
Blind source separation and two-signal localization

in time-frequency domain considering time lag information:

Application to the case where one signal includes a reflected signal

Megumi Yanai�, Fumio Sasakiy, Osamu Tanakaz and Masahito Yasuokax

Department of Architecture, Faculty of Engineering, Tokyo University of Science,
6–3–1 Niijuku, Katsushika-ku, Tokyo, 125–8585 Japan

(Received 27 November 2012, Accepted for publication 22 May 2013)

Keywords: Blind source separation, Specification of location, One reflection, Time-frequency information
PACS number: 43.55.Ka, 43.60.Ac, 43.60.Hj [doi:10.1250/ast.35.55]

1. Introduction
We previously proposed a technique for both determining

the location of source signals and separating them by blind
source separation [1]. Moreover, by extending this technique,
we showed the separation and specification of the location of
signals in the case of a source signal embedded in another
signal, such as noise in the time-frequency domain [2,3].
However, in that method [1–3], the reflected sounds of the
source signal could not be considered.

In this paper, for a signal embedding a source signal and
its reflected sound in the time-frequency domain, we describe
a method for the separation and specification of these two
signals. Our method is validated through a numerical test.

2. Formulation
2.1. Assumptions

In this paper, we assume that two signals exist. Let s1ðtÞ
and s2ðtÞ be the signal data and s1 be embedded in s2 in the
time-frequency domain. We assume that these data are point
sound sources that emanate from different locations. In
addition, we assume that the number of observation points is
MðM � 4Þ; xkðtÞ ð1 � k � MÞ refers to the observation data.
In general, M ¼ 4 is sufficiently large. In this study, there is
one wall and the reflected sound of s1 is considered. s2
originates from the wall and s1 originates at another point
away from the wall. Therefore, two signals exist from s1 to the
observation points: the direct signal and the signal reflected by
the wall. Moreover, to obtain signal data, we assume the
following relations hold:

xkðtÞ ¼ ak11s1ðt � ck11Þ þ ak12s1ðt � ck12Þ

þ ak21s2ðt � ck21Þ: ð1Þ
Here, akjh represents the real-valued damping coefficient and
ckjh represents the real-valued time lag between xkðtÞ and s1ðtÞ,
s2ðtÞ ð1 � k � M; j ¼ 1; 2; h ¼ 1; 2Þ. In Eq. (1), the first term
on the right side expresses the direct signal of s1. In this paper,
a term including s1 expressing a reflected sound is newly
added as the second term. The third term expresses a direct

signal of s2. The only known data are the observation signal
data xkðtÞ, the location of xk ð1 � k � MÞ and the number of
signals ð j ¼ 1; 2Þ; sjðtÞ, akjh, ckjh, and the locations of sjðtÞ
ð j ¼ 1; 2Þ are all unknown data.

We specify sjðtÞ, akjh, and ckjh only using xkðtÞ.
2.2. Time-frequency information

Let Xkðt; !Þ be the time-frequency information for
observation data xkðtÞ, in the form of a complex-valued
function. In this paper, the continuous wavelet transform, for
which the integral kernel consists of a complex mother
wavelet, which, in turn, consists of a Meyer wavelet (the real
part) and the Hilbert transform of the Meyer wavelet (the
imaginary part), is adopted to obtain Xkðt; !Þ [4,5]. Thus,
Eq. (1) is transformed into the following equation by the
continuous wavelet transform.

Xkðt; !Þ ¼ ak11S1ðt � ck11; !Þ

þ ak12S1ðt � ck12; !Þ þ ak21S2ðt � ck21; !Þ: ð2Þ
Here, Sjðt; !Þ is the time-frequency information for sjðtÞ.
We define the set of time-frequency domains as Hk1h ¼
fðt; !Þ : S1ðt � ck1h; !Þ 6¼ 0g ðh ¼ 1; 2Þ, Hk21 ¼ fðt; !Þ: S2ðt �
ck21; !Þ 6¼ 0g. In this paper, because we assume that s1 is
embedded in s2 in the time-frequency domain, the following
relationships hold: Hk11, Hk12 � Hk21 and Hk11 6¼ Hk12, Ek ¼
Hk21 � ðHk11 [ Hk12Þ 6¼ f�g & measure 6¼ 0.

Let ~Ek be a set of time shifts of Ek to �ckjh. In addition, let
G be the set defined by

G ¼
\M

k¼1

~Ek; ð3Þ

which has a measure in the same range as Ek.
2.3. Calculation of damping ratio and time lag of s2

For arbitrary values of k; l ð1 � k; l � M; k 6¼ lÞ, the
complex-valued quotient function Qðtk; tl; !Þ is introduced
and defined as Qðtk; tl; !Þ ¼ Xkðtk; !Þ=Xlðtl; !Þ. Because
Xkðtk; !Þ and Xlðtl; !Þ are complex-valued functions, Q is
generally a complex-valued function. However, if ðtk; !Þ 2 Ek,
then Xkðtk; !Þ ¼ ak21S2ðtk � ck21; !Þ, and if ðtl; !Þ 2 El, then
Xlðtl; !Þ ¼ al21S2ðtl � cl21; !Þ. Furthermore, if

tl ¼ tk � ðck21 � cl21Þ ð4Þ

is established, then Q satisfies the following relationship:
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Qðtk; tl; !Þ ¼ ak21=al21 2 R ðR: the set of real valuesÞ: ð5Þ

Thus, Q takes at least all the real values in the set G. By
keeping ! fixed and varying only tk and tl in the time-
frequency domain, we can obtain the damping coefficient
ratio ak21=al21, which is a real, constant value. Q may take
other real values outside the domain G; however, in such
cases, the existence of a corresponding measurable region is
very rare.
2.4. Specification of location of s2

When Eq. (4) holds, tl � tk ¼ cl21 � ck21. The right side of
this equation is the relative time lag between s2 to xk and xl.
When we multiply the speed of sound by this time lag, the
relative distance from s2 to xk and xl is obtained. Generally, in
a two-dimensional plane, the possible locations of s2 form a
hyperbolic curve. Thus, the points of intersection become the
positions of s2 when we consider a pair of observation points
and draw several hyperbolic curves. When the location of s2
has been decided, the distances to the observation points
become clear, and ck21 is obtained.
2.5. Calculation of damping ratio and time lag of s1

In Eq. (1), for arbitrary values of k; l ð1 � k; l � M; k 6¼ lÞ,
the next equation holds:

xlðt þ cl21Þ=al21 � xkðt þ ck21Þ=ak21

¼ al11=al21 � s1ðt � claÞ � ak11=ak21 � s1ðt � ckaÞ ð6Þ

þ al12=al21 � s1ðt � clbÞ � ak12=ak21 � s1ðt � ckbÞ;

where cla ¼ cl11 � cl21, clb ¼ cl12 � cl21 and cka ¼ ck11 � ck21,
ckb ¼ ck12 � ck21. We multiply ak21 by the statement in
Eq. (6) and define y1ðtÞ as

y1ðtÞ ¼ ala � s1ðt � claÞ þ aka � s1ðt � ckaÞ
þ alb � s1ðt � clbÞ þ akb � s1ðt � ckbÞ;

ð7Þ

where ala ¼ al11 � ak21=al21, aka ¼ �ak11, alb ¼ al12 � ak21=al21

and akb ¼ �ak12. Let l be fixed for an arbitrary value of m

ð1 � m � M;m 6¼ l;m 6¼ kÞ; we define y2ðtÞ in the same
manner as y1ðtÞ:

y2ðtÞ ¼ � � ala � s1ðt � claÞ þ ama � s1ðt � cmaÞ
þ � � alb � s1ðt � clbÞ þ amb � s1ðt � cmbÞ;

ð8Þ

where � ¼ ðam21=al21Þ=ðak21=al21Þ, ama ¼ �am11, amb ¼
�am12 and cma ¼ cm11 � cm21, cmb ¼ cm12 � cm21. In Eqs. (7)
and (8), y1ðtÞ, y2ðtÞ and � are known. Equations (7) and (8) are
transformed into the Fourier domain, then the following
equations hold:

ŷ1ð!Þ ¼ ðala � e�i!cla þ aka � e�i!cka

þ alb � e�i!clb þ akb � e�i!ckb Þŝ1ð!Þ ð9Þ

ŷ2ð!Þ ¼ ð� � ala � e�i!cla þ ama � e�i!cma

þ � � alb � e�i!clb þ amb � e�i!cmb Þŝ1ð!Þ: ð10Þ

Here, the symbol ^ represents the Fourier domain. If we
eliminate ŝ1ð!Þ from Eqs. (9) and (10) and normalize the
equations using alae

�i!cla , we can obtain the following
equation:

ẑð!Þ ¼ ŷ2ð!Þ � b1 � e�i!
~d1 þ ŷ1ð!Þ � b2 � e�i!

~d2

þ ð ŷ1ð!Þ � � � ŷ2ð!ÞÞ � b3 � e�i!
~d3 ð11Þ

þ ŷ2ð!Þ � b4 � e�i!
~d4 þ ŷ1ð!Þ � b5 � e�i!

~d5 ;

where ẑð!Þ ¼ ŷ1ð!Þ � � � ŷ2ð!Þ and b1 ¼ aka=ala, b2 ¼
�ama=ala, b3 ¼ �alb=ala, b4 ¼ akb=ala, b5 ¼ �amb=ala, ~d1 ¼
cka � cla, ~d2 ¼ cma � cla, ~d3 ¼ clb � cla, ~d4 ¼ ckb � cla and
~d5 ¼ cmb � cla. bjð j ¼ 1; � � � ; 5Þ represent the real-valued
damping coefficient ratios and satisfy the following relation-
ship:

b1 < 0; b2 > 0; b3 < 0; b4 < 0; b5 > 0: ð12Þ

Furthermore, ~djð j ¼ 1; � � � ; 5Þ represent the discretized
number of steps. In Eq. (11), ẑð!Þ is known, whereas bj and dj
are unknown.

Next, we discretize Eq. (11). Let N be the total number of
discretized steps and �t and �! be the intervals of time and
frequency, respectively; these indicate that

t ¼ r ��tðr ¼ 0; 1; 2; � � � ;NÞ;
! ¼ u ��!ðu ¼ 0; 1; 2; � � � ;N=2Þ

and ~dj ¼ dj ��t. Moreover, let zu ¼
 

ẑðu ��!Þ, yu1 ¼
 

ŷ1ðu �
�!Þ and yu2 ¼

 
ŷ2ðu ��!Þ, and let pnj be the value that is

substituted into u ¼ N=2nðn ¼ 1; � � � ; 5Þ for the exponential
part expð�iuð2�=NÞdjÞð j ¼ 1; � � � ; 5Þ. Then, the following
equation holds:

zN=2n ¼ yN=2n�2 � b1 � pn1 þ yN=2n�1 � b2 � pn2
þ ðyN=2n�1 � � � yN=2n�2Þ � b3 � pn3 ð13Þ
þ yN=2n�2 � b4 � pn4 þ yN=2n�1 � b5 � pn5:

Then, we introduce the matrix representation

Pb ¼ z; ð14Þ

where P ¼ ½qnj�, b ¼ ½b1 b2 b3 b4 b5�T and z ¼
½zN=2 zN=22 zN=23 zN=24 zN=25 �T. Here, the entries of matrix P
are qnj ¼ yN=2n�mpnj ðm ¼ 2ð j ¼ 1; 4Þ;m ¼ 1ð j ¼ 2; 5ÞÞ and
qnj ¼ ðyN=2n�1� � yN=2n�2Þpnjð j ¼ 3Þ. z is known. Two candi-
dates are considered as entries of P on the basis of the
relations given by the argument, although their values are
known. We substitute each candidate in to Eq. (14) and
calculate bj such that it satisfies the condition of a real value
and Eq. (12).

Then, for pnjðn � 6; j ¼ 1; � � � ; 5Þ, Eq. (13) is considered
to have 25 possible candidates when n ¼ N=26. We substitute
each candidate into Eq. (13) and calculate a combination that
satisfies Eq. (13). In this way, modðdj; 26Þ is obtained. We
apply the above-mentioned calculation in the same way for
n ¼ N=27, n ¼ N=28, � � �. For example, when the analytical
area is 10 m in every direction and the sampling frequency
is 44,100 Hz, we can assume jdjj � 211. Thus, we should
calculate up to n ¼ N=212; it is for this value that modðdj; 212Þ
is equivalent to dj. If modðdj; 212Þ is not less than 211, then
dj ¼ mj � 212 ðmj ¼ modðdj; 212ÞÞ.

When k and l are fixed and m is varied, by repeating the
same operations as applied to Eqs. (6) to (14), the damping
coefficient ratios and relative time lags of s1 can be obtained.
Moreover, we can specify the location of s1 in the same way
as for s2.
2.6. Separation of s1 and s2

Let the separation data of s1ðtÞ and s2ðtÞ be
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~s1ðtÞ ¼ al11s1ðtÞ; ~s2ðtÞ ¼ al21s2ðtÞ ð1 � l � MÞ: ð15Þ

In this paper, we calculate the values of ~s1ðtÞ and ~s2ðtÞ
instead of s1ðtÞ and s2ðtÞ, respectively. We substitute Eq. (15)
for Eq. (1) and perform a Fourier transform.

x̂kð!Þ ¼ ak11=al11e
�i!ck11 ~̂s1ð!Þ

þ ak12=al11e
�i!ck12 ~̂s1ð!Þ þ ak21=al21e

�i!ck21 ~̂s2ð!Þ ð16Þ

ð1 � k � MÞ. ~̂s1ð!Þ and ~̂s2ð!Þ are obtained by solving Eq. (16)
for all frequencies. ~s1ðtÞ and ~s2ðtÞ can be calculated by
performing the inverse Fourier transform.

3. Numerical test
3.1. Setting

Figure 1 and Table 1 describe the locations of the two
signal sources and the observation points for M ¼ 4. We
derive signal data from a collection of sounds recorded in
digital video disc (DVD) format [6]. Assumptions in this
method are shown in Table 2. The sampling frequency is
44,100 Hz, and the total duration is approximately 2.97 s. We
assumed that the damping coefficients are proportional to the
reciprocal of the propagation distance and set them as such.
We then collected observation data for the signal data. Here,
the speed of sound is considered to be 340 m/s. Figures 2 and
3 show signal data in the time domain and the time-frequency
domain, respectively. From Fig. 3, s2 is found to have values
in a wide time-frequency band, and we see that s2 includes s1.
In the following discussion, the observed signal data xkðtÞ, the
locations of xkð1 � k � MÞ and the number of signals ð j ¼
1; 2Þ are the only known data. In this case, we can specify the
locations of signal sources and separate these signals.

3.2. Results for s2
Table 3 lists the results of calculations of the damping

coefficient ratios, time lags and the specification of the
location of s2. Compared with the set point, the location error
is approximately 14.4 mm. In addition, when we find time
lags, discretization errors may occur. In this numerical test,
we normalize c121 and calculate ck21. Errors in the time lags
are 2 steps.
3.3. Results for s1

Table 4 lists the results of calculations of damping
coefficient ratios, time lags and the specification of location
of s1. Compared with the set point, the location error is
approximately 2.72 mm.
3.4. Results of separation for s1 and s2

We separate s1 and s2 using their respective damping
coefficient ratios and time lags that were obtained. To
compare the separation signals and the original signals, we
calculate errors using the following equation.

observation points
signal 1
signal 2

-1

0
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2

3

4

5

6

7

-1 0 1 2 3 4 5 6 7

[m
]

[m]

wall

Fig. 1 Setting locations.

Table 1 Setting locations.

coordinates [m]

s1 ð2; 1Þ
s2 ð1; 6Þ
x1 ð0; 0Þ
x2 ð4; 1Þ
x3 ð0; 3Þ
x4 ð3; 4Þ

Table 2 Assumptions in this method.

propagation system
homogeneity
invariability of time

kind of microphone nondirectional microphone

placement of observation points arbitrary placement
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Fig. 2 Signal data in time domain.
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Fig. 3 Signal data in time-frequency domain.
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Err ¼

XN

r¼1

ðsjðr ��tÞ � ~s0jðr ��tÞÞ
2

XN

r¼1

sjðr ��tÞ2
ð j ¼ 1; 2Þ ð17Þ

Here, ~s0jðtÞ is 1=a1j1 multiplied by sjðtÞ. When j ¼ 1,
Err ¼ 5:2	 10�7 and when j ¼ 2, Err ¼ 4:6	 10�6. There-
fore, we can confirm that the errors are very small.

4. Conclusion
In this paper, we described a method for the separation

and specification of a source signal that includes a reflected
signal and another signal. Moreover, our numerical tests
showed that results were highly accurate.

Future topics include the examination of multiple reflec-
tions and the establishment of experimental techniques that
use real-world observation data.
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Table 3 Results for s2.

a221=a121 a321=a121 a421=a121

calculation 1.043185174 1.923538442 2.150581335
setting 1.043185168 1.923538406 2.150581317

c121 � c221 c121 � c321 c121 � c421

calculation [step] 33 379 422
setting [step] 33 379 422

location of s2 [m] ð0:99640; 6:0139Þ

c121 c221 c321 c421

calculation [step] 791 758 412 369
setting [step] 789 756 410 367

Table 4 Results for s1.

a211=a111 a311=a111 a411=a111

calculation 1.118034 0.7905698 0.7071054
setting 1.118034 0.7905694 0.7071068

c111 � c211 c111 � c311 c111 � c411

calculation [step] 31 �77 �120

setting [step] 31 �77 �120

location of s1 [m] ð2:0024; 0:99871Þ

c111 c211 c311 c411

calculation [step] 290 259 367 410
setting [step] 290 259 367 410

Acoust. Sci. & Tech. 35, 1 (2014)

58


