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Abstract: This paper presents a talker localization method using only a single microphone, where
phoneme hidden Markov models (HMMs) of clean speech are introduced to estimate the acoustic
transfer function from the user’s position. In our previous work, we proposed a Gaussian mixture
model (GMM) separation for estimation of the user’s position, where the observed speech is separated
into the acoustic transfer function and the clean speech GMM. In this paper, we propose an improved
method using phoneme HMMs for separation of the acoustic transfer function. This method expresses
the speech signal as a network of phoneme HMMs, while our previous method expresses it as a GMM
without considering the temporal phonetic changes of the speech signal. The support vector machine
(SVM) for classifying the user’s position is trained using the separated frame sequences of the acoustic
transfer function. Then, for each test data set, the acoustic transfer function is separated, and the
position is estimated by discriminating the acoustic transfer function. The effectiveness of this method
has been confirmed by talker localization experiments performed in a room environment.
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1. INTRODUCTION

Many systems using microphone arrays have been

developed in an attempt to localize sound sources.

Conventional techniques, such as multiple signal classi-

fication (MUSIC), cross-power spectrum phase (CSP), and

so on (e.g., [1–4]), use simultaneous phase information

from microphone arrays to estimate the direction of the

arriving signal. There have also been studies on binaural

source localization based on interaural differences, such as

the interaural level difference and interaural time differ-

ence (e.g., [5,6]). However, microphone-array-based sys-

tems may not be suitable in some cases because of their

size. Therefore, single-channel techniques are of interest,

especially in small-device-based scenarios.

The problem of single-microphone source separation is

one of the most challenging scenarios in the field of signal

processing, and some techniques have been described (e.g.,

[7–10]). Studies focusing on the techniques for monaural

sound source localization are also being carried out

[11,12]. In these studies, the information obtained from

the external ear, such as head-related transfer functions

(HRTFs), is used to localize the sound source.

In our previous work [13], we discussed a sound source

localization method using only a single microphone based

on discrimination of the acoustic transfer function. In that

report, the acoustic transfer function was estimated from

observed (reverberant) speech using a clean speech model

(speaker-dependent model), where a Gaussian mixture

model (GMM) was used to model the features of the clean

speech. Using GMM separation, it is possible to estimate

the acoustic transfer function using some adaptation data

(only several words) uttered from a given position. Because

the characteristics of the acoustic transfer function depend

on each position, the talker’s position, which is trained

using some training utterances uttered from the position in

advance, can be estimated by discriminating the acoustic

transfer function without the external ear if the room

environment is the same as that of the training.

If single-channel sound source localization becomes

available, it may be possible to apply this technique to

devices, such as wearable computers, that are even smaller

than existing small devices such as smart phones and some

mobile computers, and the performance of some micro-
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phone-array-based systems may also be improved upon

combining them with the single-channel technique. In the

future, very small sensors might be able to search for

people buried under rubble caused by an earthquake by

following their voice, for instance.

Our currently proposed method is based on the training

of the acoustic transfer function, which is separated from

the training speech uttered by the same people from the

same position in the same room environment as those for

testing. Therefore, there are a number of problems to solve

including the changes in the talker, position and room

environment. The accurate estimation of the acoustic

transfer function from the observed speech is also

important for this method. In this paper, we focus on

accurate estimation of the acoustic transfer function, and

we propose an improved method using phoneme hidden

Markov models (HMMs) for separating the acoustic

transfer function.

Takiguchi et al. [14] proposed an acoustic model

adaptation method for distant-talking speech recognition

using HMM separation, where the adaptation data were

separated into a clean speech model, reverberation model

and additive noise model. Using the separated reverber-

ation and noise models, the clean speech HMM was

adapted to the test environment and used for the recog-

nition of each test utterance.

In our previous work, the clean speech data was

expressed only as a static pattern model (GMM), and this

GMM could not express the temporal phonetic changes of

clean speech. In addition, as all phonemes are organized

into one GMM, the estimated acoustic transfer function

was smoothed by the characteristics of all phonemes as a

result. In the HMM separation method, on the other hand,

as the HMM can deal with a sequential pattern, which has

multiple states for each phoneme, phoneme HMMs are able

to express more detailed clean speech information includ-

ing the temporal phonetic changes, and clean speech

models of different phonemes do not affect the estimation

of the acoustic transfer function. For these reasons, clean

speech HMMs can estimate the acoustic transfer function

more accurately than a clean speech GMM, and that may

enable us to estimate the location of the sound source more

accurately.

Unlike the GMM separation in our previous work,

however, HMM separation requires texts of the user’s

utterances in order to estimate the acoustic transfer

function. In [14], the utterance texts of adaptation data

were given, and the case for unsupervised on-line adapta-

tion was not discussed. In the case of unsupervised

adaptation for speech recognition, it is possible for the

word recognition results to be used as the utterance text

for model adaptation, but our talker localization method

requires the utterance text of test data without any

dictionaries or knowledge of the language. Therefore, in

our method, the observed (reverberant) signal is recognized

first using a phoneme recognition system, and the recog-

nition result is used as text information to estimate the

acoustic transfer function. This estimation is performed

in the cepstral domain employing an approach based on

maximum likelihood (ML). This is possible because the

cepstral parameters are an effective representation for

retaining useful clean speech information. The talker

localization experiments discussed in this paper show the

effectiveness of the HMM separation of the acoustic

transfer function for our single-channel talker localization

method.

2. ESTIMATION OF THE ACOUSTIC
TRANSFER FUNCTION

2.1. System Overview

Figure 1 shows the system overview. First, we record

the reverberant speech data Oð�Þtrain uttered from each

position � in order to train the acoustic transfer function

for �. Next, the frame sequence of the acoustic transfer

function ĤHð�Þtrain is estimated from the reverberant speech

Oð�Þtrain using a clean speech model. This clean speech model

is trained using a clean speech database in advance. Then,

the support vector machine (SVM) for classifying each

user’s position � is trained using the frame sequence of the

estimated acoustic transfer function ĤHð�Þtrain. For test data

Oð�Þtest (any utterance), the acoustic transfer function ĤHð�Þtest is

estimated in the same way as the training data. The talker’s

position �̂� is estimated by discriminating the acoustic

transfer function based on the SVM.

Figure 2 shows the estimation process of the acoustic

transfer function using the clean speech GMM in our

previous method. The acoustic transfer function is esti-

mated by maximizing the likelihood of reverberant speech

( )θ ′
trainO

Estimation of acoustic transfer function
using clean speech model

( )θ
testĤ

( )θ
testO

training data
(observed speech)

test data
(observed speech)

( )θ ′
trainĤ

Training of acoustic transfer
function for each position 

using SVM

Classification of acoustic transfer function using SVM

θ̂
Estimated position

Clean speech
model

Sλ

(Each training position)

Single mic.

…
θ

Fig. 1 System overview.
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using a clean speech GMM. In this method, the clean

speech data is expressed as only a static pattern model, and

this GMM cannot express the temporal phonetic changes

of clean speech. In addition, all phonemes are organized

into one GMM. This causes the smoothing of the estimated

acoustic transfer function by the characteristics of all

phonemes.

In our proposed method, on the other hand, the frame

sequence of the acoustic transfer function ĤHð�Þ is estimated

using clean speech HMMs. Figure 3 shows an example of a

clean speech HMM. An HMM is a state transition model,

and each state has a GMM as the posterior probability. The

likelihood is calculated as the product of the transition

probability abpðn�1Þ;bpðnÞ and the posterior probability for

each state of the frame n. This method expresses the clean

speech as a network of phoneme HMMs, where the

phoneme HMMs express more detailed clean speech

information including the temporal phonetic changes, and

clean speech models of different phonemes do not affect

the estimation of the acoustic transfer function.

Figure 4 shows the estimation process of the acoustic

transfer function using the clean speech HMMs in our

proposed method. As the clean speech HMMs are trained

for each phoneme, our proposed method requires texts of

the user’s utterances in order to construct the network of

phoneme HMMs. For this purpose, the phoneme sequence

of the reverberant speech data is first recognized by using

each phoneme HMM of clean speech data. Using the

recognition results (1-best hypothesis), the phoneme

HMMs are concatenated, and the frame sequence of the

acoustic transfer function ĤHð�Þ is estimated from the

reverberant speech Oð�Þ based on an ML estimation

approach using the concatenated HMM.

2.2. Cepstrum Representation of Reverberant Speech

The reverberant speech signal oðtÞ in a room environ-

ment is generally considered to be the convolution of

clean speech and the acoustic transfer function oðtÞ ¼PL�1
l¼0 sðt � lÞhðlÞ, where sðtÞ, hðlÞ and L are a clean speech

signal, an acoustic transfer function (room impulse re-

sponse) from the sound source to the microphone and the

length of the acoustic transfer function, respectively.

In recent studies on robust speech recognition and

speech dereverberation, the reverberant speech in the short-

term Fourier transform (STFT) domain is often modeled

so that each frequency bin of the reverberant speech is

represented by the convolution of the frame sequences of

clean speech and the acoustic transfer function as follows

[15,16].

Ospcð!; nÞ ¼
XL0�1

l0¼0

Sspcð!; n� l0Þ � Hspcð!; l0Þ ð1Þ

Here, Ospcð!; nÞ, Sspcð!; nÞ and Hspcð!; nÞ are the !th

frequency bins of short-term linear spectra of frame n. L0 is

the length of the acoustic transfer function in the STFT

domain. However, such modeling is complex for estimat-

ing the frame sequence of the acoustic transfer function,

and it is difficult to deal with the estimated components of

the acoustic transfer function for this talker localization
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( )θO GMM
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…
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Estimated acoustic transfer function

Fig. 2 Estimation of the acoustic transfer function using
a GMM of clean speech.
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task. Therefore, in this paper, we employ a simpler model

of the reverberant speech, which is approximately repre-

sented as the product of clean speech and the acoustic

transfer function.

Ospcð!; nÞ � Sspcð!; nÞ � Hspcð!; nÞ ð2Þ

Cepstral parameters are an effective representation to

retain useful speech information in speech recognition.

Therefore, we use the cepstrum for acoustic modeling that

is necessary to estimate the acoustic transfer function. The

cepstrum of the reverberant speech is given by the inverse

Fourier transform of the log spectrum.

Ocepðd; nÞ � Scepðd; nÞ þ Hcepðd; nÞ; ð3Þ

where Ocep, Scep and Hcep are cepstra for the reverberant

speech signal, clean speech signal and acoustic transfer

function, respectively. d is the dimension of the cepstrum.

As shown in Eq. (3), if O and S are observed, H can be

obtained by

Hcepðd; nÞ � Ocepðd; nÞ � Scepðd; nÞ: ð4Þ

However, Scep cannot actually be observed. Therefore, Hcep

is estimated by maximizing the likelihood of reverberant

speech using a clean speech HMM. From the following

section, the cepstral variables Ocep, Scep and Hcep are

written as O, S and H for simplicity, respectively.

2.3. Maximum-Likelihood-Based Parameter Estima-

tion

This section presents a new method for estimating the

acoustic transfer function. The estimation is implemented

by maximizing the likelihood of the training data from the

user’s position. In [17], an ML estimation method for

decreasing the acoustic mismatch for a telephone channel

was described, and in [18] channel distortion and noise

were simultaneously estimated using an expectation max-

imization (EM) method.

The frame sequence of the acoustic transfer function in

Eq. (4) is estimated in an ML manner by using the EM

algorithm, which maximizes the likelihood of the observed

speech:

ĤH ¼ argmax
H

PrðOjH; �SÞ: ð5Þ

Here, �S denotes the set of concatenated clean speech

HMM parameters, while the suffix S represents the clean

speech in the cepstral domain. The EM algorithm is a

two-step iterative procedure. In the first step, called the

expectation step, the following auxiliary function is

computed.

QðĤHjHÞ

¼ E½log PrðO; p; bp; cpjĤH; �SÞjH; �S�

¼
X
p

X
bp

X
cp

PrðO; p; bp; cpjH; �SÞ
PrðOjH; �SÞ

� log PrðO; p; bp; cpjĤH; �SÞ ð6Þ
Here, bp and cp represent the unobserved state sequence

and the unobserved mixture component labels correspond-

ing to the phoneme p in the observation sequence O,

respectively.

The joint probability of observing sequences O, b and c

can be calculated as

PrðO; p; bp; cpjĤH; �SÞ

¼
Y
n

abpðn�1Þ;bpðnÞwbpðnÞ;cpðnÞ

� PrðOðnÞjp; bpðnÞ; cpðnÞ; ĤH; �SÞ; ð7Þ
where n, a and w represent the frame, the transition

probability and the mixture weight, respectively. Since we

consider the acoustic transfer function as additive noise in

the cepstral domain, the mean of the mixture k of state j

in the model �O is derived by adding the acoustic transfer

function. Therefore, Eq. (7) can be written as

PrðO; p; bp; cpjĤH; �SÞ

¼
Y
n

abpðn�1Þ;bpðnÞwbpðnÞ;cpðnÞ

� NðOðnÞ;�ðSÞp; j;k þ ĤHðnÞ; �ðSÞp; j;kÞ; ð8Þ

where NðO;�;�Þ denotes the multivariate Gaussian

distribution. The following derivation is straightforward

[19]:

QðĤHjHÞ

¼
X
p

X
i

X
j

X
n

PrðOðnÞ; p; bpðnÞ ¼ j; bpðn� 1Þ ¼ ijH; �SÞ log ap;i; j

þ
X
p

X
j

X
k

X
n

PrðOðnÞ; p; bpðnÞ ¼ j; cpðnÞ ¼ kjH; �SÞ logwp; j;k

þ
X
p

X
j

X
k

X
n

PrðOðnÞ; p; bpðnÞ ¼ j; cpðnÞ ¼ kjH; �SÞ

� logNðOðnÞ;�ðSÞp; j;k þ ĤHðnÞ; �ðSÞp; j;kÞ: ð9Þ

Here, �ðSÞp; j;k and �ðSÞp; j;k are the mean vector and the

(diagonal) covariance matrix in the concatenated clean

speech HMM, respectively. i is the state of the previous

frame. It is possible to train these parameters by using a

clean speech database.

Next, we focus only on the term involving H.

QðĤHjHÞ

¼ �
X
p

X
j

X
k

X
n

�p; j;kðnÞ
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�
XD
d¼1

(
1

2
logð2�ÞD�ðSÞ

2

p; j;k;d

þ
ðOðd; nÞ � �ðSÞp; j;k;d � ĤHðd; nÞÞ2

2�ðSÞ
2

p; j;k;d

)
ð10Þ

�p; j;kðnÞ ¼ PrðOðnÞ; p; j; kjH; �SÞ ð11Þ
Here, D is the dimension of the observation vector OðnÞ,
and �ðSÞp; j;k;d and �ðSÞ

2

p; j;k;d are the dth dimension of the mean

value and that of the diagonal variance value, respectively.

The maximization step in the EM algorithm becomes

max QðĤHjHÞ. The re-estimation formula can therefore be

derived, knowing that @QðĤHjHÞ=@ĤH ¼ 0 as

ĤHðd; nÞ ¼

X
p

X
j

X
k

�p; j;kðnÞ
Oðd; nÞ � �ðSÞp; j;k;d

�ðSÞ
2

p; j;k;dX
p

X
j

X
k

�p; j;kðnÞ

�ðSÞ
2

p; j;k;d

: ð12Þ

After calculating the acoustic transfer function for all

the training data, the SVM for classifying each user’s

position is trained using the estimated acoustic transfer

function. The SVM is a classifier that has high general-

ization capability and robustness to outliers, and it tends to

show relatively high performance even if the amount of

training data is small. This is why the SVM may be suitable

for our proposed method, for which a small number of

user’s training utterances for each position is preferred

and the estimated acoustic transfer function (which may

include some misestimation) is used. For test data, the

acoustic transfer function is estimated in the same way as

the training data using a label sequence obtained from

the phoneme recognition system. The talker’s position is

estimated by discriminating the acoustic transfer function

based on the SVM.

3. EXPERIMENTS

3.1. Simulation Experimental Conditions

The new talker localization method was evaluated in

both a simulated reverberant environment and a real

environment. In the simulated environment, the reverberant

speech was simulated using a linear convolution of clean

speech and the impulse response. The impulse response

was taken from the RWCP database in real acoustical

environments [20]. Figure 5 shows the experimental room

environment. The size of the recording room was about

6:7 m� 4:2 m (width� depth), and the reverberation time

was 300 ms. A loudspeaker was located on a circular arc

with a radius of 2,020 mm. The microphone was located

420 mm from the center of the circle. Therefore, the

distances from the microphone to every loudspeaker

position were from 1,600 to 1,900 mm. The height of the

loudspeaker at every position was 1,720 mm, and that of

the microphone was 1,620 mm. For each position, the

loudspeaker faced the microphone. Figure 6 shows the

impulse response (90 degrees) [13].

The speech signal was sampled at 12 kHz and win-

dowed with a 32 ms Hamming window every 8 ms. The

experiment utilized the speech data of five males in the

ATR Japanese speech database. The clean speech HMM

(speaker-dependent model) was trained using 2,620 words.

Each phoneme HMM was a simple left-right model having

three states with self-transitions, and each state has 32

Gaussian mixture components. The total number of

phonemes is 54. The test data for one location consisted

of 1,000 words, and 16-order mel-frequency cepstral

coefficients (MFCCs) were used as feature vectors. The

total number of test data for one location was 1,000

(words) � 5 (males). The number of data used to train the

acoustic transfer function for one location was 10, 20, 30,

40 or 50 words. The speech data for training the clean

speech model, training the acoustic transfer function and

testing were spoken by the same person but had different

text utterances. The speaker positions for training and

testing consisted of three positions (30, 90 and 130

degrees), five positions (10, 50, 90, 130 and 170 degrees),

seven positions (30, 50, 70, . . . , 130 and 150 degrees) and

nine positions (10, 30, 50, 70, . . . , 150 and 170 degrees).
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For each test data (word), the position is classified using the

SVM. We used SVMlight [21] as an SVM with an RBF

(Gaussian) kernel. Then, the SVM was extended using

the one-vs-rest method in order to carry out multiclass

classification. These experiments were carried out for each

speaker, and the localization accuracy was averaged for the

five speakers.

3.2. Experimental Results in a Simulated Reverberant

Environment

We compared the following methods for the discrim-

ination of each position.

HMM (1-best hypothesis) The proposed method using

the acoustic transfer function estimated using clean

speech HMMs. The phoneme HMMs are concate-

nated using the phoneme recognition results (1-best

hypothesis).

HMM (correct transcription) The proposed method

using the acoustic transfer function estimated using

clean speech HMMs. The phoneme HMMs are

concatenated using the correct transcription.

GMM Our previous method using the acoustic transfer

function estimated using a clean speech GMM. The

clean speech GMM was trained using the same 2,620

words as those for the HMMs and has 64 Gaussian

mixture components.

Observed speech While the above three methods localize

the sound source by discriminating the acoustic trans-

fer function, this method localizes the sound source

by directly discriminating the observed speech without

separating the acoustic transfer function. The observed

speech includes not only the acoustic transfer function

but also clean speech, which is meaningless informa-

tion for sound source localization.

For these methods, the talker’s positions are discriminated

using the SVM. The experimental conditions, such as

feature vectors and the number of training data, are the

same in each method.

Table 1 shows the mean square error (MSE) of the

acoustic transfer function separated using a clean speech

GMM, clean speech HMMs with the 1-best hypothesis, and

HMMs with the correct transcription. The MSE is the mean

value of the square error for each frame calculated using

the following equation:

MSE ¼
1

N

X
n

X
d

ðHtrueðd; nÞ � ĤHðd; nÞÞ2; ð13Þ

where the acoustic transfer function calculated by Eq. (4)

using the true clean speech data is used as the ground truth

Htrueðd; nÞ. Figure 7 shows the variance of each cepstral

order of Htrue. The MSE of the observed speech in Table 1

shows the mean Euclidean distance between the true

acoustic transfer function and the observed speech, which

was calculated by substituting Oðd; nÞ for ĤHðd; nÞ in

Eq. (13). As shown in this table, the MSE of the acoustic

transfer function that was estimated using clean speech

HMMs was smaller than that estimated using a clean

speech GMM. This means that the proposed method can

estimate the acoustic transfer function more accurately than

our previous method. In addition, when the correct tran-

scription was used instead of the 1-best hypothesis for

concatenating the phoneme HMMs, the MSE decreased

even more.

Figure 8 shows the mel spectra of the ground truth of

the acoustic transfer function, estimated acoustic transfer

functions, and the observed speech of a sample frame. The

32-order mel spectrum was obtained by computing the

inverse cosine transform of the 32-order MFCCs, where

the estimated 16-order MFCCs were extended to 32-order

MFCCs using zero padding. Then, the mel spectra had

normalized energies because the 0th dimension of the

MFCCs (which is equivalent to the energy of the mel

spectrum and is not discussed in this study) was also

padded with zeros. This figure also shows that the clean

speech HMMs suppressed the influence of clean speech

more effectively and estimated the acoustic transfer

function more correctly than the clean speech GMM.

Table 2 shows a comparison of the four methods for

each number of training data, where the number of

positions was three. Table 3 shows a comparison for each

number of positions, where the number of training data was

50 words. The proposed method and our previous method

showed higher accuracies than the use of the observed

Table 1 Mean square error of the acoustic transfer
function separated using a clean speech GMM, clean
speech HMMs with the 1-best hypothesis and HMMs
with the correct transcription. The MSE of the
observed speech was calculated by substituting
Oðd; nÞ for ĤHðd; nÞ in Eq. (13).

Observed
speech

GMM
HMM
(1-best

hypothesis)

HMM
(correct

transcription)

MSE 9485.97 2264.33 2096.14 1968.36
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Fig. 7 Variance of each cepstral order of Htrue.
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speech. Our methods separate the acoustic transfer function

from the observed speech signal; thus, the use of the

estimated acoustic transfer function will not be affected

greatly by the characteristics of the clean speech (pho-

nemes). In the comparison between the proposed method

(HMMs with 1-best hypothesis) and our previous method

(GMM), the newly proposed method showed higher

performances than our previous method by an accuracy

of at least 2.2% for every set of conditions, and these

differences in the accuracy were significant (P < 0:01, chi-

square test).

As shown in Table 2, the differences between the

accuracy of the proposed method and our previous method

or the method using the observed speech became larger as

the number of training data decreased. In the results of the

use of the observed speech, as the number of training data

decreased, the classification boundaries were biased by the

utterance contents of the training data (i.e., overtraining).

These biases also arose in the results of the proposed

method and our previous method, because the clean speech

components are not removed from the observed signal

completely, and remained in the estimated acoustic transfer

function. However, the clean speech HMMs could suppress

the influence of the difference in the utterance texts of

training and testing more effectively than the clean speech

GMM; thus, the degree of bias was reduced in the proposed

method. This is why the differences in accuracy became

larger when a small number of training data was used.

In the comparison between the use of the 1-best

hypothesis and the correct transcription, there were no

significant differences in the accuracy (P � 0:03) for each

number of training data, when the number of positions was

three (shown in Table 2), although the use of the correct

transcription could estimate the acoustic transfer function

more accurately than the use of the 1-best hypothesis.

However, as shown in Table 3, there were significant

differences in the accuracy (P < 0:01) when the number

of positions was seven or nine. Figures 9 and 10 show the

7th and 10th orders of the mel-cepstral coefficients, which

had the highest ratios of the within-class variances to the

between-class variances (Fisher’s ratios), of mean acoustic

transfer function values for each word in the case of three

and seven positions, respectively. The acoustic transfer

functions are calculated by Eq. (4).
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Fig. 8 Mel spectra of the ground truth of the acoustic
transfer function (ATF), estimated acoustic transfer
functions and observed speech of a sample frame (top
figure). The bottom figure is a close-up of the estimated
acoustic transfer functions.

Table 2 Localization accuracies [%] of compared
methods for each number of training data (words),
where the number of positions was three. The method
of Observed speech localizes the sound source by
discriminating the observed speech directly, while the
other three methods discriminate the separated acoustic
transfer function. The parenthetic numbers show the
differences from the accuracy of the HMMs (1-best
hypothesis) [%].

Number of
training

data (words)
50 40 30 20 10

HMM
(1-best

hypothesis)
82.9 82.4 82.3 80.6 79.9

HMM
83.9 83.3 83.0 81.0 79.5

(correct
transcription)

(0.9) (0.9) (0.8) (0.4) (�0:4)

GMM
80.5 80.2 79.2 76.9 75.1

(�2:4) (�2:2) (�3:1) (�3:6) (�4:8)
Observed 53.2 50.2 46.6 40.7 35.7

speech (�29:7) (�32:2) (�35:7) (�39:9) (�44:2)

Table 3 Localization accuracies [%] of compared
methods for each number of positions, where the
number of training data was 50 words. The parenthetic
numbers show the differences from the accuracy of the
HMMs (1-best hypothesis) [%].

Number of positions 3 5 7 9

HMM
(1-best hypothesis)

82.9 61.4 56.0 46.6

HMM 83.9 62.0 58.0 48.0
(correct transcription) (0.9) (0.7) (1.9) (1.5)

GMM
80.5 57.0 53.6 44.0

(�2:4) (�4:4) (�2:5) (�2:5)

Observed speech
53.2 27.0 30.3 22.5

(�29:7) (�34:4) (�25:7) (�24:1)
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As shown in these figures, when the number of

positions is three, the distribution of the acoustic transfer

function for each position can be discriminated relatively

easily. However, when the number of positions is seven, it

is difficult to discriminate the distribution for each position.

Therefore, the accurate estimation of the acoustic transfer

function may contribute more to the discrimination of each

position as the number of positions increases. This is why

the differences in accuracy between the use of the 1-best

hypothesis and that of the correct transcription were not

significant when the number of positions was small, but the

differences were significant when the number of positions

was large.

3.3. Experimental Results in a Real Environment

The proposed method was also evaluated in a real

environment. Figure 11 shows the experimental room

environment and the position of the loudspeaker. Figure 12

depicts the recording environment. The size of the record-

ing room was about 6:3m� 3:2m� 2:8m (width�
depth� height). The reverberation time was about

350 ms, and the SNR was about 41.49 [dB]. The distance

from each position to the microphone was about 1.5 m. The

speech signal was recorded using two microphones in order

to provide a comparison with conventional CSP analysis,

but the signal recorded by only one of the microphones

was used for the proposed method. The microphone was

a directional type (Sony ECM-66B). There were three

loudspeaker positions (40, 90 and 130 degrees) for training

and testing, and one loudspeaker (BOSE Mediamate II)

was used for each position.

The experiment utilized the speech data uttered by a

male in the ATR Japanese speech database. The clean

speech HMM was trained using 2,620 words. We recorded

216 words for each location. Then, 50 of these words were

used to train the acoustic transfer function for one location,

and the other 166 words were used for the test data for the

location. The estimation accuracy was calculated by 4-fold

cross-validation. The total number of test data was 648

words (216 words � 3 positions). The speech data for

training the clean speech model, training the acoustic

transfer function and testing were spoken by the same

person but had different text utterances. The other

experimental conditions are the same as those described

in preceding sections.

The proposed method was compared with a conven-

tional CSP algorithm [2] based on two microphones. We

evaluated the performances of these methods under several

testing conditions, where the orientation or location of the

loudspeaker changed from that of the loudspeaker for

training, or both of them matched those for training.

Figure 13 shows the differences in the orientation and

position of the loudspeaker. The orientation for testing

was changed to 0 (matched training condition), 45 and 90
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Fig. 9 Mean acoustic transfer function values for three positions.
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Fig. 11 Experimental room environment and the loud-
speaker position.

MicrophonesLoudspeaker
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degrees, and the position was changed to 0 (matched

training condition), 15 and 30 cm.

Figures 14 and 15 show comparisons of the perform-

ances for each difference in the orientation and position of

the loudspeaker between those for training and testing,

respectively. As shown in Fig. 14, the CSP algorithm could

estimate the location with an accuracy of 100% except for

the case where the orientation of the loudspeaker was 90

degrees. The reason why the performance of the CSP

algorithm degraded when the orientation was 90 degrees

may be that the effect of the reflected waves from the wall

(reverberation) became larger.

On the other hand, the localization accuracy of the

proposed method degraded as the orientation angle of the

loudspeaker changed significantly. This means that the

acoustic transfer function depends on not only the position

but also the orientation of the speaker, and the character-

istics of the acoustic transfer function changed from those

for training despite being measured from the same position.

However, if the acoustic transfer function of each orienta-

tion is trained, the proposed system may be able to estimate

not only the position but also the orientation of the talker’s

head, and conventional microphone array systems may be

able to estimate the position more accurately in combina-

tion with the proposed system even when the talker is

facing away from the microphone.

As shown in Fig. 15, the accuracy degraded drasti-

cally at the point where the difference between the

positions of the loudspeaker for training and testing was

15 cm, while the CSP algorithm estimated the location

with an accuracy of 100% for every condition. This means

the characteristics of the acoustic transfer function

changed drastically when the position was changed by

15 cm, although the phase difference used in the CSP

algorithm changed little.

Figures 16 and 17 show the localization accuracies of

each position of the sound source in these experiments.

As shown in Fig. 16, the localization accuracy of the 130

degree position was drastically degraded by changing

the orientation from 45 to 90 degrees. That was because

when the orientation was 90 degrees, the loudspeaker at

130 degrees emitted utterances toward the wall close to the

loudspeaker, and the acoustic transfer function might have

changed greatly.

As shown in Fig. 17, the degradation in the accuracy at

the 40 degree position was the most drastic among the three

positions. This might be because the 40 degree training

position was the closest to the wall among the three

loudspeaker positions, and the estimation of that position

was the most sensitive to changes in the position during

0°
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90°

0 cm

15 cm

30 cm

Differences in positionDifferences in orientation

Fig. 13 Differences in orientation and position of the loudspeaker.
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testing. On the other hand, the degradation in the accuracy

at the 90 degree position was relatively small compared

with other positions. This might be because the 90 degree

position was far from the wall compared with other

positions, and the estimation of that position was relatively

robust to changes in the position. In order to increase the

robustness to changes in the testing environment, feature

selection or feature transformation techniques may need to

be applied to reduce the sensitivity of the acoustic transfer

function.

4. CONCLUSION

This paper has described a sound source (talker)

localization method using a single microphone based on

the discrimination of the acoustic transfer function. In order

to improve the performance of our previous method,

phoneme hidden Markov models (HMMs) of clean speech

are introduced to estimate the acoustic transfer function

from the user’s position more accurately. The acoustic

transfer function is estimated using phoneme HMMs of

clean speech and a label sequence obtained from phoneme

recognition. In comparative experiments in a room envi-

ronment, the proposed method could estimate the acoustic

transfer function more accurately than our previous

method, and it improved the localization accuracy of our

previous method by at least 2.2% for every experimental

condition. The localization accuracy decreases as the

number of positions increases. In order to localize the

talker more accurately under conditions where there is a

large number of positions, our method needs to estimate the

acoustic transfer function more accurately. To achieve this,

estimation of more appropriate test data utterance texts is

also needed.

The localization accuracy of the proposed method

degraded as the orientation angle of the loudspeaker

changed because the acoustic transfer function depends

not only on the position but also on the orientation of the

speaker. However, if the acoustic transfer function of each

orientation is trained, the proposed system may be able to

estimate not only the position but the orientation of the

talker’s head. Information about the talker’s head orienta-

tion may also be important, especially in multiuser

conversation scenarios, such as robot communication

scenarios, because it can determine not only who is talking

but also who he/she is talking to. In addition, conventional

microphone array systems may be able to estimate the

position more accurately in combination with the proposed

system even when the talker is facing away from the

microphone.

However, the proposed approach was too sensitive to

changes in the testing environment. As described in

Sect. 1, there are a number of problems that need to be

solved. Therefore, we will study model adaptation tech-

niques, feature selection and feature transformation tech-

niques in order to increase the method’s robustness to

changes in the talker and other environmental conditions.

Future work will also include estimating the speaker’s

position which has not been pre-trained by investigating

on-line training or adaptation techniques.
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