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Abstract: Noise barriers are often very tall alongside highways with heavy traffic. Although these
high barriers ensure the desired amount of noise attenuation, they are expensive to install and have a
negative effect on the landscape. Consequently, many types of edge-modified noise barriers have been
proposed to reduce the necessary height. Herein an alternative noise barrier based on the ‘‘edge-effect’’
suppression technique is proposed, and the sound insulation performance is investigated both
theoretically and experimentally. Numerical examples indicate that the diffracted sound is greatly
attenuated by suppressing the particle velocity in the region with a large velocity amplitude using a
thin absorbing material such as cloth with a gradational distribution in impedance. The experimental
and theoretical results of insertion loss are in good agreement, validating the theoretical consideration
and effectiveness of the cloth installed at the top of the barrier.
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1. INTRODUCTION

To shield neighborhoods from road traffic noise and

railway noise, the charts proposed by Maekawa [1] and by

Koyasu and Yamashita [2] are widely used to obtain the

expected insertion loss due to a noise barrier. Although

noise barriers are commonly used as a noise prevention

measure due to their relatively low cost, good performance,

and ease of installation, sometimes very high barriers

must be built to achieve the environmental standards. High

barriers are disadvantageous because they reduce the

attractiveness of the surrounding landscape, inhibit sun-

shine, and cost more due to the reinforcement necessary

for wind resistance. To resolve these issues, many types of

edge-modified noise barriers have been proposed [3,4],

including sound absorption-type barriers, which trap sound

propagating along the absorber surface, phase interference-

type barriers, which cancel sound pressure at certain

frequency bands, and hybrids of these two types.

The theoretical basis for edge-modified noise barriers is

the representation of a diffracted sound field by the line-

integral along the barrier edge obtained from Kirchhoff’s

diffraction theory, which assumes Kirchhoff’s boundary

conditions [5] via the Maggi-Rubinowicz transformation

[6]. Therefore, barriers are designed with the goal of

reducing the sound pressure at the barrier edge, which is the

integrand of the line integral, by means of sound absorption

or phase interference equipment attached at the top of the

noise barrier. In this paper, the authors demonstrate via

theoretical analysis using boundary integral equations that

a region of extremely large particle velocity amplitude,

which is omitted in Kirchhoff’s diffraction theory, appears

in the vicinity of the barrier edge [7] (see Appendix) and

that suppressing the large particle velocity in this region

decreases the sound level in the diffracted field.

2. THEORETICAL CONSIDERATIONS

2.1. Semi-infinite Barriers

Consider a sound field by a semi-infinite thin rigid

barrier where S is the barrier and F is the virtual surface,

which is an upward extension of S, as shown in Fig. 1.

Then the space is divided into two semi-infinite regions �1

and �2, and one of which (�1) contains point sound source

Ps. Let �1 and �2 be the velocity potentials of the sound

wave in the two regions �1 and �2 due to the point source.

To express the velocity potential �1 at P, the following

fundamental solution of Helmholtz’s three-dimensional

operator considering the mirror image is introduced,

GðP;QÞ ¼
expðikrÞ

4�r
þ

expðikriÞ
4�ri

; ð1Þ

where P is a point located inside �1 or on its boundary,

Q is a point located on the boundary, r ¼ jrj ¼ jPQ
�!
j,
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ri ¼ jrij ¼ jPiQ
�!
j, and Pi the image point of P with respect

to the plane Sþ F (see Fig. 2). The image method is

introduced here so that �1 is expressed using only @�1

@n

distributed on boundary F. The time factor expð�i!tÞ is

suppressed throughout, where i is an imaginary unit, ! is

the angular frequency, and t is time.

Green’s identity or integration by parts can be applied

to the region �1 � � � �s. The region �1 � � � �s is

bounded externally by S, F, and � of center P, which has

an infinite radius, and internally by small spheres � and �s,

which have respective centers P and Ps and small radii ".

Then taking the limit "! 0 leads to

�1ðPÞ ¼ �DðPÞ þ�DðPiÞ �
ZZ

F

@�1ðQÞ
@n

GðP;QÞdS

¼ �DðPÞ þ�DðPiÞ �
1

2�

ZZ
F

@�1ðQÞ
@n

expðikrÞ
r

dS

ðP 2 �1; S;FÞ; ð2Þ

where @
@n denotes the differentiation along the inward

normal n to the boundary and �D is the direct wave.

Equation (2) holds even when point P lies on the boundary

Sþ F [8]. The integral over � is omitted based on the

assumption of Sommerfeld’s radiation condition [9].

The equation in the other semi-infinite region �2 is

derived in a similar manner. Considering a sound source

does not exist and the outward normal gives

�2ðPÞ ¼
ZZ

F

@�2ðQÞ
@n

GðP;QÞdS

¼
1

2�

ZZ
F

@�2ðQÞ
@n

expðikrÞ
r

dS

ðP 2 �2; S;FÞ: ð3Þ

In Eqs. (2) and (3), when point P lies on boundary F, then

Pi overlaps P and the following relations �1 ¼ �2 ¼
def
�

and @�1

@n ¼
@�2

@n ¼
def @�

@n hold on F. Consequently, subtracting

Eq. (3) from Eq. (2) yields

1

�

ZZ
F

@�ðQÞ
@n

expðikrÞ
r

dS ¼ 2�DðPÞ ðP 2 FÞ: ð4Þ

Equation (4) is the boundary integral equation of the first

kind with unknown function @�
@n on F. Solving integral

Eq. (4) and substituting the solution into Eq. (3) gives the

diffracted sound field behind the barrier. Note that from

Eq. (3), the diffracted sound field is expressed only by the

normal derivative of the velocity potential @�
@n distribution

on F, which denotes the component of particle velocity

perpendicular to the plane with the opposite sign. There-

fore, the design concept for conventional edge-modified

barriers, which focuses on controlling the sound pressure

instead of the particle velocity, is unreasonable.

As an example, under the conditions shown in Fig. 3,

the distribution of the amplitude of the particle velocity

along the y-axis solved by Eq. (4) is compared with

Kirchhoff’s approximation of the boundary value in Fig. 4.

In the numerical calculation, the area 0 � x � 10� , 0 �

F
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Fig. 1 Sound diffraction by a semi-infinite thin rigid barrier.
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Fig. 2 Derivation of the boundary integral equation for
the semi-infinite region �1: �1, which is bounded by
infinite sphere � of center P and plane boundary
Sþ F. n denotes the inward normal. A point source is
located at Ps, and a receiving point is at P. Pi denotes
the image point of P with respect to the plane Sþ F. Q
is a point on Sþ F, while �s and � denote small
spheres with centers Ps and P, respectively.

y

z

x

Point source
(0, -3, 3) [m]

Semi-infinite
barrier

Fig. 3 Calculation of the particle velocity amplitude
above a semi-infinite thin rigid barrier.
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y � 10� (� denotes wavelength) is considered because the

sound field is symmetrical in the yz-plane and an infinite

region cannot be treated numerically. The area was

determined based on some preliminary investigations so

that the results sufficiently converge and is discretized into

constant elements whose dimensions are less than �=5 [10].

The manner of determination of integration area and

element dimensions is employed throughout in this paper.

An omni-directional point source, which gives a unit

velocity potential amplitude at a point 1 m from the source,

is also used. Figure 4 shows that a region with a very large

amplitude of particle velocity exists near the barrier edge.

In this paper, the ‘‘edge effect’’ refers to the phenomenon

where the incident sound yields a very large amplitude of

particle velocity in the vicinity of the edge of a thin object,

and is due to the drastic change in sound pressure between

the sound-exposed side and the other side at the edge of

a thin object. Figure 5 shows the distribution of the particle

velocity amplitude of the normal component to the barrier;

an isolated area with a large particle velocity appears near

the barrier edge. As mentioned previously, because the

diffracted field is expressed by the contribution of the

particle velocity distribution on F above the barrier,

suppressing the prominent particle velocity near the barrier

edge by such means as attaching a cloth or thin porous

absorber with an appropriate flow resistance should

efficiently reduce the diffracted sound.

2.2. Treatment of a Thin Porous Absorbing Material

[11]

In the following, the term ‘‘cloth’’ refers to any type

of thin porous absorbing material. As shown in Fig. 6,

assuming that the flow resistance and relative particle

velocity to the cloth are denoted by rs and vs, respectively,

and that sound pressures in front of and behind the cloth are

denoted by p1 and p2 gives the following relation

vs ¼ �
p1 � p2

rs
: ð5Þ

The cloth is also excited by the pressure difference of

p1 � p2. If the surface density of the cloth is denoted by

Ms and the vibration velocity by vm, then the pressure

difference can be expressed as

� ðp1 � p2Þ ¼ Ms

dvm

dt
¼ �i!Msvm: ð6Þ

The particle velocity v at the surface can be expressed by

the summation of vs and vm as

v ¼ vs þ vm ¼ �
1

rs
�

1

i!Ms

� �
ðp1 � p2Þ: ð7Þ

With Zr ¼ �ðp1 � p2Þ=v, Eq. (7) yields

Zr ¼ �
p1 � p2

v
¼

1

rs
�

1

i!Ms

� ��1

: ð8Þ

Therefore, the following equation holds
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Fig. 4 Particle velocity amplitude along the y-axis at
500 Hz under the conditions shown in Fig. 3.
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Fig. 5 Distribution of the particle velocity amplitude
(normal component) in the yz-plane at 500 Hz under
the conditions shown in Fig. 3. Sound source is located
in the lower left, and the barrier is located below the
center.
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Fig. 6 Impedance of a cloth or a thin absorbing layer.
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v ¼ �
p1 � p2

Zr

¼
i!�ð�1 ��2Þ

Zr

: ð9Þ

2.3. Semi-infinite Barriers with Zonal Cloths Installed

at the Top

Consider a semi-infinite thin rigid barrier along the top

where a zonal cloth is set to suppress the large particle

velocity amplitude (Fig. 7). In the following, this type of

barrier is called as an ‘‘edge-effect suppression barrier.’’

Suppose that the surface of the cloth is denoted by A.

Because �1 ¼ �2 ¼
def
� on F and @�1

@n ¼
@�2

@n ¼
def @�

@n on

F þ A, similar to before when P is located on F, the

following relation can be obtained

1

�

ZZ
FþA

@�ðQÞ
@n

expðikrÞ
r

dS ¼ 2�DðPÞ ðP 2 FÞ: ð10Þ

If P is located on A, then using Eq. (9) gives

�1ðPÞ ��2ðPÞ þ
1

�

ZZ
FþA

@�ðQÞ
@n

expðikrÞ
r

dS

¼ �
Zr

i!�

@�ðPÞ
@n
þ

1

�

ZZ
FþA

@�ðQÞ
@n

expðikrÞ
r

dS

¼ 2�DðPÞ ðP 2 AÞ: ð11Þ

Solving Eqs. (10) and (11) simultaneously, @�
@n on F þ A

can be calculated. The diffracted sound field can be

obtained by the following relation as shown in Eq. (3)

�2ðPÞ ¼
1

2�

ZZ
FþA

@�ðQÞ
@n

expðikrÞ
r

dS

ðP 2 �2; S;F;AÞ: ð12Þ

3. NUMERICAL EXAMPLES

The result of the 1/10 scale model experiment for an

edge-effect suppression barrier and that of theoretical

calculation are shown in reference [12]. In the scale model

experiment, the barrier is composed of plywood with a

thickness of 9 mm and a 50-mm high zonal cloth is

attached at the top. In the experiment, the cloth is a curtain

fabric with constant flow resistance rs ¼ 789 Ns/m3 and

surface density Ms ¼ 0:66 kg/m2 throughout the surface.

Because the scale model experiment and theoretical

calculations are in good agreement, this method appears

to be efficient. Many numerical examples demonstrate

that the edge-effect suppression barrier has a very good

performance for noise shielding efficiency if the cloth has a

suitable impedance, which depends on both flow resistance

and surface density. However, installation of a cloth with a

large and constant impedance to suppress the edge effect

near the barrier sufficiently yields another edge effect near

the top of the cloth. Figure 8(a) shows an example of the

distribution of the particle velocity amplitude of the normal

component to such an edge-effect suppression barrier. Two

regions with a large particle velocity amplitude near the

F
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Fig. 7 Edge-effect suppression barrier.
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Fig. 8 Distribution of the particle velocity amplitude
(normal component) in the yz-plane at 500 Hz under
the conditions shown in Fig. 3. (a) Cloth with a
constant flow resistance rs ¼ 800 Ns/m3 and surface
density Ms ¼ 1:0 kg/m2 is attached. (b) Cloth with a
gradational distribution in impedance (specimen No. 4
in Table 1) is attached. Sound source is located in the
lower left.

Y. KAWAI and M. TOYODA: EDGE-EFFECT SUPPRESSION BARRIERS

31



top and bottom of the cloth can be observed (cf. Fig. 5).

As long as a cloth with a constant impedance is used, the

sound insulation performance is not improved over a

certain limit.

To overcome this limitation, we introduce a cloth

whose impedance has a gradational distribution, i.e., the

flow resistance and surface density become smaller closer

to the top of the cloth and vanish to prevent a drastic

change in sound pressure, which causes the edge effect

near the top of the cloth. Figure 8(b) shows the distribution

of the particle velocity amplitude of the normal component

when a cloth with a gradational distribution in impedance

is used. The edge effect due to the rigid barrier is

sufficiently suppressed, and the additional edge effect near

the top of the cloth is also reduced. These results suggest

that the diffracted sound field may be further reduced.

Figures 9(a) and 9(b) show the time-averaged energy flow

diagrams for a semi-infinite rigid barrier and an edge-effect

suppression barrier with a cloth possessing a gradational

distribution in impedance, respectively. The barrier with a

cloth with a gradational distribution transmitted very little

energy to the diffracted field.

As numerical examples, the A-weighted sound pressure

levels in the diffracted field caused by the road traffic noise

spectrum [13] under the conditions shown in Fig. 10(a),

where the point source and receiving points are in the same

vertical plane (x ¼ 0), are calculated from the results for

frequencies with 1/18-octave intervals from 100 to 2,500

Hz. The calculations are carried out for several types of

specimens installed at the top of the barrier. Table 1 lists

the physical properties of the specimens. Figure 10(b)

(a)

(b)

Fig. 9 Time-averaged flow of the sound energy at
125 Hz near the barrier edge for (a) semi-infinite
barrier and (b) edge-effect suppression barrier with
specimen No. 4 (gradational distribution in impe-
dance).

Table 1 Physical properties of the specimens installed
at the top of the barrier. These are the values at the
bottom when each specimen has a gradational distri-
bution.

Specimen No. 1 2 3 4 5

Surface density (kg/m2) 12 24 48 96 192
Flow resistance (Ns/m3) 400 800 1,600 3,200 6,400
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Fig. 10 Calculation of the diffracted sound field due to
the edge-effect suppression barrier for (a) positional
relationship and dimensions and (b) insertion losses for
the A-weighted sound pressure level. Each clipped
word in the figure specifies the specimen shown in
Table 1. For example, Grad(12k) and Uni(12k) denote
specimen number 1 with gradational and uniform
characteristics of the physical property, respectively.
Dashed line denotes the calculated results for a semi-
infinite thin rigid barrier with the same total height as
the others.
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shows the insertion losses for the A-weighted sound

pressure levels of several edge-effect suppression barriers.

Each clipped word in the figure specifies a specimen

denoted in Table 1. For example, Grad(12k) and Uni(12k)

denote the specimen number 1 with gradational and

uniform distributions in impedance, respectively. The

dashed line indicates the results for a semi-infinite thin

rigid barrier with the same total height. The performance of

a cloth with a gradational distribution in impedance is

generally better and the attenuation levels increase up to

10 dB. It would be surprising that the sound insulation

performance improves only by replacing the upper part of

the rigid barrier by such a cloth in which sound is well

transmitted.

4. EXPERIMENTAL VALIDATION

To validate the aforementioned theoretical considera-

tions, an experiment in an anechoic chamber was con-

ducted. Figure 11 depicts the experimental configuration.

The body of the barrier was composed of 20-mm thick

wooden panels. A 20-mm thick rigid wooden panel or

a 25-mm thick zonal rock wool at the bottom whose

thickness was gradually sharpened along its height was

attached at the top of the barrier. Both of them were

170 mm in height. Therefore, the total height of the barrier

without a rock wool is the same as that with a rock wool.

The flow resistance and the surface density of a 25-mm

thick rock wool employed in the experiment were

preliminarily measured to be rs ¼ 2;050 Ns/m3 and Ms ¼ 5

kg/m2, respectively. These parameters were used as the

bottom of the cloth in the prediction. The supporting floor

was covered by glass wool to avoid sound reflection from

the floor. A swept-sine signal was used as the sound source

and the impulse responses at the receiving points A and

B were obtained. Undesired reflections in the impulse

responses were discarded in the time domain allowing for

their arrival time and the sound pressures were then

processed with a 1/3-octave band filter. Numerical

calculations were carried out for frequencies with 1/18-

octave intervals, and the energy-averaged value over six

values for each 1/3-octave band was obtained. Figure 12

confirms that the experimental and theoretical results of

insertion loss are in good agreement, validating the

theoretical consideration and effectiveness of the cloth

installed at the top of the barrier.
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Fig. 11 Experimental configurations.
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Fig. 12 Comparison between the predicted and mea-
sured results of the insertion loss for 1/3-octave bands
of (a) sound receiver A and (b) sound receiver B.
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5. CONCLUSION

Herein it is shown that the diffracted sound field due to

the placement of a semi-infinite thin rigid barrier is

determined by the particle velocity distribution on a virtual

plane that is an upward extension of the barrier. The

appearance of a region with a large particle velocity

amplitude near the top of the barrier is also illustrated.

Numerical examples indicate that the diffracted sound is

greatly attenuated by suppressing the particle velocity in

the region with a large velocity amplitude using a thin

absorbing material such as cloth with a gradational

distribution in impedance. Thin absorbers with these

physical properties can be realized by sharpening the

thickness or overlaying multiple pieces of cloth of different

heights.
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Appendix: KIRCHHOFF’S BOUNDARY
CONDITIONS AND RIGOROUS

VALUES [7]

In Fig. 1, the approximate boundary values by

Kirchhoff [5] for region �2 are expressed as

�2ðPÞ ¼ �DðPÞ;
@�2ðPÞ
@n

¼
@�DðPÞ
@n

ðP 2 FÞ

�2ðPÞ ¼ 0;
@�2ðPÞ
@n

¼ 0 ðP 2 SÞ

8>><
>>: : ðA:1Þ

On the other hand, the rigorous values derived from

boundary integral equations are given by

@�2ðPÞ
@n

¼
@�DðPÞ
@n

þ
1

4�

ZZ
S

~�ðQÞ
expðikrÞ

r3
ð1� ikrÞdS

ðP 2 FÞ; ðA:2Þ

and

�2ðPÞ ¼ �DðPÞ �
~�ðPÞ
2

ðP 2 SÞ; ðA:3Þ

where ~� ¼ �1 ��2. Thus, the underlined terms are

omitted in the approximation of Kirchhoff’s boundary

conditions. The underlined term in Eq. (A·2) indicates that

the particle velocity amplitude becomes large near the

barrier edge.
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