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1. Introduction
The calculation of structural vibration by computational

analysis methods such as finite-element analysis, the finite-
difference method, and finite-difference time-domain method
is extremely time-consuming. The Bergeron method [1–3] is
well known as a fast computational method, and it has been
applied in electromagnetism and acoustics [4]. However, there
have been no reports on its application in the analysis of
structural vibration. Therefore, we have developed a new
extension of the Bergeron method for analyzing longitudinal
vibration in a rod.

2. Bergeron method for longitudinal vibration in a rod
The theory behind the Bergeron method is described in

detail in [1]. Here, we introduce a new formulation and
procedure of the Bergeron method for the calculation of
longitudinal vibration in a rod as an extension of the
formulation for problems in electromagnetism shown in [2].
2.1. Analogy between structural and electric fields

The Bergeron method is based on the transmission line
equation. The mobility analogy and the boundary continuity
allow us to replace voltage and current with longitudinal
velocity and axial stress, respectively.
2.2. Transmission line model

Consider a rod along the x axis. The wave equation for
longitudinal vibration in a rod is
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where s, � are the axial stress and the longitudinal displace-
ment and � is the material density of the rod. The Voigt-
Kelvin model is employed to express the axial stress s, which
is expressed by
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where E is the Young’s modulus of the rod and " is a loss
factor. The transmission line equations in the frequency
domain can be reduced to
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and
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¼ j!A�Vðx; !Þ; ð3bÞ

where V and S are the Fourier spectra of the longitudinal
velocity and axial force, respectively. The axial force S is
determined by the product of the axial stress s and the cross-
sectional area A of the rod.
2.3. Node equation in frequency domain

Equations (3a) and (3b) are applied to derive the relation-
ships between V and S at both ends of a transmission line with
length l (from x ¼ 0 to x ¼ l), as shown in Fig. 1.

The incident and reflected velocities at each end (x ¼ 0

and l) are presented by V�ð0; !Þ, Vþð0; !Þ, and V�ðl; !Þ,
Vþðl; !Þ, respectively. In this case, the node equations for the
right end (x ¼ l) of the line can be written by

Vþðl; !Þ ¼ e��lV�ð0; !Þ; ð4aÞ

Sðl; !Þ ¼ �Zsð!ÞfVðl; !Þ � 2Vþðl; !Þg; ð4bÞ
and

V�ðl; !Þ ¼ Vðl; !Þ � Vþðl; !Þ: ð4cÞ

Here, Zsð!Þ is the structural surge impedance, which is
expressed by

Zsð!Þ ¼ �A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Eð1þ j!"Þ

p
: ð5Þ

In an electric field, the wave propagation constant e��l is
written as

e��l ¼ e��ð!Þ�l� j!� ¼ Að!Þe� j!�: ð6Þ

Here, �ð!Þ is the attenuation constant, � is the constant phase
delay, and Að!Þ is the attenuation characteristic of the line. On
the other hand, since the phase delay in longitudinal vibration
depends on the angular frequency, we consider a constant
phase delay �0 at an arbitrary angular frequency !0 with a
correction term �� which is written as

�ð!Þ ¼ �0 þ��ð!Þ: ð7Þ

Therefore, the wave propagation constant in longitudinal
vibration can be expressed by

e��l ¼ Að!Þe� j!f�0þ��ð!Þg � A0ð!Þe� j!�0 ; ð8aÞ

and

A0ð!Þ ¼ e�!�ð!Þ�le� j!��ð!Þ; ð8bÞ

where A0ð!Þ is the frequency-dependent attenuation character-
istic. Equations (6) and (8a) are similar, and we can solve the
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expressions for longitudinal vibration as well as that for the
electric field. The relevant constants can be expressed by
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2.4. Node equation in time domain
Equations (4a), (4b), and (4c) can be rewritten as follows

in the time domain by performing inverse Fourier transform:

vþðl; tÞ ¼ aðtÞ � v�ð0; t � �Þ; ð11aÞ

sðl; tÞ ¼ �zsðtÞ � fvðl; tÞ � 2vþðl; tÞg ð11bÞ
and

v�ðl; tÞ ¼ vðl; tÞ � vþðl; tÞ; ð11cÞ

where � denotes a convolution integral and aðtÞ is the inverse
Fourier transform of the wave propagation constant spectrum.
Note that the node equation at the origin (x ¼ 0) can also be
expressed by using the above equations.
2.5. Procedure of calculation [2]

In order to evaluate the surge impedance Zsð!Þ and the
attenuation characteristic A0ð!Þ, we use modal approximations
expressed by
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where s denotes the Laplace operator, zc and ac are the
correction terms introduced in order to eliminate the inevi-
table steady-state error caused by a modal approximation by a
finite number of modes. T , k, � and ! are the coefficients for
each modal term.

The time response is calculated by solving recursive
convolution equations of the second order, which are
represented by

xn ¼ �xn�1 þ 	1un þ 	2un�1 ð14Þ

and

yn ¼ 
1yn þ 
2yn�1 þ �1un þ �2un�1 þ �3un�2: ð15Þ

Here, u is the input, x and y are the responses, the subscript n
indicates the time step, and �, 	 , 
 and � are the constants
evaluated in the convolution integral.

3. Numerical simulation
Numerical calculation is carried out to verify the

developed Bergeron method. The time response results are
compared with those obtained by FEM.
3.1. Test system

A test model consisting of a simply supported steel rod
with a cross-sectional area of 7:9� 10�5 m2 and a length of
1 m is shown in Fig. 2. Young’s modulus of the rod is
200 GPa, and its mass density is 7,834 kg/m3. The excitation
force in the form of a Gaussian pulse with a maximum of 1 N
is input at point 1 located at x ¼ 0:25 m. The velocity
responses of points 1 and 2 at x ¼ 0:7 m are calculated, and
the results are shown in Fig. 3.

In the calculation based on the developed Bergeron
method, we consider three transmission line models with
lengths of 0.25 m, 0.45 m, and 0.30 m because of the edges
and the two responses. In the FEM calculation, we consider
1,000 finite elements with 1,001 nodes. The mass and stiffness
matrices are built, and the damping matrix is obtained by
taking the product of the stiffness matrix and the loss factor
" ¼ 10�6 based on the Voigt-Kelvin model. The displacement
and velocity at each node are calculated by using the Runge-
Kutta method.
3.2. Calculation results and discussions

Figure 3 shows a comparison of the complex attenuation
characteristic A0ð!Þ calculated by FEM and the approximation
in Eq. (13) based on the proposed method. The results are in
good agreement, with a difference of less than 10%.

Figure 4 presents the velocity responses at points 1 and 2
calculated with the proposed method compared with the
results calculated by FEM. These results are also in good
agreement. Figure 4(a) shows the directly input incident wave
and the wave reflected from the left end at x ¼ 0 around
1:0� 10�4 s. Figure 4(b) shows the wave propagated from the
excitation point around 1:0� 10�4 s and the reflected wave
from 2:0� 10�4 s.

Thus, we verified the proposed formulation and calcu-
lation procedure of the Bergeron method for longitudinal
vibration. Note that the computation time of the proposed
method is less than 1/60 of the time required by FEM.

Fig. 1 Transmission line with length l.

Fig. 2 Test rod system.
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4. Conclusion
We extended the Bergeron method for analyzing longi-

tudinal vibration in a rod. The mobility analog and the
boundary continuity allowed us to formulate the transmission
line equations. The most important variables in the proposed
method are the attenuation characteristic and the phase delay.
The structural phase delay depends on the frequency and
is expressed by a constant with an added correction factor.
Numerical calculation of the longitudinal vibration was
carried out to verify the proposed formulation and calculation
procedure, and the results obtained with the proposed
Bergeron method were in good agreement with those obtained
by FEM. In future work, a further extension of the Bergeron
method for flexural vibration of a beam will be introduced.
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(a) Real part.

(b) Imaginary part.

Fig. 3 Comparison of attenuation characteristic A0ð!Þ
calculated by the Bergeron and finite element methods.

(b) Point 2.

(a) Point 1.

Fig. 4 Comparison of the velocity responses in time at
two points along the x axis.
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