduction algorithms are

used. The details of the recognition tasks and the other

conditions are described in Sect. 3. We then investigated

the relationship between each of the constants a, b1, b2, and

c in Eq. (4) and the SMR-perplexity. Figure 2 shows the

relationship between each constant and the SMR-perplex-

ity. In this figure, each point represents the SMR-perplexity

calculated for one of the recognition tasks and the value of
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one of the constants in the estimator specialized for that

recognition task. It can be seen that each constant can

be represented by an exponential function of the SMR-

perplexity, shown as the solid line in the figure. The form

of the function was then decided as follows.

gað�Þ ¼ p1 � �q1 þ r1

gb1
ð�Þ ¼ p2 � �q2 þ r2

gb2
ð�Þ ¼ p3 � �q3 þ r3

gcð�Þ ¼ p4 � �q4 þ r4 ð7Þ
The constants p�, q�, and r� are determined by approximat-

ing the relationships among the word accuracy, the two

CDs, and the SMR-perplexity obtained for different noisy

environments, noise reduction algorithms, and recognition

tasks.

3. EVALUATION

In this section, we first explain the experimental

conditions and then verify the effectiveness of the proposed

distortion measure, i.e., the two CDs. Finally, we evaluate

the proposed method by performing a closed test and an

open test (10-fold cross-validation test).

3.1. Experimental Conditions

We used the following four noise reduction algorithms,

in addition to the reference case where no algorithm was

used.

. noise reduction is not used (NON)

. minimum mean square error short-time spectral

amplitude estimator (MMSE) [9]

. Wiener filtering (WF) [10]

. advanced front-end of ETSI ES 202 050 (AFE) [11]

. stereo-based piecewise linear compensation for envi-

ronments (SPLICE) [12]

NON, MMSE, and WF output the waveform of noise-

reduced speech, and AFE and SPLICE output the MFCC

feature of noise-reduced speech. In AFE, Wiener filtering

is applied twice and blind equalization is performed in

the feature domain. These methods are commonly used

as a baseline method when developing a noise reduction

algorithm to improve recognition performance and are the

basis of many derivations.

We prepared the following recognition tasks and clean-

speech data corresponding to each task. The sampling rate

of all the speech data described below is 16 kHz. In this

paper, we assume that out of vocabulary (OOV) words do

not exist (or the rate of the OOV words is small).

. Isolated word recognition: We used the Tohoku

University-Matsushita spoken word database [13],

consisting of 3,285 isolated words (railway station

names) uttered by 12 male and female speakers. The

dictionary size was set to 50, 100, 200, 400, 800,

1,600, and 3,200. The number of speech data for each

speaker was the same as the dictionary size and OOV

words did not exist.

. Grammar-based recognition: The speech data used

were 4,004 connected-digit utterances by 52 male and

female speakers, which were the same as those in the

AURORA-2J database [14]. The grammar allows

arbitrary repetitions of digits, a short pause, and a

terminal silence.

. Large-vocabulary continuous speech recognition: We

used two sets of 100 sentence utterances by 23 male

speakers included in the Japanese Newspaper Article

Sentences (ASJ-JNAS) database [15]. The vocabulary

size was set to 5,000 words and 20,000 words, and the

rate of OOV words for each set was 0.14% and 0.03%,

respectively. The language models were word 3-gram

models with 5,000 and 20,000 words [16], which were

trained with the Balanced Corpus of Contemporary

Written Japanese [17].

The SMR-perplexity for each recognition task is summa-

rized in Table 1. The recognition experiments and the

training of each estimator were performed using all the

speech data in each task.

As ambient noise, we used eight forms of noise data,

car1, hall1, train2, lift2, factory1, road2, crowd, and lift1,

included in the Denshikyo noise database [18]. The former
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Fig. 2 Relationship between each of the constants a, b1,
b2, c in Eq. (4) and the SMR-perplexity �.
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four forms of noise data were used for training and the

latter were used for testing. The noisy speech data were

generated by artificially adding the noise data to the

speech data at six different values of SNR: 20, 15, 10, 5,

0, �5 dB.

The acoustic models are gender-independent mono-

phone models with 16 Gaussians per state [16], which are

trained with the clean-speech data from the ASJ-JNAS

database. In order to prevent the difference in the acoustic

models used from affecting the recognition performance,

we used common monophone models. We used the Julius

speech recognizer [19] (rev. 4.3.1) to perform the recog-

nition experiment for all the recognition tasks. The feature

vector in Julius has 25 components consisting of 12

MFCCs, 12 delta MFCCs, and a delta log-power. The

recognition performance is represented by the word

accuracy (%Acc), which is defined by

%Acc ¼
H � I

N
; ð8Þ

where H, I, and N indicate the number of correct words,

the number of erroneously inserted words, and the total

number of words, respectively.

3.2. Verification of the Proposed Distortion Measure

In this subsection, we verify the effectiveness of the

two CDs proposed. For this purpose, we first compare the

following distortion measures.

. PESQ: The estimator defined by Eq. (3) is used.

. PESQ and SNR of noise-reduced speech [6]: The

estimator defined by Eq. (4) is used.

. Two CDs: The estimator defined by Eq. (4) is also

used, but the two CDs are used as x1 and x2 in Eq. (4).

In this experiment, only isolated word recognition with 800

words is used as a recognition task. This is so that only the

variation in recognition performance caused by different

noise reduction algorithms is observed. The noise reduction

algorithms used for training and testing of each estimator

are NON, MMSE, and WF, since the PESQ requires the

waveform of the noise-reduced speech.

Figure 3 shows the relationship between the true word

accuracy and the word accuracy estimated using each of

the distortion measures, with the correlation coefficient R

and the root mean square error (RMSE). In these figures,

Table 1 SMR-perplexity � for each task.

Task �

Isolated word recognition 50 words 50
100 words 100
200 words 200
400 words 400
800 words 800

1,600 words 1,600
3,200 words 3,200

Grammar-based recognition Connected 11
digits

Large-vocabulary continuous 5,000 words 40,588
speech recognition 20,000 words 33,975
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Fig. 3 Relationship between the true word accuracy
and the word accuracy estimated using each of the
distortion measures.
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each point represents the result obtained using one of the

noise reduction algorithms for one of the 25 noise

conditions, that is, 4 (noise data) � 6 (SNRs) conditions

plus one clean case. From Fig. 3(a), it can be seen that

there is significant variation. This is caused by the

difference in the noise reduction algorithms. On the other

hand, the use of the PESQ and the SNR of noise-reduced

speech gives good estimates without being dependent on

the difference in the algorithms. Figure 3(c) also shows

that the use of the two CDs achieves estimation accuracy

equivalent to the use of the PESQ and the SNR of noise-

reduced speech. Furthermore, we conducted the same

experiments for each of the remaining recognition tasks.

The results are shown in Table 2. From the table, we can

again confirm the validity of the use of the two CDs.

Next, we verify the effectiveness of the two CDs using

all the noise reduction algorithms. The noise reduction

algorithms used for training and testing are AFE and

SPLICE, which directly output the MFCC feature for

speech recognition, in addition to NON, MMSE, and WF.

The recognition task is isolated word recognition with 800

words. The estimator defined by Eq. (4) is used, but the

two CDs are used as x1 and x2 in Eq. (4).

Figure 4 shows the relationship between the true word

accuracy and the word accuracy estimated using the two

CDs. As can be seen from this figure, the use of the two

CDs again achieves estimation accuracy equivalent to that

in Fig. 3(c), in spite of the increased number of noise

reduction algorithms.

These results show that the use of the two proposed

CDs is effective compared with the use of the PESQ and

the SNR of noise-reduced speech, since they are applicable

to the noise reduction algorithms that directly output the

MFCC feature.

3.3. Verification of the Proposed Method

In this subsection, we verify the effectiveness of the

proposed method for different noise reduction algorithms

and recognition tasks. For this purpose, we first compare

the proposed method with the use of the two CDs, using

the method described in Sect. 3.2. The efficacy of the

introduction of the SMR-perplexity is investigated by this

comparison.

. Two CDs: The estimator defined by Eq. (4) is used,

and the two CDs are used as x1 and x2 in Eq. (4).

. Proposed method: The estimator defined by Eqs. (6)

and (7) is used.

In this experiment, all the recognition tasks and the noise

reduction algorithms described in Sect. 3.1 are used for the

training and testing of each estimator. The estimator of the

use of the two CDs was decided as follows:

y ¼
88:71

1þ e0:77x1þ0:71x2�12:12
: ð9Þ

The estimator of the proposed method was also trained as

follows.

y ¼
gað�Þ

1þ e�gb1
ð�Þx1�gb2

ð�Þx2þgcð�Þ
;

gað�Þ ¼ �7:08 � �0:13 þ 110:22

gb1
ð�Þ ¼ 0:03 � �0:28 � 0:83

gb2
ð�Þ ¼ 0:48 � ��0:12 � 1:23

gcð�Þ ¼ 0:62 � �0:20 � 16:17 ð10Þ
Figure 5 shows the relationship between the true word

accuracy and the word accuracy estimated by each method.

In these figures, each point represents the result obtained

using one of the noise reduction algorithms for one of the

noise conditions and one of the recognition tasks. From

Table 2 RMSE for each of the ten recognition tasks.

SMR-perplexity
11 50 100 200 400 800 1,600 3,200 33,975 40,588 averageMethod

PESQ 8.93 8.85 8.88 8.41 8.59 8.64 9.96 11.27 13.62 13.87 10.10

PESQ & output SNR 7.61 6.69 6.65 5.82 4.67 4.94 5.15 6.25 8.77 9.43 6.59

Two CDs 5.17 5.43 4.16 4.34 3.70 3.81 4.26 5.18 5.64 5.62 4.73
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Fig. 4 Relationship between the true word accuracy and
the word accuracy estimated using the two CDs.
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Fig. 5(a), it can be seen that there is significant variation.

This means that the estimator in the use of the two CDs

cannot eliminate dependence on the recognition tasks. On

the other hand, we can confirm that the proposed method

gives better estimates without being dependent on the

differences in the recognition tasks. The RMSE of 5.18 for

the proposed method is comparable to the average RMSE

of 4.73 for the use of the two CDs shown in Table 2, which

was obtained under the easier condition that only a single

recognition task is considered.

Finally we evaluate the effectiveness of the proposed

method using an open test (noise reduction algorithm and

recognition task complexity open test). For this purpose,

we perform a 10-fold cross-validation test. A testing set

comprises one of the five noise reduction algorithms and

five of the ten recognition tasks. The training set for this

test set comprises the remaining four noise reduction

algorithms and five recognition tasks. Note here that the

recognition tasks are divided into two groups: one has tasks

where � ¼ 11, 100, 400, 1,600, and 33,975 and the other

has tasks where � ¼ 50, 200, 800, 3,200, and 40,588. The

number of pairs in the test set and the training set therefore

becomes ten. In this experiment, the estimator defined by

Eqs. (6) and (7) is used.

Figure 6 shows the relationship between the true word

accuracy and the word accuracy estimated by the proposed

method. This figure is an estimation result for the testing

set with the MMSE and the recognition tasks with � ¼ 50,

200, 800, 3,200, and 40,588. In this figure, each point

represents the result obtained using the MMSE for one of

the noise conditions and one of the recognition tasks. It can

be seen that the proposed method achieves estimation

accuracy equivalent to that in Fig. 5(b), corresponding to

a closed test (noise reduction algorithm and recognition

task complexity closed test). The correlation coefficient R

and the RMSE for each of the ten testing sets are

summarized in Table 3. The left column and the top

row indicate the recognition tasks and the noise reduction

algorithm in each testing set, respectively. From Table 3,

we can see that there is little difference among the RMSEs

of the ten test sets. The correlation coefficient R and the

RMSE averaged over the ten testing sets are 0.98 and 5.71,

respectively. This result is comparable to the RMSE of

5.18 for the closed test.

From these results, it is confirmed that the proposed

method gives better estimates without being dependent on

the differences among the recognition tasks or the noise

reduction algorithms.

4. CONCLUSION

We proposed a performance estimation method for

noisy speech recognition, in which the major feature is the

ability to accommodate the use of different noise reduction

algorithms and recognition tasks by using two CDs and the

SMR-perplexity. First, we verified the effectiveness of the
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Fig. 5 Relationship between the true word accuracy and
the word accuracy estimated by each method.
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the word accuracy estimated by the proposed method.
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proposed distortion measure, i.e., the two CDs. The

experimental results showed that the use of the proposed

distortion measure achieves estimation accuracy equivalent

to the use of the conventional distortion measures of the

PESQ and the SNR of noise-reduced speech, and has the

advantage of being applicable to noise reduction algo-

rithms that directly output the MFCC feature. We then

evaluated the proposed method by performing a closed test

and an open test (10-fold cross-validation test). The results

confirm that the proposed method gives better estimates

without being dependent on the differences among the

noise reduction algorithms or the recognition tasks.
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