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1. Introduction
In response to the recent environmental issues, the

improvement and reuse of existing buildings has become a
major subject. The fact that a considerable number of apart-
ment buildings constructed during the 1960’s and 1970’s seek
to be reused, creates the need for renovation and moderniza-
tion that conform more closely to current acoustic standards.
In most cases, increasing the slab thickness is not the best
solution because it leads to, for example, excess weight so that
high-performance solutions for double floors are required.

Recently, the authors have developed a new type of high-
performance double floor with Helmholtz resonators. Good
results for heavy-weight impact sound insulation were ob-
tained in an experiment [1]. Furthermore, theoretical analysis
based on a two-particle model was developed to clarify the
effects of the specifications of the double floor [2]. Although
the new double floor performed satisfactory regarding heavy-
weight impact sound insulation, high construction costs made
it impractical. For this reason, with the primary objective of
reducing the construction cost, materials such as cardboard,
gypsum boards and expanded polystyrene boards have been
tested for fabricating Helmholtz resonators [3]. In addition,
light-steel square pipes (hereafter called ‘‘square bars’’) were
also used, and promising results were obtained in an experi-
ment with single unit models [4]. On the other hand, it is of
great importance to verify the validity of the unit experiments
by full-scale tests.

We present the experimental results for full-scale samples
(2:7� 3:6 m2) of high-sound-insulation double-floor systems
with Helmholtz resonators made of square bars. Impact tests
were carried out in a real-size laboratory building, and the
slab thickness was 180 mm (see Fig. 1).

2. Floor impact sound measurements
2.1. Double-floor characteristics

Sample structures consisting of a double-floor system (see

Fig. 2) were formed with a hard flooring layer (12 mm),
particle board (20 mm) and square bars (45� 100 mm2,
thickness: 0.45 mm), all supported by steel angles and rubber
vibration isolators (35� 35� 25 mm3). The necks of reso-
nators, made of PVC pipes (thickness: 2.5 mm), were located
along the length of square bars. Both vertical and horizontal
positions of square bars were chosen in order to compare the
effects produced by the resonators on the floor insulation
performance. The cross-sectional second moments of hori-
zontal (Ixx) and vertical (Iyy) positions can be seen in Fig. 3.
2.2. Test description

A total of four kinds of double-floor samples with
Helmholtz resonators having different characteristics were
tested. Schematic drawings of the four full-scale samples and
their specifications are shown in Fig. 4 and Table 1, respec-
tively. For Samples 1 and 2, the lengths of square bars were
equal to the specimen width, while for Samples 3 and 4, steel
angles were placed in the middle of the test pieces to elucidate
how rigid elements affect the double-floor efficiency, as can
be observed in real situations. The calculation of the natural
frequency f0 (� 10 Hz to 15 Hz) for choosing the size (35�
35� 25 mm3) and hardness (40�) of rubber vibration isolators
(static spring constant 1:01� 105 N/m, dynamic spring con-
stant 1:29� 105 N/m) was based solely on the performance of
a rubber spring (not air spring). The resonance frequencies,
flow and fhigh, obtained using the two-particle model [2] are
also shown in Table 1.

The excitation points and microphone points (0.6, 0.8, 1.0,
1.2, and 1.4 m height) are shown in Fig. 5. Measurement was
performed not only in 1/1 octave bands but also in 1/3 octave
bands, identified using Japanese Industrial Standard (JIS
1418-2:2000); a tire machine and rubber ball were used as the
standard heavy-weight floor-impact sources. Figure 6 shows
pictures taken during the fabrication of specimens and during
impact sound tests.

3. Results
3.1. Floor-impact sound-pressure level

The results of the floor-impact sound-pressure levels for
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the different impact sources can be seen in Fig. 7. Graphs
show a clear difference between the results for heavy-weight
and light-weight impact sources. In the case of the tire
machine test, Samples 1 and 3 seem to have the same effect as
a bare slab for frequencies under 250 Hz. Although something
similar occurs in rubber ball source experiments for Samples
1 and 3, the difference between double-floor tests for Samples
2 and 4 and bare slab tests is more significant. Results of the
tapping machine test show clearly how the 250 Hz band
determined the L-value (Lr) for every single test. Furthermore,
even if the flooring is a hard type, the L-number (Ln) for
Samples 1 and 4 was 48 (see Table 2), very close to the value
of 45 required for the 1st class housing slabs by the
Architectural Institute of Japan (AIJ).
3.2. Reduction of floor-impact sound-pressure level

The reduction of floor-impact sound-pressure level �Ln

(�Ln ¼ Ln ðslabÞ � Ln ðsampleÞ) for the four double-floor
tests is shown in Fig. 8. From the results, it can be seen that,

Fig. 1 Acoustic laboratory building.

Fig. 2 Double floor with Helmholtz resonators: a)
horizontal position of square bars, and b) vertical
position of square bars. Distances in mm.

Fig. 3 Cross-sectional second moments of square bars.

Fig. 4 Double floor with Helmholtz resonators: full-scale samples. Distances in mm.

Table 1 Double floor with Helmholtz resonators: specifications of full-scale samples.

Square
bar

Span
(m)

Resonator
tube size

(mm)

Resonator tube
spacing,
volume

Floor
thickness

(mm)

No. of
rubbers

Rubber
support

load (kg)

f0
(Hz)

flow

(Hz)
fhigh

(Hz)
Total load,

load/m2

SAMPLE 1 Horiz. 2.7 13� L ¼ 40
167 mm,

729.8 cm3 108 26 14.1 15.2 36.5 166.8
365.3 kg,

37.6 kg/m2

SAMPLE 2 Vert. 2.7 13� L ¼ 40
332 mm,

1,451 cm3 163 26 19.5 12.9 24 153.6
506.5 kg,

52.1 kg/m2

SAMPLE 3 Horiz. 1.35 13� L ¼ 40
332 mm,

1,451 cm3 108 28 14.2 15.2 34.5 121.7
397.2 kg,

40.9 kg/m2

SAMPLE 4 Vert. 1.35 13� L ¼ 40
332 mm,

1,451 cm3 163 28 19.2 13 20.8 153.4
538.4 kg,

55.4 kg/m2
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in general, there is a great increase in �Ln, the most
significant improvement being observed in the tapping
machine tests. In Samples 3 and 4, an improvement in �Ln

for the three impact sources can be observed for 63 Hz
compared with Samples 1 and 2, respectively. The reason is
the placement of the angle in the middle of Samples 3 and 4,
which may have given more rigidity to the test pieces.
Moreover, the results for the tire machine source in Sample 4
particularly improved from 63 Hz to 100 Hz in comparison
with Sample 2, and were similar to the results for the rubber
ball source test in this frequency range. Furthermore, it can be
seen clearly how Samples 2 and 4 show a great increase in
�Ln for frequencies between 50 Hz and 150 Hz compared
with Samples 1 and 3.
3.3. Comparison with theoretical and unit-model experi-

mental results
To gain a better understanding of the results shown, it is

of great importance to compare them with the theoretical and
unit-model (300� 300 mm2) experimental results.

The comparison of the theoretical results between the
horizontal and vertical placements of square bars is described
in Ref. [4]. Figure 9 shows the vibration transmissibility (�)
from the theoretical and unit-model experimental results
(taken from Figs. 15 and 16 in Ref. [4]. They correspond to
the results for Samples 3 and 4 in this paper). Specifications
can be found in Fig. 1 of Ref. [4], however, there are slight
differences from Samples 1 to 4 of present report. Theoretical
results show two resonance peaks due to the Helmholtz
resonators for the horizontal position ( flow ¼ 50:9 Hz, fhigh ¼
117:4 Hz) and the vertical position ( flow ¼ 37:7 Hz, fhigh ¼
142:5 Hz) of square bars. At the first instance, both sets of
results seem to be very favourable because of the appearance
of antiresonance dips. However, the unit-model experimental

a)

b)

Fig. 5 Full-scale laboratory views: a) plan and b)
section. Distances in mm.

Fig. 6 Left: Placement of square bars in double floor;
Right: Tire machine test.
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Fig. 7 Floor-impact sound insulation: a) tire machine, b) rubber ball, and c) tapping machine.

Table 2 L-number (Ln), L-value (Lr), and �Ln.

SAMPLE
Tire mach. Rubber ball Tapping mach.

Ln Lr �Ln Ln Lr �Ln Ln Lr �Ln

SLAB 58 60 0 55 55 0 76 75 0
1 58 60 0 49 50 6 48 50 28
2 52 50 6 44 45 11 51 50 25
3 55 55 3 47 50 8 49 50 27
4 53 55 5 42 40 13 48 50 28
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results show that the horizontal position in the square bars
model has no dip. This can be caused by the low rigidity in
the lower surface of square bars [4], and various kinds of
damping, the influence of which is apparent especially when
the resonance frequencies are close to each other. On the other
hand, results for the vertical position of square bars in the
experimental model show an appropriate and promising
performance of Helmholtz resonators, giving a better explan-
ation of the good results obtained for Samples 2 and 4.

4. Conclusions
This research has shown the effectiveness of a double-

floor system with Helmholtz resonators for floor-impact
sound. A general reduction in the floor-impact sound-pressure
level �L was obtained from all impact sound sources. The
reduction was more significant for tapping machine tests; even
with the hard-type floor, the L-number in all samples was very
close to the value of 45 required for light-weight impact tests
by the AIJ. On the other hand, the existence of the angles in
the middle of Samples 3 and 4 leads to an improvement in �L
for 63 Hz for all impact sources. Also, the results for Sample 4
in a tire machine test are better in 1/3 octave bands, which is
similar to the rubber ball test results from 63 Hz to 100 Hz.
Good results were obtained for Samples 2 and 4 owing to
the effective performance of Helmholtz resonators with the
vertical position of square bars.

The ideal double-floor height should be reduced. For this
reason, future works will also focus on reducing the height of
the double-floor system while maintaining the effectiveness of
the Helmholtz resonators.
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Fig. 8 Reduction of floor-impact sound-pressure level �L: a) Sample 1, b) Sample 2, c) Sample 3, and d) Sample 4.
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Fig. 9 a) Theoretical calculation results and b) unit-
model experimental results [4].
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