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Abstract: Most previous studies using the dimensional approach mainly focused on the direct
relationship between acoustic features and emotion dimensions (valence, activation, and dominance).
However, the acoustic features that correlate to valence dimension are very few and very weak. As a
result, the valence dimension has been particularly difficult to predict. The purpose of this research is
to construct a speech emotion recognition system that has the ability to precisely estimate values of
emotion dimensions especially valence. This paper proposes a three-layer model to improve the
estimating values of emotion dimensions from acoustic features. The proposed model consists of three
layers: emotion dimensions in the top layer, semantic primitives in the middle layer, and acoustic
features in the bottom layer. First, a top-down acoustic feature selection method based on this model
was conducted to select the most relevant acoustic features for each emotion dimension. Then, a
button-up method was used to estimate values of emotion dimensions from acoustic features by firstly
using fuzzy inference system (FIS) to estimate the degree of each semantic primitive from acoustic
features, then using another FIS to estimate values of emotion dimensions from the estimated degrees
of semantic primitives. The experimental results reveal that the constructed emotion recognition
system based on the proposed three-layer model outperforms the conventional system.

Keywords: Emotion dimensions, Automatic speech emotion recognition, Multi-layer model, Fuzzy
Inference Systems (FIS)
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1. INTRODUCTION

Most previous techniques for automatic speech emo-

tion recognition focus only on the classification of emo-

tional states as discrete categories such as happy, sad,

angry, fearful, surprised, and disgusted [1]. However, a

single label or any small number of discrete categories may

not accurately reflect the complexity of the emotional states

conveyed in everyday interaction. In the real-life, an

emotional state has different degrees of intensity and

may change over time depending on the situation from low

to high degree. Therefore, an automatic speech emotion

recognition system should be able to detect the degree or

the level of the emotional state from the voice [2]. Hence, a

number of researchers advocate the use of dimensional

descriptions of human emotion, where emotional states are

estimated as a point in a multi-dimensional space [3,4].

In this study, a three-dimensional continuous model is

adopted in order to represent the emotional states using the

emotion dimensions, i.e. valence, activation, and domi-

nance. These dimensions are a suitable representation,

because they are capable of representing low-intensity as

well as high-intensity states [2].

However, although the conventional dimensional mod-

el for estimating emotions from speech signals allows the

representation of the degree of emotional state, it has the

following drawbacks: (i) we do not know what acoustic

features are related to each emotion dimension, (ii) the

acoustic features that correlate to the valence dimension are

less numerous, less strong, and more inconsistent [4], and

(iii) the values of emotion dimensions are difficult to

estimate precisely only on the basis of acoustic information

[5]. Due to these limitations, it has been difficult to directly

predict the values of the valence dimension using the

acoustic features.
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The goal of this paper is to improve the conventional

dimensional method in order to precisely predict values

of the valence dimension as well as improve prediction

of those of the activation and dominance. This will be

achieved by constructing a speech emotion recognition

system which have the ability to accurately estimate

emotion dimensions based on the thee-layer model of

human perception. The aim of constructing this system is to

prove the effectiveness of the proposed three-layer model.

The following section introduces the proposed emotion

recognition approach based on human perception.

2. EMOTION RECOGNITION STRATEGY

Conventional speech emotion recognition methods are

mainly based on investigating the relationship between

acoustic features and emotion dimensions as a two-layer

model, i.e. acoustic feature layer and emotion dimension

layer. For instance, Grimm et al. attempted to estimate the

emotion dimensions (valence, activation, and dominance)

from the acoustic features by using a fuzzy inference

system (FIS) [6]. However, they found that activation and

dominance were more accurately estimated than valence.

Furthermore, many researchers also tried to investigate the

most relevant acoustic features for each emotion dimension

by using the correlation between a set of acoustic features

and emotion dimensions [3–5,7]. In all these studies, the

valence dimension was found to be the most difficult

dimension to estimate. Consequently, some other studies

focused only on exploring acoustic features related to

valence dimension [8,9]. Some emotions related to valence

were found to share similar acoustic features such as

happiness and anger, which were characterized by increas-

ed levels of fundamental frequency (F0) and intensity. This

is one reason why acoustic discrimination on valence

dimension is still problematic i.e. no strong discriminative

acoustic features are available to discriminate between

positive speech (e.g. happiness) and negative speech (e.g.

anger) [7]. Therefore, a number of researchers tried to

discriminate between the positive and negative emotions

by combining acoustic and linguistic features to improve

the valence estimation [7,10]. However, the results on

valence estimation remained poor.

Human perception, as described by Scherer [11] who

adopted a version of Brunswik’s lens model originally

proposed in 1956 [12], is a multi-layer process. Huang and

Akagi adopted a three-layer model for human perception.

They assumed that human perception for emotional speech

does not come directly from a change in acoustic features

but rather a composite of different types of smaller

perceptions that are expressed by semantic primitives or

adjectives describing an emotional voice [13].

The two-layer model has limited ability to find the most

relevant acoustic features for each emotion dimension,

especially valence, or to improve the prediction of emotion

dimensions from acoustic features. To overcome these

limitations, this paper aims to identify the most relevant

acoustic features describing emotion dimension using a

novel idea based on human perception. We attempt to use

the above human perception model proposed by Huang and

Akagi [13] to find the most correlated acoustic features

with emotion dimensions through semantic primitives. We

assume that the acoustic features that are highly correlated

with semantic primitives will have a significant impact for

predicting values of emotion dimensions, especially va-

lence. The findings can guide the selection of new acoustic

features with better discrimination in the most difficult

dimension.

The feasibility of our three-layer model to improve

emotion dimensions estimation; for valence, activation,

and dominance was investigated. The proposed model

consists of three layers: emotion dimensions (valence,

activation, and dominance) constitute the top layer,

semantic primitives the middle layer, and acoustic features

the bottom layer. A semantic primitive layer is added

between the two conventional layers acoustic features and

emotion dimensions as shown in Fig. 1.

Therefore, the approach we adopt to estimate values of

emotion dimensions includes the following steps:

. Feature selection: The most relevant acoustic features

were selected by using a top-down method. First, the

semantic primitives which have high correlations with

each emotion dimension were selected. Then, the

acoustic features which have high correlations with the

selected semantic primitives found in the first step

were selected.

. Building a three-layer model for each emotion dimen-

sion: For example, in the case of valence dimension,

the three layers are: valence dimension in the top layer,

the highly correlated semantic primitives with valence

dimension in the middle layer, all the highly correlated

acoustic features with all semantic primitives in the

bottom layer.

. Emotion dimensions estimation: By using the con-

structed three-layer model, a button-up method was

Fig. 1 Three layer model.
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used to estimate values of emotion dimensions from

acoustic features as follows. First, FIS was used to

estimate the degree of each semantic primitive from

acoustic features, and then another FIS was used to

estimate values of emotion dimension from the esti-

mated degrees of semantic primitives in the first step.

The achieve the aim of this paper the following

investigations are required: (1) whether the selecting

acoustic features based on the proposed three-layer model

of human perception will help us to find the most related

acoustic features for each emotion dimensions, (2) whether

using these selected acoustic features as inputs to an

automatic emotion recognition system will improve the

accuracy of all emotion dimensions especially valence, (3)

finally, whether the automatic emotion recognition system

is effective in the following cases: speaker-dependent,

multi-speaker, and multi-language.

3. DATABASES AND EXPERIMENTAL
EVALUATION

To construct an emotion recognition system, the

elements of the proposed model were collected in this

section. The databases and acoustic features used in this

study are introduced. Moreover, the semantic primitives

and emotion dimensions are evaluated by conducting two

listening tests using human subjects as described in the

below subsections.

3.1. Speech Material and Subjects

In this paper, our aim is to prove a new concept, not to

construct a real-life application, consequently, acted emo-

tions are quite adequate as a testing data [14]. Therefore, in

order to validate the proposed system, we used two acted

databases of emotional speech: one in Japanese (single-

speaker) and the other in German (multi-speaker).

The Japanese database is the multi-emotion single-

speaker Fujitsu database produced and recorded by Fujitsu

Laboratories. A professional actress was asked to produce

utterances using five emotional speech categories, i.e.,

neutral, joy, cold anger, sadness, and hot anger. In the

database, there are 20 different Japanese sentences. Each

sentence has one utterance in neutral and two utterances in

each of the other categories. Thus, there are nine utterances

for each sentence and 180 utterances for all 20 sentences.

However, one cold anger utterance is missing so, the total

number of utterance for Japanese database is 179.

The Japanese database is inadequate for validating our

emotion recognition system fully, because it is a single

speaker database which is only suitable for speaker-specific

task. To investigate the effectiveness of the proposed

system for multi-speaker and different languages, a Berlin

database [15] was selected. It comprises of seven emotional

states: anger, boredom, disgust, anxiety, happiness, sad-

ness, and neutral speech. Ten professional German actors

(five female and five male) spoke ten sentences with

emotionally neutral content in the seven different emotions.

These sentences were not equally distributed between the

various emotional states: 69 frightened; 46 disgusted; 71

happy; 81 bored; 79 neutral; 62 sad; 127 angry.

This database was selected because: (1) it is an acted-

speech database the same as the Fujitsu database, (2) it

contains four categories similar to those in the Fujitsu

database (happy, angry, sad, and neutral), and (3) it is a

multi-speaker and multi-gender database which enable

us to investigate the effect of speaker and gender variation

in speech emotion recognition. To compare the results of

the two databases, we used only the four similar categories.

Furthermore, for training proposes, we used sentences

equally distributed between the four emotional states: 50

happy, 50 angry, 50 sad, and 50 neutral. In total 200

utterances were selected from the Berlin database: 100

utterances were uttered by five males and the other 100 by

five females divided equally between the four emotional

states.

To evaluate semantic primitives and emotion dimen-

sions, we used listening tests. The Fujitsu database was

evaluated by 11 graduate students, all native Japanese

speakers (nine male and two female). While Berlin

database was evaluated using nine graduate students, all

native Japanese speakers (eight male and one female). No

subjects have hearing impairments.

3.2. Acoustic Features

To construct a speech emotion recognition system,

acoustic features are needed to be investigated. In this

research, the most relevant acoustic features that have been

successful in related works and features used for other

similar tasks were selected. Therefore, 16 acoustic features

that originate from F0, power envelope, power spectrum,

and duration were selected from the work by Huang and

Akagi [13]. In addition to these 16 acoustic features, five

new parameters related to voice quality are added, because

voice quality is one of the most important cues for the

perception of expressive speech. Acoustic features related

to duration are extracted by segmentation, and the rest are

extracted by the high quality speech analysis-synthesis

system STRAIGHT [16], leading to extraction of a set

of 21 acoustic features that can be grouped in several

subgroups:

F0 related features: F0 contour and power envelope

varied greatly with different expressive speech categories,

both for the accentual phrases as well as for the overall

utterance. For each utterance the measurements made were

F0 mean value of rising slope of the F0 contour (F0 RS),

highest F0 (F0 HP), average F0 (F0 AP), and rising slope

of the F0 contour for the first accentual phrase (F0 RS1).
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Power envelope related features: in a similar way to that

for the F0 contour, for each utterance the measurements

were: mean value of power range in accentual phrase

(PW RAP), power range (PW R), rising slope of the power

for the first accentual phrase (PW RS1), the ratio between

the average power in high frequency portion (over 3 kHz),

and the average power (PW RHT);

Power spectrum related features: for spectrum we used

formants, spectral tilt, and spectral balance:

– Formants: measures were the mean value of (first

formant frequency (SP F1), second formant fre-

quency (SP F2), third formant frequency (SP F3)

taken approximately at the midpoint of the vowels

/a/, /e/, /i/, /o/, and /u/. The formants frequen-

cies were calculated with LPC-order 12.

– Spectral tilt (SP TL): is used to measure voice quality,

and it was calculated from the following equation

SP TL ¼ A1� A3 ð1Þ

where A1 is the level in dB of the first formant, and,

A3 is the level of the harmonic whose frequency is

closest to the third formant [17].

– Spectral balance (SP SB): this parameter serves for

the description of acoustic consonant reduction [18],

and it was calculated according to the following

equation

SP SB ¼
� fi:Ei

�Ei

ð2Þ

where fi is the frequency in Hz, and Ei is the spectral power

as a function of the frequency [19].

Duration related features: total length (DU TL), conso-

nant length (DU CL), and ratio between consonant length

and vowel length (DU RCV).

Voice quality: Voice quality conveys both linguistic and

paralinguistic information, which can be distinguished by

acoustic source characteristics. Currently investigation into

voice quality has focused on measures of breathiness, such

as H1-H2, where H1 and H2, are the amplitudes (dB) of the

fundamental frequency and the second harmonic, respec-

tively. As indicated by Menezes et al. in [20], H1-H2 is

concerned with glottal opening. In this study, the mean

value of H1-H2 for vowel /a/, /e/, /i/, /o/, and /u/ per

utterance MH A, MH E, MH I, MH O, and MH U are used

as an indication for voice quality.

All the 21 acoustic features were extracted for both

Fujitsu and Berlin databases. In order to avoid speaker

dependency on the acoustic features that are used, we adopt

an acoustic feature normalization method, in which all

acoustic feature values are normalized by those of the

neutral speech. This was performed by dividing the values

of acoustic features by the mean value of neutral utterances

for all acoustic features.

3.3. Evaluations of Semantic Primitives

In this study, the human perception model as described

by Scherer [11] is adopted. This model assumes that human

perception is a multi-layer process. It was assumed that the

acoustic features are perceived by a listener and internally

represented by a smaller perception e.g. adjectives describ-

ing emotional voice as reported by Huang and Akagi [13].

In this study ‘smaller perception’ means an earlier process

of perception. These smaller percepts or adjectives are

finally used to detect the emotional state of the speaker.

These adjectives can be subjectively evaluated by human

subjects. Therefore, the following set of adjectives describ-

ing the emotional speech were selected as candidates for

semantic primitives: bright, dark, high, low, strong, weak,

calm, unstable, well-modulated, monotonous, heavy, clear,

noisy, quiet, sharp, fast, and slow. These adjectives were

selected because they reflect a balanced selection of widely

used adjectives that describe emotional speech. They are

originally from the work of Huang and Akagi [13].

For the evaluation, we used listening tests. In these

tests, the stimuli were presented randomly to each subject

through binaural headphones at a comfortable sound

pressure level in a soundproof room. Subjects were asked

to rate each of the 17 semantic primitives on a five-point

scale: ‘‘1-Does not feel at all,’’ ‘‘2-Seldom feels,’’ ‘‘3-Feels

a little,’’ ‘‘4-feels,’’ ‘‘5-Feels very much.’’ The 17 semantic

primitives were evaluated for the two databases, and then

ratings of the individual subject were averaged for each

semantic primitive per utterance.

The inter-rater agreement was measured by means of

pairwise Pearson’s correlations between two subjects’

ratings, separately for each semantic primitive. For

Japanese database, the average of Pearson’s correlation

among every pairs of two subjects for all semantic

primitives evaluation were ranged between 0.68 and 0.85,

moreover, for German database, the average of correlations

were ranged between 0.66 and 0.86. This result suggests

that all subjects agreed from a moderate to a very high

degree.

3.4. Emotion Dimensions Evaluation

Most existing emotional speech databases have been

annotated using the categorical approach, while, few

databases have been annotated using the dimensional

approach [21]. The Fujitsu and Berlin databases are

categorical databases. Therefore, listening tests are re-

quired to annotate each utterance in the used databases

using the dimensional approach. Thus, the two databases

were evaluated by the listening tests along three dimen-

sions: valence, activation, and dominance. For emotion

dimension evaluation, a 5-point scale {�2, �1, 0, 1, 2}

was used: valence (from �2 very negative to +2 very

positive), activation (from �2 very calm to +2 very
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exited), and dominance (from �2 very weak to +2 very

strong).

The subjects used a MATLAB GUI to evaluate the

stimuli. Repetition was allowed. They were asked to

evaluate one emotion dimension for the whole database

in one session. There were three sessions, one for each

emotion dimension. As done in the work of Mori et al. [22]

for emotion dimension evaluation, the basic theory of

emotion dimension was explained to the subjects before the

experiment started. Then they took a training session to

listen to an example set composed of 15 utterances, which

covered the used five-point scale, three utterances for each

point in the used scale. In the test, the stimuli were

presented randomly, for each utterance. Subjects were

asked to evaluate their perceived impression from the way

of speaking, not from the content itself, and then choose

score on the five-point scale for each dimension individ-

ually. The average of the subjects’ rating for each emotion

dimension was calculated per utterance.

The average of Pearson’s correlation coefficient among

every pairs of two subjects were as follows: for Japanese

database 0.90, 0.85, and 0.89 for valence, activation, and

dominance, respectively, and for German database 0.83,

0.87, and 0.86 for valence, activation, and dominance,

respectively. This indicates that all subjects agreed to a

high degree for all emotion dimension evaluation.

4. SELECTION OF ACOUSTIC FEATURES
AND SEMANTIC PRIMITIVES

This section describes the proposed acoustic features

selection method to identify the most relevant acoustic

features for emotion dimensions valence, activation, and

dominance. For this purpose, we proposed a thee-layer

model that imitates the human perception to understand

the relationship between acoustic features and emotion

dimensions.

4.1. Selection Procedures

Our selection method is based on the following

assumptions: 1) semantic primitives which are highly

correlated with the emotion dimension are given large

impact in the estimation of that dimension, and 2) acoustic

features which are highly correlated with the semantic

primitive are given large impact in the estimation of that

semantic primitive. In this study, we consider the correla-

tion highly correlated if its absolute value is grater than or

equal to 0.45. To accomplish this task, the top-down

method shown in Fig. 2 was used as follows:

. the correlation coefficients between each emotion

dimension (top-layer) and each semantic primitives

(middle layer) were calculated;

. the highly correlated semantic primitives were selected

for each emotion dimension;

. the correlation coefficients between each selected

semantic primitive (middle layer) in the second step

and each acoustic feature (bottom layer) were calcu-

lated,

. the highly correlated acoustic features were selected

for each semantic primitive.

For each emotion dimension, the selected acoustic

features in the final step are considered as the most relevant

features to the dimension in the top-layer.

4.2. Correlation between Elements of the Three-layer

Model

First, the correlations between the elements of the top

layer and the middle layer were calculated as follows: let

xðiÞ ¼ fxðiÞn gðn ¼ 1; 2; . . . ;NÞ be the sequence of the rated

values of the ith emotion dimension by the listening test,

i 2 fvalence; activation; dominanceg. Moreover, let sð jÞ ¼
fsð jÞn gðn ¼ 1; 2; . . . ;NÞ be the sequence of the rated values

of the jth semantic primitive from another listening test,

j 2 fbright; dark; . . . ; slowg. Where N is the number of

utterances in used database (N ¼ 179 for Japanese and

N ¼ 200 for German). Then the correlation coefficient

RðiÞj between the semantic primitive sð jÞ and the emotion

dimension xðiÞ can be determined by the following

equation:

RðiÞj ¼

XN
n¼1

ðsj;n � sjÞðxðiÞn � xðiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ðsj;n � sjÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

ðxðiÞn � xðiÞÞ2
s ð3Þ

Fig. 2 Process for acoustic feature selection.
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where sj and xðiÞ are the arithmetic means for the semantic

primitive and emotion dimension, respectively. Table 1

lists the correlation coefficients between all semantic

primitives and all emotion dimensions for the German

database. Where, the numbers in bold represent the higher

correlations demonstrated by the absolute value of the

correlation, which is �0:45. In addition, ‘#’ in the last row

and last column represents the number of higher correla-

tions. For example, the number 7 in last column of the

valence row indicates that their are seven semantic

primitives highly correlated with valence.

Second, the correlations coefficients between elements

of the middle layer (semantic primitive), and the bottom

layer (acoustic feature) are calculated as follows: Let fl ¼
ffl;ngðn ¼ 1; 2; . . . ;NÞ be the sequence of values of the mth

acoustic feature, l ¼ 1; 2; . . . ; L, and L be the number of

extracted acoustic features in this study L ¼ 21. Then the

correlation coefficient Rð jÞl between the acoustic parameter

fl and the semantic primitive sð jÞ can be determined by the

following equation:

R
ð jÞ
l ¼

XN
n¼1

ð fl;n � flÞðsð jÞn � sð jÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

ð fl;n � flÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

ðsð jÞn � sð jÞÞ2
s ð4Þ

where fl, and sð jÞ are the arithmetic means for the acoustic

feature and semantic primitive respectively.

Table 2 lists the correlation coefficients between all

semantic primitives and 11 acoustic features that has at

least two highly correlation with semantic primitives, for

the German database. Similar analysis was done for the

Japanese database in our previous work [23].

4.3. Selection Results

For each emotion dimension, a perceptual three-layer

model was constructed as follows: emotion dimension in

the top layer, the most relevant semantic primitives for

this dimension in the middle layer, and the most relevant

acoustic features in the bottom layer. For example,

Figs. 3(a) and 3(b) illustrate the valence perceptual model

for German and Japanese database, respectively. Where the

Table 1 Correlation coefficients between semantic primitives (SP) and emotion dimensions (ED) (German Database).

ED
SP

Valence
Activation
Dominance
#

#

7
17
17
41

B
ri

gh
t

0.9
0.7
0.6
3

D
ar

k
–0.7
–0.9
–0.9
3

H
ig

h

0.6
0.9
0.8
3

L
ow

–0.6
–0.9
–0.9
3

St
ro

ng

0.1
0.9
1.0
2

W
ea

k

–0.4
–1.0
–1.0
2

C
al

m

–0.2
–0.9
–0.9
2

U
ns

ta
bl

e

0.1
0.9
0.9
2

W
el

l-
m

od
ul

at
ed

0.3
0.9
0.9
2

M
on

ot
on

ou
s

-0.2
–0.9
–0.8
2

H
ea

vy

–0.9
–0.6
–0.5
3

C
le

ar

0.8
0.7
0.6
3

N
oi

sy

0.1
0.9
0.9
2

Q
ui

et

–0.4
–1.0
–1.0
2

Sh
ar

p

0.3
0.9
1.0
2

Fa
st

0.4
0.8
0.8
2

Sl
ow

–0.5
–0.8
–0.8
3

Table 2 Correlation coefficients between acoustic features (AF) and semantic primitives (SP) (German Database).

AF
SP

MH _ A
MH _ E
MH _O
MH _U
F0 _ RS
F0 _ HP
PW_ R
PW_ RHT
PW_ RAP
SP_  F1
DU_TL
#

B
ri

gh
t

–0.6
–0.5
–0.5
–0.4
0.5
0.5
0.5
0.1
0.3
–0.6
–0.3
7

D
ar

k

0.8
0.6
0.6
0.5
–0.6
–0.6
–0.7
–0.3
–0.3
0.6
0.4
8

H
ig

h

–0.7
–0.6
–0.6
–0.4
0.7
0.7
0.7
0.3
0.4
–0.5
–0.3
7

L
ow

0.8
0.6
0.6
0.5
–0.7
–0.6
–0.7
–0.3
–0.4
0.6
0.4
8

St
ro

ng

–0.8
–0.7
–0.6
–0.4
0.7
0.6
0.7
0.6
0.4
–0.3
–0.3
7

W
ea

k

0.8
0.7
0.7
0.5
–0.7
–0.6
–0.7
–0.4
–0.3
0.5
0.4
8

C
al

m

0.7
0.7
0.6
0.4
–0.8
–0.7
–0.8
–0.5
–0.4
0.3
0.2
7

U
ns

ta
bl

e

–0.7
–0.7
–0.6
–0.4
0.7
0.7
0.8
0.6
0.4
–0.3
–0.2
7

W
el

l-
m

od
ul

at
ed

–0.7
–0.6
–0.6
–0.4
0.8
0.7
0.8
0.5
0.5
–0.4
–0.2
8

M
on

ot
on

ou
s

0.7
0.6
0.6
0.3
–0.8
–0.7
–0.8
–0.5
–0.5
0.3
0.1
8

H
ea

vy

0.5
0.4
0.4
0.3
-0.5
–0.4
–0.4
0.0
–0.2
0.5
0.3
3

C
le

ar

-0.6
–0.4
-0.5
–0.4
0.4
0.3
0.4
0.0
0.2
–0.6
–0.5
4

N
oi

sy

–0.8
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solid and dashed lines in these figures represent positive

and negative correlations, respectively. Also, the thickness

of each line indicates the strength of the correlation: the

thicker the line, the higher the correlation.

In case of valence dimension for the German database

as shown in Fig. 3(a), it is evident that seven semantic

primitives were found highly correlated with valence as

shown in the middle layer in Fig. 3(a). These seven

semantic primitives are highly correlated with nine

acoustic features as shown in the bottom layer in

Fig. 3(a).

The valence perceptual model for German and Japa-

nese language are compared as follows: For both languag-

es, the valence dimension is found to be positively

correlated with bright, high and clear semantic primitives,

while it is negatively correlated with dark, low, and heavy

semantic primitives. Therefore, the two languages not only

share six semantic primitives but also similar correlations

between the emotion dimensions and the corresponding

semantic primitives.

In addition, comparing the relationship between se-

mantic primitives and acoustic features, it is found that the

six semantic primitives that were shared by both German

and Japanese have a similar correlations with six common

acoustic features (MH A, MH E, MH O, F0 RS, F0 HP,

and PW R). This finding suggests the possibility of some

type of universality of acoustic cues associated with

semantic primitives. Therefore, the proposed method can

be used effectively to select the most relevant acoustic

features for each emotion dimension regardless the used

language.

4.4. Discussion

Our model mimics the human perception process for

understanding emotions on the basis of Brunswick’s lens

model [12], where the speaker expresses his/her emotional

state through some acoustic features. These acoustic

features are interpreted by the listener into some adjectives

describing the speech signal, and from these adjectives, the

listener can judge the emotional state. For example, if

the adjectives describing the voice are dark, slow, low,

and heavy, these make the human listener feel that the

emotional state is negative valence and very weak

activation, resulting in it being detected as a very Sad

emotional state in the categorical approach.

On the other hand, the conventional acoustic features

selection method was based on the correlations between

acoustic features and emotion dimension as a two-layer

model. To investigate the effectiveness of the proposed

feature selection method, the results were compared with

the conventional method. Table 3 lists the correlations

coefficients between acoustic features and emotion dimen-

sions directly.

From this table, evidently only one acoustic feature

is highly correlated with the valence dimension

(jcorrelationðSP F1;ValenceÞj ¼ 0:55 > 0:45), while eight

acoustic features are highly correlated with the activation

and dominance dimensions. Therefore, valence shows a

smaller number of highly correlated acoustic features than

Table 3 Correlation coefficients between acoustic fea-
tures (AF) and emotion dimensions (ED) (German
Database).

AF
ED

MH _ A
MH _ E
MH _ I
MH _O
MH _U
F0 _ RS
F0 _ HP
F0 _ AP
F0 _ RS1
PW_ R
PW_  RHT
PW_ RS1
PW_ RAP
SP_ F1
SP_ F2
SP_ F3
SP_ TL
SP_ SB
DU_ TL
DU_ CL
DU_ RCV
#

V
al

en
ce

–0.33
–0.18
–0.03
–0.28
–0.25
0.21
0.19

–0.05
–0.05
0.23

–0.25
0.08
0.08

–0.55
–0.03
–0.04
0.28

–0.02
–0.28
–0.24
–0.14

1

A
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iv
at
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n

–0.82
–0.70
–0.19
–0.67
–0.47
0.69
0.59

–0.14
–0.10
0.75
0.44
0.14
0.36

–0.49
–0.29
–0.04
0.26

–0.05
–0.38
–0.36
–0.39

8

D
om

in
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ce

–0.81
–0.71
–0.24
–0.68
–0.47

0.65
0.54

–0.13
–0.09

0.74
0.49
0.14
0.35

–0.43
–0.29

0.01
0.26

–0.02
–0.39
–0.36
–0.37

8

#

2
2
0
2
2
2
2
0
0
2
1
0
0
2
0
0
0
0
0
0
0
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(a) German database.

(b) Japanese database.

Fig. 3 Valence perceptual model.
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the activation and dominance. These results are similar to

those of many previous studies [4]. Due to this drawback,

most previous studies achieved a very low performance for

valence estimation using the conventional approach [6,24].

The most important result is that, using the proposed

three-layer model for feature selection, the number of

relevant acoustic features to emotion dimensions increases.

For example, the number of relevant features for the most

difficult dimension valence increases from one to nine

using the proposed method. Moreover, the number of

features increased from eight to nine for activation and

from eight to ten for dominance. The selected acoustic

features can be used to improve emotion dimensions

estimation as described in detail in the next section.

5. AUTOMATIC EMOTION
RECOGNITION SYSTEM

The aim of speech emotion recognition system based

on the dimensional approach can be viewed as using

an estimator to map the acoustic features to real-valued

emotion dimensions (valence, activation, and dominance).

The selected acoustic features from the previous section are

used as an input to the proposed system to predict emotion

dimensions. Emotion dimension values can be estimated

using any estimator such as K-nearest neighborhood

(KNN), Support Vector Regression (SVR), or Fuzzy

Inference System FIS. In this study, for selecting the best

estimator among KNN, SVR, and FIS, pre-experiments not

included here indicated that our best results were achieved

using an FIS estimator. Therefore, FIS was used to connect

the elements of the three-layer model. Most statistical

methodology are mainly based on a linear and precise

relationship between the input and the output. However,

the relationships among acoustic features, semantic prim-

itives, and emotion dimensions are non-linear. Therefore,

fuzzy logic is a more appropriate mathematical tool for

describing this non-linear relationship [6,13,25].

5.1. System Implementation

Adaptive-Network-based Fuzzy Inference System

(ANFIS) [25] was used to construct the FIS models that

connect the elements of our recognition system. Each FIS

has a structure of multiple inputs and one output. Having

identified the best acoustic features set, we constructed an

individual estimator to predict the values (�2 to 2 rated

by the listening test) of each emotion dimension. As an

example, for the German database, to estimate the valence

dimension using the perceptual model in Fig. 3(a), a

bottom-up method was used to estimate the values (1 to 5

rated by the listening test) of the seven estimated semantic

primitives in the middle layer from the nine acoustic

features in the bottom layer as shown in Fig. 4. To

accomplish this task, seven FISs were required: one to

estimate each semantic primitive. In addition, one FIS was

required to estimate the value of valence dimension from

the seven semantic primitives. Similarly, the activation and

dominance can be estimated using FIS for each semantic

primitive and one FIS for the activation and dominance,

respectively.

5.2. Effectiveness of the Selected Features

This subsection aims to investigate whether the

selected acoustic features using the proposed method in

Sect. 4 will improve emotion dimensions estimation. To

accomplish this, the proposed automatic emotion recog-

nition system was tested using three different groups of

acoustic features, for each emotion dimension: (1) highly

correlated acoustic features (absolute values of their

correlations with semantic primitives is �0:45), (2) lower

correlated acoustic features as shown in Fig. 2, and (3) all

the acoustic features.

In order to measure the performance of the proposed

system, the mean absolute error (MAE) between the

predicted values of emotion dimensions and the corre-

sponding average values given by human subjects is used

as a metric of the discrimination associated with each

group. The MAE is calculated in accordance with the

following equation

MAEð jÞ ¼

XN
i¼1

jbx ð jÞi � x
ð jÞ
i j

N
ð5Þ

where j 2 fvalence; activation; dominanceg, bx ð jÞi is the out-

put of the emotion recognition system, and x
ð jÞ
i ;�2 �

x
ð jÞ
i � 2 is the evaluated value by human subjects as

described in Subsect. 3.4.

The accuracy of the classifier in terms of five-fold

cross validation was calculated for the two databases.

Figures 5(a) and 5(b) show the MAE for estimating

Fig. 4 Block diagram of the proposed approach for
estimating valence based on the three-layer model
(implementation for German database depicted in
Fig. 3(a)).
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(valence, activation, and dominance), for Japanese and

German database, respectively, using three groups of

acoustic features (highly correlated, lower correlated, all).

The error bars in these figures represent the standard errors.

Analysis of variance (ANOVA) was conducted to test

whether the three groups are statistically different with

respect to the use of correlated acoustic features for

emotion dimensions estimation. For the Japanese database,

at level 0.001, a significant discrimination among the three

groups was observed: valence (F½2; 534� ¼ 29:30, p �
0:001), activation (F½2; 534� ¼ 59:28, p � 0:001), and

dominance (F½2; 534� ¼ 51:14, p � 0:001). For the Ger-

man database the results were significant for all emotion

dimensions at level 0.001, the information of the F-test

were as follows: valence (F½2; 597� ¼ 6:95, p � 0:001),

activation (F½2; 597� ¼ 30:54, p � 0:001) and dominance

(F½2; 597� ¼ 20:28, p � 0:001).

For both databases, the results reveal that by using the

three-layer model, the MAEs obtained using the selected

acoustical features group (highly correlated acoustic

features) are the smallest in comparison with that using

all the features. This means that our feature selection

method is effective for improving emotion dimensions

estimation.

5.3. System Evaluation

In this paper, an automatic speech emotion recognition

system based on a three-layer model was implemented.

This section presents the evaluation results for the proposed

system. To investigate how effectively our system im-

proves emotion dimensions estimation, the performance

of the proposed system was compared with that of the

conventional two-layer system by using two different

languages: Japanese and German, using two different tasks

(1) speaker-dependent, and (2) multi-speaker.

The most relevant acoustic features for each emotion

dimension were selected using the proposed feature

selection method for the two languages as described in

Sect. 4. These selected features were used as the input for

the conventional system and the proposed system. The

desired output form these systems is the perceived emotion

dimensions by listeners, not the emotions intended by

speakers.

5.3.1. Evaluation results for speaker-dependent task

In the speaker-dependent task, the automatic emotion

recognition system was trained and tested using utterances

for one speaker. For a Japanese database, the two automatic

systems (the conventional two-layer and proposed three-

layer systems) were used to estimate the valence, activa-

tion, and dominance from the selected acoustic features

for 179 utterances included in the Japanese database. The

five-fold cross validation was used to evaluate the

automatic systems. The MAEs for emotion dimensions

(valence, activation, and dominance) between the two

systems output and human evaluation are shown in

Fig. 6(a). The error bars represent standard errors.

The German database contained ten speakers: five male

and five female. Since each speaker made few utterances,

the leave-one-out-cross-validation (LOOCV) was used for

evaluation. The proposed system and the conventional two-

layer system were evaluated using each speaker individ-

ually. Finally, the mean value for MAE from all speakers

for each emotion dimension was calculated. The results are

presented in Fig. 6(b).

Using t-test, at level 0.05, the results for the two

databases are as follows: for Japanese database, valence

(tð178Þ ¼ 3:16, p � 0:05), activation (tð178Þ ¼ 2:47, p �
0:05), and dominance (tð178Þ ¼ 4:99, p � 0:05). These

results are statistically significant for all emotion dimen-

sions. However, for the German database, the results are

statistically significant for valence (tð199Þ ¼ 2:09, p �
0:05) and dominance (tð199Þ ¼ 1:78, p � 0:05), but
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Fig. 5 Mean Absolute Error (MAE) between human evaluation and estimated values of emotion dimensions.
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there is no significant differences for activation between

the two-layer and the three-layer systems (tð199Þ ¼ 0:23,

p-value = 0.41). As can be seen from Figs. 6(a) and 6(b),

the estimation results using the proposed three-layer system

outperforms the conventional two-layer system for the two-

languages for the speaker-dependent task.

5.3.2. Evaluation results for multi-speaker task

The German database was used to investigate the effect

of multi-speaker on emotion dimension estimation. Thus,

the proposed system was validated using the whole

database, and all 200 utterances were used to implement

this system. Five-fold cross validation was used to evaluate

this system. The results for multi-speaker evaluation are

shown in Fig. 7. The error bars represent standard errors.

The results of the paired t-test at 0.05 significant level

were as follows: valence (tð199Þ ¼ 2:83, p � 0:05), acti-

vation (tð199Þ ¼ 1:93, p � 0:05), and dominance (tð199Þ ¼
3:38, p � 0:05). These results are statistically significant

for all the emotion dimensions. These results reveal that the

proposed system outperforms the conventional one in the

multi-speaker task.

5.4. Discussion

Using the acoustic feature selection method described

in Sect. 4, the most relevant acoustic features were selected

for each emotion dimensions, for the Japanese and the

German databases. To investigate the effectiveness of the

selected acoustic features, the proposed system was tested

using three different groups of acoustic features: selected,

not selected, and all. The best performance for emotion

dimensions estimation were achieved using the selected

acoustic features group, for each emotion dimension, as

demonstrated by the smallest values of the MAEs, for both

German and Japanese databases.

The MAEs for all dimensions, as shown in Figs. 6(a),

6(b), and 7, clearly show that the proposed three-layer

system is effective and gives the best results for all emotion

dimensions (valence, activation, and dominance) for both

speaker-dependent and multi-speaker task. However, the

MAEs for the multi-speakers task were higher than those

for the speaker-dependent task.

For the German and the Japanese databases, the over-

all best results were achieved for all emotion dimensions

using speaker-dependent task. For both databases, all MAE

values were very small; the maximum MAE was 0.28 for

valence for the Japanese database as shown in Fig. 6(a).

This value indicates that on average the error between

human evaluation and system output is 0.28 which means

that the output of the proposed system are very close to

human evaluation.

From this discussion, it is evident that the valence

dimension estimation could be improved by using the

proposed model. Therefore, the most important results

from this study is that the proposed automatic speech

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Valence Activation Dominance

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Emotion Dimenision

2-Layer
3-Layer

Fig. 7 German Database (multi-speaker): MAE be-
tween human evaluation and two systems’ output.
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Fig. 6 MAE between human evaluation and the two systems output for speaker dependency.
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emotion recognition system based on the three-layer model

for human perception was superior to the conventional two-

layer system.

6. MAPPING VALUES OF EMOTION
DIMENSIONS INTO EMOTION

CATEGORIES

The categorical and dimensional approaches are closely

related, i.e. by detecting the emotional content using one of

these two schemes, we can infer its equivalents in the other

scheme. For example, if an utterance is estimated with

positive valence and high activation we could infer that this

is happy, and vice versa. Therefore, any improvement in

the dimensional approach will lead to an improvement in

the categorical approach and vice versa.

In this section, we want to strengthen our findings in

this study by demonstrating that the dimensional approach

can actually help us to improve the automatic emotion

classification. So, the estimated values of emotion dimen-

sions (valence, activation, and dominance) were used as

inputs for Gaussian Mixture Model (GMM) to predict

the corresponding emotional category. The classifications

results into emotion categories using acoustic features

directly is compared with the classification results using the

estimated values of emotion dimensions as shown in

Tables 4 and 5 for the Japanese and German databases,

respectively.

6.1. Classification for Japanese Database

For the Japanese database, first, the acoustic features

were used as input to train the GMM classifier to classify

the Japanese database into five emotion categories: neutral,

joy, hot anger, sadness, and cold anger. Moreover, the

estimated values of emotion dimensions were used as input

to train GMM to classify the values of every point in the

space valence-activation-dominance into one emotion

category. The confusion matrix of the results is shown in

Table 4(a) for mapping acoustic features into categories

and in Table 4(b) for mapping values of emotion dimen-

sions into emotion categories. In these tables, the numbers

represent the percentages of recognized utterances of the

emotion category in the left column versus the number of

utterances for emotions in the top line.

6.2. Classification for German Database

The results of classification of the German database

into four emotion categories: neutral, happy, angry, and sad

are represented by the confusion matrix as follows:

Table 5(a) for mapping acoustic feature into categories,

Table 5(b) for mapping emotion dimensions into categories

for multi-speaker estimation, and Table 5(c) for mapping

emotion dimensions into categories for speaker-dependent

estimation.

6.3. Discussion

Emotion dimensions values are mapped into the given

emotion categories using a GMM classifier. This is a

remarkable improvement on the recognition rate. For the

Japanese database, the overall recognition rate was 53.9%

for direct classification using acoustic features and 94%

using emotion dimensions. For the German database, the

rate of direct classification using acoustic features was

60%, which increased to 75% and 95.5% using emotion

dimensions for multi-speaker and speaker-dependent tasks,

respectively. The result reveals that the recognition rate in

speaker-dependent tasks is higher than in multi-speaker

tasks. This corresponds with previous studies indicating

that speaker-dependent training of the estimator achieves

the most accurate emotion classification results [26]. The

most important result is that, the classification using

emotion dimensions instead of acoustic features improves

the recognition rate.

7. CONCLUSION

The aim of this paper is to improve the conventional

dimensional method in order to accurately estimate

emotion dimensions, especially the valence dimension.

Therefore, we first proposed a novel acoustic features

selection method based on a three-layer model of human

Table 4 Classification results for Japanese database
using GMM classifier:

(a) By mapping acoustic features directly to emotion categories
(Average recognition rate 53.9%).

Classification rate (%)

Category Neutral Joy Cold Sad Hot
anger anger

Neutral 30.0 15.0 45.0 5.0 5.0

Joy 2.5 40.0 12.5 2.5 42.5

Cold Anger 7.7 12.8 71.8 5.1 2.6

Sad 0.0 7.5 12.5 77.5 2.5

Hot Anger 2.5 45.0 2.5 0.0 50.0

(b) By mapping the estimated emotion dimensions for speaker-
dependent task to emotion categories (Average recognition rate
94.0%).

Classification rate (%)

Category Neutral Joy Cold Sad Hot
anger anger

Neutral 80.0 10.0 5.0 5.0 0.0

Joy 0.0 97.5 2.5 0.0 0.0

Cold Anger 0.0 0.0 100 0.0 0.0

Sad 0.0 0.0 0.0 100 0.0

Hot Anger 0.0 2.5 5.0 0.0 92.5
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perception, for selecting the most relevant acoustic features

to each emotion dimensions. This method was successfully

applied for two different language databases (Japanese and

German), many acoustic features were found to be relevant

for the valence dimension as well as for the activation, and

dominance.

We then proposed a speech emotion recognition system

based on the three-layer model to estimate emotion

dimensions (valence, activation, and dominance) from

most related acoustic features. The proposed system was

evaluated using two different languages (Japanese and

German) in two different cases (speaker-dependent and

multi-speaker). It was found that the proposed system

outperforms the conventional two-layer system in both

languages, for speaker-dependent, and multi-speaker tasks.

Finally, the estimated values of emotion dimensions

were mapped into the given emotion categories using a

GMM classifier for the Japanese and German databases.

For the Japanese database, an overall recognition rate was

94% using emotion dimensions. For the German database,

the recognition rate was 95.5% for speaker-dependent

tasks.

In the future, in order to obtain a much more reliable

and rich annotation results for emotion dimension and

semantic primitives using a listening test, we will study

the effect of using a balanced number of subjects in terms

of gender and age. Moreover, we will investigate the

effectiveness of the three-layer model for constructing a

cross-language emotion recognition system which has the

ability to detect emotion regardless of the language used

for training.
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