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Abstract: When a piano string is struck by a hammer, it begins to vibrate vertically, i.e., in a plane
perpendicular to the soundboard. After the vertical vibration has begun, the string then begins to rotate
owing to horizontal vibration. The rotation direction changes several seconds later, which suggests that
the frequencies of the vertical and horizontal components of the vibration are slightly different. In this
article, we describe the modeling and theoretical analysis of the two-dimensional motion of a piano
string. To this end, the string and soundboard are represented by an equivalent mechanical circuit. The
string with two-dimensional movement is divided into two independent strings, each with one-
dimensional movement. The vertical and horizontal motions are initialized to have the same frequency
and are connected by a bridge that is represented as an ideal transformer. A soundboard is attached to
the vertically vibrating string. Once the circuit is excited, the two strings vibrate at slightly different
frequencies.
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1. INTRODUCTION

In this article, we describe the interaction between the

vibration of a piano string and the soundboard. Weinreich

used electrodes to observe the low-frequency motion of a

single piano string and showed that the horizontal motion

of the string has a slow decay rate while the vertical motion

has a fast decay rate [1]. In order to explain this finding,

Iwaoka and Nakamura presented a physical model that

describes how the horizontal vibration of the string is

generated by its vertical vibration [2]. Their model assumes

that the transversal force of the strings is transmitted

through the bridge pin that is mounted on the soundboard.

They investigated two-dimensional motions of the string by

numerical simulation. However, they did not pay attention

to the frequency of the motion. Later, Tanaka et al. used an

optical method to observe the two-dimensional motion of a

single string, and they found that the vertical and horizontal

vibrations have slightly different frequencies [3]. However,

they did not determine the reason why the decay rates and

frequencies are different.

Incidentally, in an earlier paper, one of the present

authors introduced a method of using an equivalent circuit

to provide theoretical solutions for the generation of two-

dimensional motion in a string [4]. In the present article,

we use an equivalent circuit analysis to theoretically

examine the generation of two-dimensional motion in

a single piano string and thus support the experimental

results obtained by Tanaka et al., mainly by showing why

the string vibrations of the vertical and horizontal direc-

tions provide different frequencies.

This article is organized as follows. First, we present a

physical model of the vibration mechanism of piano strings

and a soundboard using an equivalent circuit approach.

Second, the obtained circuit is then simplified while

retaining its essential characteristics. Third, we use Laplace

transforms to analytically solve several differential equa-

tions of the simplified model. We then use the analytical

solutions to clarify the mechanism of two-dimensional

vibration, and end with some concluding remarks.

2. PHYSICAL MODEL OF A STRING
AND SOUNDBOARD

2.1. Equivalent Circuit of a Single String and Sound-

board

As soon as a piano string is struck by a hammer, almost

all the vertical vibration energy is transmitted to the

soundboard via a bridge. In addition, a small part of the

vibration energy is used to generate a horizontal vibration,

because the bridge is not located at the modal center of the
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soundboard [5]. The piano string can then move horizon-

tally as well as vertically relative to the soundboard, even if

the string is initially excited in the vertical direction [1,3].

Since the movement of a string that is vibrating in two

dimensions can be decomposed into vertical and horizontal

components, the string can be considered to be equivalent

to two independent strings that move in orthogonal

directions. A model of a vertically vibrating soundboard,

a bridge, and vertically and horizontally vibrating strings is

shown in Fig. 1.

Equivalent mechanical circuits in the lumped element

model will be represented using the mobility analogy: the

vibration of the string is represented by a series resonant

circuit with mechanical elements, and the vibration of the

soundboard is represented by a parallel resonant circuit [6].

In the mobility analogy, the force acts as the through

variable and the velocity acts as the across variable for the

mechanical circuit. We will use f to denote force and u to

denote vibration velocity. The string and the soundboard

are connected by the bridge; the equivalent mechanical

circuit of this is shown in Fig. 2. For simplicity, we will

consider only the first vibration modes of the string and

soundboard.

The mechanical elements for the first mode of the

string, i.e., the equivalent stiffness K, the equivalent mass

M, and the equivalent resistance R, are given by K ¼ �T=l,
M ¼ �l=�, and R ¼ Q

ffiffiffiffiffiffiffiffi
MK
p

¼ Q
ffiffiffiffiffiffiffi
�T
p

, respectively,

where l is the string length, T is the tension, � is the

linear mass density, and Q is the quality factor. (See

Appendix A.1 for the mechanical elements derived from

physical parameters.) Likewise, the mechanical elements

of the soundboard for the corresponding vibrating mode are

given at the bridge point as follows: equivalent stiffness Kb,

equivalent mass Mb, and quality factor Qb. The equivalent

resistance Rb of the soundboard is determined by Mb, Kb,

and Qb as Rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MbKb

p
=Qb.

When the soundboard moves up and down, the bridge

tilts, so that the point of the bridge pin moves parallel as

well as perpendicular to the soundboard [5]. It is reasonable

to model the bridge as a lever, because the bridge rotates

like a one-armed straight lever whose fulcrum is located on

the edge of the soundboard. The lever is represented as an

ideal transformer in the equivalent mechanical circuit.

The circuit of a single string and a soundboard is

presented in Fig. 3. In this circuit, the vertical vibration

satisfies the following equation:

1

K

df1

dt
þ

1

R
f1 þ

1

M

Z
f1dt þ u1 ¼ 0: ð1Þ

Since the mechanical elements of the string for the

horizontal vibration are the same as those for the vertical

vibration, we obtain

1

K

df3

dt
þ

1

R
f3 þ

1

M

Z
f3dt þ u2 ¼ 0: ð2Þ

The vertical and horizontal vibrations are coupled at the

bridge pin, which is represented as an ideal transformer

with a turn ratio of n : 1. These vibrations are related

through

u2 ¼
1

n
u1; ð3Þ

f3 ¼ n f2: ð4Þ

Using Eqs. (3) and (4), Eq. (2) at the primary terminals of

the transformer can be rewritten as

n2

K

df2

dt
þ

n2

R
f2 þ

n2

M

Z
f2dt þ u1 ¼ 0: ð5Þ

From the viewpoint of the vertically vibrating string and

the soundboard, the removal of the transformer changes the

Soundboard

Vertical Vibration

Horizontal Vibration

Bridge

Fig. 1 Vibration model for a single string and a soundboard.

Fig. 2 Equivalent mechanical circuit in the lumped
element model for a single string and a soundboard.

Fig. 3 Equivalent mechanical circuit in the lumped
element model for the first mode of vibration of a
single string and a soundboard.
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horizontally vibrating string into another vertically vibrat-

ing string with an admittance of n2 times.

If the soundboard vibration is represented by a single

parallel circuit with Kb, Rb, and Mb, then it follows that

Mb

du1

dt
þ Rbu1 þ Kb

Z
u1dt ¼ f0; ð6Þ

where

f0 ¼ f1 þ f2: ð7Þ

Now we examine the relationship between the trans-

versal force and displacement of the string. If the string

moves in the first mode with the displacement y ¼
a sinð�x=lÞ, as shown in the Fig. 4, the angle � is

� ¼
d

dx
a sin

�x

l

� �����
x¼0

¼
�a

l
; ð8Þ

where l is the speaking length of the string. The agraffe

and the bridge are assumed to be located at O and l,

respectively. The transversal force f at the end of the string

is expressed as f ¼ T sin �. With the string displacement

y0 ¼ a sinð�l0=lÞ at observation point x ¼ l0, f is described

as

f �
T
a

l0
sin

�l0

l
l0 �

l

2

� �

T
a

l� l0
sin

�ðl� l0Þ
l

l0 >
l

2

� �
.

8>>><
>>>:

ð9Þ

Since the transversal force is proportional to the string

displacement, the forces f1 and f3 are identical to the

vertical and horizontal displacements of the string.

2.2. Simplification of Soundboard Circuit

In order to obtain analytical solutions, we simplify the

parallel circuit of the soundboard and represent it as a

series circuit.

The mechanical admittance Ybð!Þ of the parallel circuit

of the soundboard is given by

Ybð!Þ ¼
1

Rb þ Kb= j!þ j!Mb

¼ g0ð!Þ þ jb0ð!Þ; ð10Þ

where

g0ð!Þ ¼
Rb

R2
b þ ðKb=!� !MbÞ2

; ð11Þ

b0ð!Þ ¼
Kb=!� !Mb

R2
b þ ðKb=!� !MbÞ2

: ð12Þ

As will be shown later, when the resonance frequency !s ¼ffiffiffiffiffiffiffiffiffiffi
K=M
p

of the string is lower than that of the soundboard,

!b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kb=Mb

p
, and the quality factor of the soundboard Qb

is lower than that of the string as Qb < Q, the vibration of

the soundboard is stiffness-dominated.

The parallel circuit of the soundboard can be reduced

to a series circuit, as shown in Fig. 5, with the resistance

R0ð!Þ and the stiffness K0ð!Þ obtained as

R0ð!Þ ¼
1

g0ð!Þ
¼ Rb þ

ðKb=!� !MbÞ2

Rb

; ð13Þ

K0ð!Þ ¼
!

b0ð!Þ
¼ Kbf1� ð!=!bÞ2g

þ
!R2

b

Kb=!� !Mb

: ð14Þ

By setting K0 ¼ K0ð!sÞ and R0 ¼ R0ð!sÞ, the series

resonant circuit of the simplified soundboard vibration can

be written as

u1 ¼
1

R0

f0 þ
1

K0

df0

dt
ð15Þ

instead of Eq. (6). Applying the simplification of the

soundboard and removing the transformer as in Eq. (5)

produces the circuit represented in Fig. 6. The mechanical

admittance Ybð!Þ is approximated by the simplified series

circuit as

Ybð!Þ �
1

R0

þ
j!

K0

: ð16Þ

3. ANALYSIS BY LAPLACE TRANSFORM

The initial conditions of the vertical vibration induced

by a hammer strike are such that the equivalent mass M for

the vertical string has momentum �q where q ¼ MU. This

means that M is moved by an equivalent initial velocity U.

No force is applied to the string or the soundboard, i.e.,

f0ð0Þ ¼ f1ð0Þ ¼ f2ð0Þ ¼ f3ð0Þ ¼ 0.

The Laplace transforms of the differential equations are

the following polynomial equations. The Laplace transform

Fig. 4 First mode of a string.

Fig. 5 Simplification of the soundboard.
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of Eq. (1) for a vertically vibrating string with a given

initial speed is

sF1ðsÞ
K
þ

F1ðsÞ
R
þ

F1ðsÞ
Ms
þ

f ð�1Þ
1 ð0Þ
Ms

 !
þ U1ðsÞ ¼ 0; ð17Þ

where F1ðsÞ and U1ðsÞ are the Laplace transforms of f1ðtÞ
and u1ðtÞ, respectively, and f ð�1Þ

1 ð0Þ is the initial value of

the antiderivative of f1ðtÞ, which is equal to the momentum

q. Then we have

1

K
sþ

1

R
þ

1

Ms

� �
F1ðsÞ þ U1ðsÞ ¼

U

s
: ð18Þ

Similarly, Eqs. (5), (15), and (7) are transformed into

n2 1

K
sþ

1

R
þ

1

Ms

� �
F2ðsÞ þ U1ðsÞ ¼ 0; ð19Þ

U1ðsÞ ¼
1

K0

sþ
1

R0

� �
F0ðsÞ; ð20Þ

F0ðsÞ ¼ F1ðsÞ þ F2ðsÞ; ð21Þ
where F2ðsÞ and F0ðsÞ are the Laplace transforms of f2ðtÞ
and f0ðtÞ, respectively. From Eqs. (18) to (21), F0ðsÞ and

U1ðsÞ are obtained as

F0ðsÞ ¼
U

f1=K þ ð1þ n�2Þ=K0gs2 þ f1=Rþ ð1þ n�2Þ=R0gsþ 1=M
; ð22Þ

U1ðsÞ ¼
ðs=K0 þ 1=R0ÞU

f1=K þ ð1þ n�2Þ=K0gs2 þ f1=Rþ ð1þ n�2Þ=R0gsþ 1=M
: ð23Þ

From Eq. (18), the force F1ðsÞ is obtained as

F1ðsÞ ¼
U=s� U1ðsÞ

s=K þ 1=Rþ 1=Ms

¼
U

s2=K þ s=Rþ 1=M
�

ð1=K þ n�2=K0Þs2 þ ð1=Rþ n�2=R0Þsþ 1=M

f1=K þ ð1þ n�2Þ=K0gs2 þ f1=Rþ ð1þ n�2Þ=R0gsþ 1=M
:

Decomposing the right-hand side into partial fractions yields

F1ðsÞ ¼
1

n2 þ 1

�
1

s2=K þ s=Rþ 1=M

þ
n2

f1=K þ ð1þ n�2Þ=K0gs2 þ f1=Rþ ð1þ n�2Þ=R0gsþ 1=M

�
U: ð24Þ

Likewise, F2ðsÞ is calculated as

F2ðsÞ ¼ F0ðsÞ � F1ðsÞ

¼ �
1=ðn2 þ 1Þ

s2=K þ s=Rþ 1=M
þ

1=ðn2 þ 1Þ
f1=K þ ð1þ n�2Þ=K0gs2 þ f1=Rþ ð1þ n�2Þ=R0gsþ 1=M

� �
U: ð25Þ

The inverse Laplace transform of F0ðsÞ is

f0 ¼
Ue
� t
�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=K þ ð1þ n�2Þ=K0

M
�
f1=Rþ ð1þ n�2Þ=R0g2

4

s sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mf1=K þ ð1þ n�2Þ=K0g
�
f1=Rþ ð1þ n�2Þ=R0g2

4f1=K þ ð1þ n�2Þ=K0g2

s
t; ð26Þ

where

�0 ¼
2f1=K þ ð1þ n�2Þ=K0g

1=Rþ ð1þ n�2Þ=R0

: ð27Þ

Likewise,

f1 ¼
1

n2 þ 1

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MK
�

1

4R2

s e�
K
2R

t sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

M
�

K2

4R2

r
t

 !

þ
n2

n2 þ 1
f0; ð28Þ

Fig. 6 Simplified equivalent circuit of a single string
and a soundboard.
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f2 ¼ �
1

n2 þ 1

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MK
�

1

4R2

s e�
K
2R

t sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

M
�

K2

4R2

r
t

 !

þ
1

n2 þ 1
f0: ð29Þ

Now, if we assume that the conductances 1=R of the string

and 1=R0 of the soundboard are sufficiently small, i.e.,

1=K þ ð1þ n�2Þ=K0

M
�
f1=Rþ ð1þ n�2Þ=R0g2

4
;

1

MK
�

1

4R2
; ð30Þ

then we can neglect some terms that include R and R0 in

Eq. (26) and Eq. (28). The vibrating force of the sound-

board is then approximated as

f0 � U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

1=K þ ð1þ n�2Þ=K0

s
e
� t
�0 sin!0t; ð31Þ

where

!0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mf1=K þ ð1þ n�2Þ=K0g

s
; ð32Þ

and the vibrating force of the vertical vibration of the string

is approximated as

f1 �
1

n2 þ 1
U

ffiffiffiffiffiffiffiffi
MK
p

e�
K
2R

t sin!t þ
n2

n2 þ 1
f0; ð33Þ

where

! ¼
ffiffiffiffiffi
K

M

r
: ð34Þ

Let fs be the vibrating force for the string without the

soundboard; it is equal to f1 when n ¼ 0 in Eq. (33).

Then,

fs ¼ U
ffiffiffiffiffiffiffiffi
MK
p

e�
K
2R

t sin!t; ð35Þ

and f1 can be written using fs and f0:

f1 ¼
1

n2 þ 1
fs þ

n2

n2 þ 1
f0: ð36Þ

The part of the vertical component of the vibrating force

that is contributed by the force of horizontal string is

f2 ¼ �
1

n2 þ 1
fs þ

1

n2 þ 1
f0: ð37Þ

The relationships between the forces are shown in Fig. 7.

Force f0 denotes the force of the string vibration including

the influence of the soundboard, and fs denotes the force

induced by the string-only vibration. As will be shown in

Sect. 5.1, f0 decays faster than fs because the time constant

of f0 is smaller than that of fs.

The vibrating force for the horizontal vibration is

obtained from Eq. (4) as

f3 ¼ �
n

n2 þ 1
fs þ

n

n2 þ 1
f0: ð38Þ

The velocity of the soundboard u1 is calculated by

Eqs. (15) and (31). Suppose that 1=K � 1=K0, that is, the

quality factor of the string is considerably higher than that

of the soundboard. This assumption enables to neglect

small-amplitude terms in Eq. (15) and leads to the

following equation:

u1 � U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1=R2

0 þ !2
0=K

2
0 Þ

1=K þ ð1þ n�2Þ=K0

s

� e�
1=Rþð1þn�2Þ=R0

2f1=Kþð1þn�2Þ=K0g
t
sinð!0t þ ’Þ; ð39Þ

where !0 is the same as the frequency of the soundboard

vibrating force given by Eq. (32) and ’ is

’ ¼ tan�1 !0=K0

1=R0

� �
: ð40Þ

We thus note that the vibration velocity of the soundboard

has the exponential decay rate, but not a beat or double

decay rate.

4. NUMERICAL CALCULATION

4.1. String Parameters

We used the data obtained by Tanaka et al. for a

grand piano to determine the parameters for the note E1

[3]. The string of a short grand piano (YAMAHA C3)

has a speaking length of l ¼ 1:27 m. Unfortunately, no

other physical parameters have yet been reported. We

thus assigned the following parameters for the wound E1

string: the averaged linear mass density � ¼ 0:13 kg/m

and the fundamental frequency � of the string is

41.20 Hz. From these values, the string tension T is

calculated to be T ¼ 4l2��2 when the string is driven at

its fundamental frequency. The quality factor is assumed

to be Q ¼ 5;000. The corresponding mechanical ele-

ments are K ¼ 3:52� 103 N/m, M ¼ 5:25� 10�2 kg, and

R ¼ 6:80� 104 N�s/m.

Fig. 7 Relationships of the forces for two loops.
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4.2. Soundboard Parameters

Suzuki reported that the frequency for the first mode of

a soundboard without cast iron or strings for a 6 ft grand

piano is 49.7 Hz [7]. Mamou-Mani et al. [8] used the finite-

element method to show that the tension of the strings leads

to a modification in the soundboard’s mode frequencies.

They also showed that the mode frequencies depend on the

initial conditions of the soundboard. We will assume that

the soundboard has an equivalent mass of Mb ¼ 24 kg and

a resonance frequency of �b ¼ 50 Hz with a quality factor

of Qb ¼ 20. (See Appendix A.2.)

The stiffness of the soundboard Kb can be calculated

from its equivalent mass Mb and its mode frequency �b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kb=Mb

p
=2�. Hence, the mechanical elements of the

equivalent circuit are Kb ¼ 2:37� 106 N/m, Mb ¼ 24:0 kg,

and Rb ¼ 3:77� 102 N�s/m.

Since the parameters of the string and the soundboard

satisfy � < �b and Q� Qb, the mechanical parallel circuit

of these elements can be simplified to a series circuit,

which was described in Sect. 2.2. The stiffness of the series

circuit K0 for the string frequency is calculated, using

Eq. (14), with the string frequency � ¼ !=2� ¼ 41:20 Hz,

the mode frequency of the soundboard �b ¼ !b=2� ¼
50 Hz, and the stiffness K0 of the parallel circuit as

K0 ¼ 7:73� 105 N/m;

and R0 is calculated as

R0 ¼ 2:33� 104 N�s/m

using Eq. (13). The parameters of the string and sound-

board satisfy the inequality condition (30), which allows

the approximation. The real and imaginary parts of the

admittance of the soundboard are given by Eqs. (11) and

(12). Furthermore, their approximations are given by

g0ð!Þ � 1=R0 and b0ð!Þ � !=K0, which are obtained from

Eq. (16). The results are shown in Fig. 8. From this figure,

we note that the approximation has the same value as the

admittance at the string frequency.

The transformation ratio n : 1 of the vertical to

horizontal string velocities at the bridge, which determines

the coupling degree, is assumed to be n ¼ 5, the value for a

grand piano measured by Mori et al. [9].

4.3. Experimental Results

The time-varying amplitudes of the vertical and

horizontal string displacements are shown in Fig. 9. The

displacements are calculated by forces f1 and f3 using

Eq. (9), assuming tension T ¼ 1;400 N at the observation

point of l0 ¼ 0:46 m (< l=2) under the same condition as

described by Tanaka et al. [3]. In the first 16 seconds, the

vertical vibration of the string rapidly decays, with the

exception of a temporary increase at about 7 s. The

horizontal vibration, however, increases in amplitude and

decays with beats that have a period of about 8 s. The

beats of both strings gradually disappear and have almost

vanished by 25 s.

Figure 10 shows the two-dimensional movement of the

string, where the vertical axis is the amplitude of the
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Fig. 8 Characteristics of the soundboard and its approximation.
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Fig. 9 Displacement of the string (soundboard quality
factor is Qb ¼ 20).

Fig. 10 Time variations of the displacement of the
string (soundboard quality factor is Qb ¼ 20). Direc-
tions of rotation are indicated by arrows.
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displacement calculated from force f1 and the horizontal

axis is calculated from force f3. The scales of both axes are

arbitrary, and the arrows indicate the direction in which the

string rotates. The string starts vibrating vertically imme-

diately after the hammer strikes, and then rotates clock-

wise. Interestingly, after 6 s, the rotation changes to the

counter-clockwise direction. This indicates that the fre-

quencies of the vertical and horizontal vibrations are

slightly different. Tanaka et al. obtained similar tendencies

in a simulation [3]. Their simulation, however, assigned

different initial frequencies to the two directions. In the

present model, the two strings generate different fre-

quencies even when the parameters, such as l, �, and T , are

the same.

Figures 11 and 12 show the amplitudes of the displace-

ment and the two-dimensional movements of the string

when the initial quality factor of the soundboard is

Qb ¼ 30. Since the bandwidth of the soundboard with

Qb ¼ 30 is narrower than that with Qb ¼ 20, the compli-

ance 1=Kb is smaller. The resultant compliance 1=K0 does

not have a large effect on the vibrations that have a 16 s

period of beats or an 8 s rotation switching period.

5. DISCUSSION

5.1. Characteristics of Strings and the Soundboard

The vibrating frequency of the soundboard is �0 ¼
!0=2� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½Mf1=K þ ð1 þ n�2Þ=K0g	

p
=2� ¼ 41:10 Hz,

which is lower than the frequency of the string-only

vibration � ¼ !=2� ¼
ffiffiffiffiffiffiffiffiffiffi
K=M
p

=2� ¼ 41:20 Hz. This is be-

cause, owing to the influence of the horizontal component

of the string vibration, the string compliance 1=K ¼
2:84� 10�4 m/N is added in series to the soundboard

compliance 1=K0 ¼ 1:29� 10�6 m/N multiplied by (1þ
n�2). The characteristic impedances of the soundboard and

the string are given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1=K þ ð1þ n�2Þ=K0g=M

p
andffiffiffiffiffiffiffiffiffiffiffiffiffi

1=MK
p

, respectively. The reciprocal of the characteristic

impedance affects the initial amplitude of the vibrations

of the soundboard and string forces. The decay character-

istic of the vibrating force is exp½�f1=Rþ ð1þ n�2Þ=
R0gt=2f1=K þ ð1þ n�2Þ=K0g	 for the soundboard, while

that for the string without the soundboard is expð�Kt=2RÞ.
The decay characteristics of vibration for the string-only fs
and the soundboard f0 are shown in Fig. 13. As can be

seen, the vibrating force of the soundboard f0 decays faster

than that of the string fs. The relationship between f0 and

fs can also be expressed using the concept of a time

constant. The time constant of the series circuit that

consists of the equivalent stiffness and resistance of the

soundboard given by R0=K0 is smaller than that of the

series circuit of the string given by 2R=K. Thus, in both

directions, the string vibrations approach the string-only

vibration.

5.2. Characteristics of Vertical and Horizontal Vi-

brating Strings

The forces of both vertical and horizontal vibrations

have two components fs and f0 with different amplitudes.
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The vertical vibration has amplitude fs, which contributes

1=n2 to the soundboard amplitude, as shown in Eq. (36).

Initially, the string vibrates with fast decay that mainly

depends on the soundboard characteristics. Several seconds

later, the vertical vibrations begin to decay more slowly

owing to the increasing amplitude of the horizontal string.

Then, because the soundboard vibration decays faster than

the string vibration (Fig. 13), the amplitudes of the vertical

string vibrations and those of the soundboard are slightly

different, causing beats, as shown in Fig. 9. Later, the beats

gradually vanish because the soundboard vibration con-

tinues to decay faster than that of the string alone. For the

horizontal vibration, the ratio of the amplitude of the

string-only and soundboard vibrations is 1:1, as seen in

Eq. (38). As a result, the horizontal vibration has beats

from the start, but they gradually vanish. The reason why

the string vibration has two components is because the

string is excited at the frequency of the soundboard.

The difference in the frequencies of the string-only

force and the vibrating force of the soundboard is 0.10 Hz,

which can also be calculated from the time at which the

rotation direction changes (6 s, as shown in Fig. 10) and

the period of the beats (11 s, as shown in Fig. 9). The

calculated string frequencies are in agreement with the

frequencies measured by Tanaka et al. [3]: a vertical

vibration frequency of 40.70 Hz and a horizontal vibration

frequency of 40.77 Hz; the difference is 0.07 Hz.

6. CONCLUSION

In this article, we considered the vibration of a single

string coupled to a soundboard. The motion of the string

in two dimensions was decomposed into those of two

individual strings, each moving in one dimension. The

strings coupled to the soundboard were modeled by the

equivalent mechanical circuit, using the mobility analogy.

The parallel circuits representing the soundboard were

simplified to series circuits. The circuits, which consisted

of two strings, one with vertical and the other with

horizontal motion, and a simplified soundboard, were

analyzed using Laplace transforms. The analysis clarified

that the motion of the vertically and horizontally vibrating

strings comprises two components: string-only and sound-

board vibrations.

When the string frequency is lower than the sound-

board mode frequency, the string frequency decreases

because the soundboard is stiffness-dominated. The fre-

quency of the vertically vibrating string is lower than that

of the horizontally vibrating string. This is because the

soundboard contributes primarily to the vertical vibration

owing to the higher impedance of the vertically vibrating

string. To be more precise, the vertical and horizontal

string vibrations each have two components with different

frequencies and amplitudes; these are the string-only and

the soundboard vibrations, as described in the section on

Laplace analysis. Since the vertical string has a stronger

soundboard vibrating force than the horizontal string

vibration does, the frequency of the vertical vibration is

lower than that of the horizontal one. The contributions of

these two components determine the direction in which the

string rotates and the characteristic motion of the strings.

The results of numerical calculations using the model were

in agreement with the measured values.

The relationship between the frequencies of the string

and the soundboard suggests that if the string vibrates at

a frequency higher than the resonant frequency of the

soundboard, then it would be expected that the vibrating

frequency of the string would increase because the sound-

board would be mass-dominated.

In this paper, we clarified why the vertical and

horizontal strings with the same physical parameters

vibrate at different frequencies. We expect that the present

physical models will be helpful in designing soundboards

using the results of how the string and soundboard

vibrations interact at the bridge, and, in particular, how

the soundboard vibration affects the string vibration.

A limitation of the simplified model is that it implies

that the string vibrations decay with beats but the sound-

board vibrations decay exponentially. If the velocity of the

soundboard vibration is proportional to the sound pressure,

the vibration of a single string does not undergo the double

decay sound. While this is true for the simplified model,

the parallel circuit soundboard model still has the potential

to represent a double decay.

Further research will include evaluating the model by

measuring the string motion and the driving point admit-

tance on the same piano.
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APPENDIX

A.1. Correspondence of String Parameters

A vibration mode of the transversal wave of the string

can be represented by a series circuit of mechanical

elements, because the string can be considered to be a

chain of very small masses connected in series by springs.

Hundley et al. [10] showed that a single mode of string

vibration can be represented as a parallel circuit, using the

impedance analogy, but they did not show how to obtain

the parameters of the elements. In this appendix, we show

how the parameters of a mechanical system for the string

can be obtained by using the mobility analogy described

in Sect. 2.

First, we consider the restoring force. Figure 14 shows

a small segment ds that started from x with the interval dx

on the x axis. It is assumed that a string that is vibrating in

its fundamental mode has a sinusoidal shape yðxÞ:

yðxÞ ¼ a sin
�x

l
; ðA:1Þ

where a is the displacement of the center of the string and l

is the length of the string. The following approximations

are valid if the amplitude is significantly small:

sin �x � tan �x �
dy

dx
; ðA:2Þ

sin �xþdx � tan �xþdx �
dy

dx
þ

d2y

dx2
dx: ðA:3Þ

If the tension is invariant throughout the string segment, the

restoring force FrðxÞ of the segment in the vertical direction

can be approximated as

FrðxÞdx ¼ �TðxÞ sin �x þ Tðxþ dxÞ sin �xþdx

� �T
dy

dx
þ T

dy

dx
þ

d2y

dx2
dx

� �

¼ T
d2y

dx2
dx: ðA:4Þ

The restoring force over the entire string is obtained by

integration over the segments, and it is related to the

stiffness of the string. Since the restoring force acts in the

direction opposite to the displacement, it has a negative

sign,

Ka ¼ �
1

2

Z l

0

T
d2y

dx2
dx

¼ a�T=l; ðA:5Þ

where the string is supported at both ends and the force at

one end is half the total restoring force.

The mass-related quantity Ma of the deformed string at

one end is half the integrated mass of segments:

Ma ¼
1

2

Z l

0

yðxÞ�dx

¼ al�=�: ðA:6Þ
The impedance-related quantity Ra of the series

resonant circuit is determined using Ka, Ma, and the quality

factor Q as

Ra ¼ aQ
ffiffiffiffiffiffiffiffiffiffiffi
MaKa

p

¼ aQ
ffiffiffiffiffiffiffi
�T

p
: ðA:7Þ

The transversal velocity-related quantity ua at the

bridge is obtained as the sum of each element,

ua ¼ uKa
þ uRa

þ uMa
; ðA:8Þ

where

uKa
¼

1

Ka

df

dt
; ðA:9Þ

uRa
¼

1

Ra

f ; ðA:10Þ

uMa
¼

1

Ma

Z
fdt: ðA:11Þ

Equation (A·8) can be rewritten as

ua ¼
1

Ka

df

dt
þ

1

Ra

f þ
1

Ma

Z
fdt: ðA:12Þ

Since a is arbitrary, letting K ¼ Ka=a, R ¼ Ra=a,

M ¼ Ma=a, and u ¼ ua=a yields

u ¼
1

K

df

dt
þ

1

R
f þ

1

M

Z
fdt; ðA:13Þ

as we see in the series circuit in Ref. [11]. The corre-

Fig. 14 Segment of a string with tension T .
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spondence of mechanical elements and physical parameters

is K ¼ �T=l, M ¼ �l=�, and R ¼ Q
ffiffiffiffiffiffiffi
�T
p

. The angular

frequency ! is

! ¼
ffiffiffiffiffiffiffiffiffiffi
K=M

p

¼
�

l

ffiffiffiffi
T

�

s
: ðA:14Þ

A.2. Soundboard Parameters

Figure 15 presents measurements of the acceleration

frequency response function at ten points on a grand piano

soundboard. Although the measured points might not

include the bridge of E1, we assume that the driving point

accelerance at the bridge of E1 is not too different from

those values.

The acceleration frequency response function Að!Þ is

given by

Að!Þ ¼ �ð!Þ=Fð!Þ; ðA:15Þ

where �ð!Þ is the acceleration detected by an accelerom-

eter and Fð!Þ is the excitation force. The reference Aref is

defined as Aref ¼ 1 kg�1.

When the soundboard has a single resonance frequen-

cy, the mechanical circuit is represented by a parallel

resonant circuit of mechanical elements. The mechanical

admittance Ybð!Þ of the soundboard is given by

Ybð!Þ ¼
1

Rb þ Kb= j!þ j!Mb

; ðA:16Þ

where Mb is the effective mass at the driving point of the

soundboard; Kb is the stiffness Kb ¼ !2
bMb; and Rb is the

resistance Rb ¼ !bMb=Qb, where Qb is the quality factor.

Equation (A·16) corresponds to Eq. (10). The absolute

value of the acceleration frequency response function A0ð!Þ
of the circuit is given by

jA0ð!Þj ¼ j!Ybð!Þj

¼
!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
b þ ðKb=!� !MbÞ2

q : ðA:17Þ

Figure 16 shows two approximation curves of jA0ð!Þ=A0refj
with the parameters of Mb ¼ 24 kg and Qb ¼ 20, and

Mb ¼ 36 kg and Qb ¼ 30, and A0ref ¼ 1 kg�1. The reso-

nance frequency is 49.7 Hz.

Fig. 15 Measurements of the soundboard acceleration
frequency response function at ten measurement points
[7].
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Fig. 16 Approximations of the soundboard acceleration
frequency response function. The parameters are (a)
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