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Abstract: A minimum generation error (MGE) criterion has been proposed for model training in
hidden Markov model (HMM)-based speech synthesis to minimize the error between generated and
original static parameter sequences of speech. However, dynamic properties of speech parameters are
ignored in the generation error definition. In this study, we incorporate these dynamic properties into
MGE training by introducing the error component of dynamic features (i.e., delta and delta-delta
parameters) into the generation error function. We propose two methods for setting the weight
associated with the additional error component. In the fixed weighting approach, this weight is kept
constant over the course of speech. In the adaptive weighting approach, it is adjusted according to the
degree of dynamicity of speech segments. An objective evaluation shows that the newly derived MGE
criterion with the adaptive weighting method results in comparable performance for the static feature
and better performance for the delta feature compared with the baseline MGE criterion. Subjective
listening tests exhibit a small but statistically significant improvement in the quality of speech
synthesized by the proposed technique. The newly derived criterion improves the capability of HMMs
in capturing dynamic properties of speech without increasing the computational complexity of the
training process compared with the baseline criterion.

Keywords: Statistical parametric speech synthesis, Hidden Markov model, Minimum generation error
training, Generation error function, Dynamic features
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1. INTRODUCTION

Hidden Markov model (HMM)-based statistical para-

metric speech synthesis (SPSS) was first proposed nearly

two decades ago [1,2]. In this method, spectral and

prosodic features of speech are modeled and generated in

a unified statistical framework using HMMs [2,3]. It has

become increasingly popular in speech synthesis research

and application owing to the high flexibility in trans-

forming voice characteristics and speaking styles, the small

footprint, and the stable and high synthetic speech quality

of state-of-the-art systems [4].

In HMM-based SPSS, the use of dynamic features (e.g.,

delta and delta-delta cepstral coefficients) [5] is crucial for

generating smoothly varying parameter trajectories [2]. In

the training phase, dynamic features are modeled inde-

pendently with static feature. In the conventional system

[3], HMM parameters are trained under the maximum

likelihood (ML) criterion. In the synthesis phase, the

most probable parameter sequence is generated given the

distributions of static and dynamic features using the

speech parameter generation algorithm [6]. Here, the

constraints between static and dynamic features are taken

into account to generate smooth, realistic feature trajecto-

ries. Although dynamic features of both spectral and F0

parameters are used in HMM-based SPSS, we restrict

ourselves to the use of dynamic spectral features in later

discussions.

Considering the ignorance of the constraints between

static and dynamic features in the training phase and the

mismatch between the ML-based training criterion and

the objective of speech synthesis, the minimum generation

error (MGE) criterion [7] has been proposed for training

HMMs in SPSS. By incorporating the parameter generation
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process into the HMM training, the error between the

original and generated data for a training sentence can be

calculated as a function of HMM parameters, which is

called the generation error function (GEF). HMM param-

eters are then re-estimated to minimize the total generation

error for all training sentences. As a result, the above two

issues of the ML-training-based conventional system can

be solved effectively, and improved synthetic speech

quality has been reported [7].

A key point in MGE training is the definition of the

GEF. In the baseline MGE criterion [7], the GEF is defined

as the Euclidean distance between the natural and

generated static feature vector sequences. Under the

viewpoint of parameter trajectory modeling, this has a

drawback, which is the ignorance of dynamic properties of

parameter trajectories in the generation error definition.

These dynamic properties are captured, to a certain extent,

by the dynamic features of speech parameters since the

dynamic features of a speech frame are generally calcu-

lated as regression coefficients from the static features of

neighboring frames [5]. Moreover, dynamic features con-

vey spectral transition information, which is believed to

be an important acoustic cue in speech perception [8].

Therefore, we expect that the introduction of the error

component of dynamic features into the GEF could be

beneficial.

In this paper, we define the generation error of dynamic

features and incorporate this new error component into the

GEF. Then the newly derived GEF is minimized under the

MGE criterion. It is worth pointing out that the objective of

our research is different from those of recent improvements

of the baseline MGE criterion [9–11]. In [9], the error

component of the global/local variance of feature trajec-

tories was introduced into the GEF to obtain an over-

smoothing alleviation effect similar to the parameter

generation algorithm considering global variance (GV)

[12] without introducing any extra computational cost

during synthesis. In [10] and [11], two perceptually

motivated distance metrics on line spectral pairs (LSPs),

log spectral distortion and weighted Euclidean distance,

respectively, were proposed to enhance the correlation

between the objective GEF and the subjective perception

of spectral distortion. In contrast, our research aims to

investigate the effect of more accurately modeling the

dynamic properties of speech parameters under the MGE

training framework.

The rest of the paper is organized as follows. Section 2

reviews the baseline MGE criterion. Our proposed MGE

criterion considering dynamic properties of speech param-

eters is described in Sect. 3. Section 4 presents exper-

imental results. Section 5 comprises several comments.

Finally, conclusions are given in Sect. 6.

2. MINIMUM GENERATION
ERROR CRITERION

This section gives a review of the baseline MGE

criterion [7]. In HMM-based SPSS, the speech parameter

generation algorithm [6] is used to generate the most

probable feature vector sequence. Then the HMM param-

eters are optimized to minimize the total generation error

of all training data under the MGE criterion. The following

subsections follow the notations and formulations in [6]

and [9] for the sake of coherence and compactness.

2.1. Speech Parameter Generation Algorithm

For a given HMM � and a state sequence q, the speech

parameter generation algorithm aims to generate the

parameter vector sequence o ¼ ½oT
1 ; o

T
2 ; . . . ; o

T
T �T by max-

imizing Pðoj�; qÞ with respect to o [6] (Case 1), where T is

the number of frames in o and T denotes the matrix

transpose operation. The tth frame’s parameter vector ot
includes the M-dimensional static feature vector ct and

dynamic feature vectors �ð1Þct and �ð2Þct (i.e., delta and

delta-delta coefficients, respectively), and can be written as

ot ¼ ½cTt ;�ð1ÞcTt ;�ð2ÞcTt �T, where the dth-order dynamic

feature vector is calculated as

�ðdÞct ¼
XLðdÞþ

�¼�LðdÞ�

wðdÞð�Þctþ�: ð1Þ

Here, wðdÞð�Þ are window coefficients; LðdÞ� and LðdÞþ are the

numbers of frames preceding and succeeding frame t

involved in the calculation of �ðdÞct (d ¼ 1; 2), respective-

ly.

From Eq. (1), the constraints between static and

dynamic features can be expressed as o ¼ Wc, where c ¼
½cT1 ; cT2 ; . . . ; cTT �

T and W is a 3MT �MT window matrix

defined as

W ¼ ½W1;W2; . . . ;WT �T � IM�M; ð2Þ

W t ¼ ½wð0Þt ;w
ð1Þ
t ;w

ð2Þ
t �; ð3Þ

wð0Þt ¼ ½0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
t�1

; 1; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
T�t

�T; ð4Þ

wðdÞt ¼ ½0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
t�LðdÞ� �1

;wðdÞð�LðdÞ� Þ; . . . ;

wðdÞð0Þ; . . . ;wðdÞðLðdÞþ Þ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
T�ðtþLðdÞþ Þ

�T; ð5Þ

where � denotes the Kronecker product operation and I is

the identity matrix.

Under these constraints, finding o that maximizes

Pðoj�; qÞ is equivalent to finding c that maximizes

Pðoj�; qÞ. By solving @Pðoj�; qÞ=@c ¼ 0, the generated

static feature vector sequence is obtained as
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�ccq ¼ R�1
q rq; ð6Þ

where

Rq ¼ WT��1
q W ; ð7Þ

rq ¼ WT��1
q �q; ð8Þ

and �q and �q are the mean vector and covariance matrix

related to q, respectively [6].

2.2. Minimum Generation Error Criterion

In the baseline MGE criterion, the Euclidean distance is

used to measure the error between the original and

generated static feature vector sequences, which is

Dðc; �ccqÞ ¼ kc� �ccqk2: ð9Þ

Theoretically, all possible state sequences underlying the

original parameter vector sequence o could be involved in

the calculation of the generation error, where Pðqj�; oÞ can

be used to weight the error corresponding to the state

sequence q. However, this is computationally expensive. In

practice, only the most probable state sequence q̂q for o is

used and the GEF is defined as

eðc; �Þ ¼ Dðc; �ccq̂qÞ: ð10Þ

For notational convenience, we use q to denote q̂q in the rest

of the paper.

The MGE criterion aims to minimize the total

generation error for all training sentences,

�̂� ¼ arg min
�

X
n

eðcn; �Þ; ð11Þ

with respect to

� ¼ ½�T
1 ;�

T
2 ; . . . ;�

T
K�

T; ð12Þ

U ¼ ½��1
1 ;�

�1
2 ; . . . ;�

�1
K �

T; ð13Þ
where cn is the static feature vector sequence of the nth

training sentence, �k and �k are the mean vector and

covariance matrix of the kth unique Gaussian component,

respectively, and K is the total number of Gaussian

components in the model set � .

For each training data cn, the model parameters are

updated using the probabilistic descent (PD) method [13] as

�ðnþ 1Þ ¼ �ðnÞ � "nreðcn; �Þj�¼�ðnÞ; ð14Þ

where "n is the learning rate, which decreases when the

sentence index n increases.

The derivatives of the GEF with respect to the model

set’s mean and variance parameters can be derived as

@eðcn; �Þ
@�

¼ 2ST
q�
�1
q WR

�1
q &; ð15Þ

@eðcn; �Þ
@U

¼ 2ST
q diag�1ðWR�1

q &ð�q �W �ccqÞTÞ; ð16Þ

where

��1
q ¼ diagðSqUÞ; ð17Þ

�q ¼ Sq�; ð18Þ

& ¼ �ccq � cn: ð19Þ

In the above equations, Sq is a 3MT � 3MK matrix whose

elements are 0 or 1, determined according to the optimal

state sequence q for cn, diagð:Þ is the operation to convert a

3MT � 3M matrix to a 3MT � 3MT block-diagonal matrix

with a block size of 3M, and diag�1ð:Þ is the inverse

operation of diagð:Þ.
It should be noted that the highest computational cost

of MGE training is related to the calculation of R�1
q in

Eqs. (15) and (16). This cost can be markedly reduced by

using an approximation of R�1
q taking into account the

special structure of the matrix Rq [7].

3. MGE CRITERION WITH
DYNAMIC FEATURES

The baseline MGE criterion described in the previous

section has a drawback, which is the ignorance of dynamic

properties of speech parameters in the generation error

definition. In this section, we incorporate these dynamic

properties into MGE training by defining the generation

error of dynamic features and introducing this new error

component into the GEF. Controlling the weight associated

with the newly added error component is of essential

importance in balancing the performance of the two error

components comprising the newly derived GEF. We

propose two methods for setting this weight: fixed and

adaptive weighting. The effects of these two weighting

methods are discussed in Sect. 4.

The generation error of the dth-order dynamic feature

is defined as the Euclidean distance between the dth-order

dynamic feature vector sequences derived from the

corresponding original and generated static feature vector

sequences, that is,

Dð�ðdÞc;�ðdÞ �ccqÞ ¼ k�ðdÞc��ðdÞ �ccqk2; ð20Þ

where

�ðdÞc ¼ Adc; ð21Þ

�ðdÞ �ccq ¼ Ad �ccq: ð22Þ

Here, Ad is an MT �MT window matrix defined as

Ad ¼ ½wðdÞ1 ;w
ðdÞ
2 ; . . . ;w

ðdÞ
T �

T � IM�M ; ð23Þ

where wðdÞt is given by Eq. (5).

The new GEF incorporating the original error compo-

nent of the static feature and that of the delta feature (i.e.,

the first-order dynamic feature) is defined as

e0ðc; �Þ ¼ Dðc; �ccqÞ þ aDð�ð1Þc;�ð1Þ �ccqÞ; ð24Þ
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where a is the weight associated with the error component

of the delta feature used to control the balance between the

two error components. The effects of different values of a

are discussed in the next section.

It should be noted that the GEF given by Eq. (24)

can be extended to higher-order dynamic feature(s) in a

straightforward way. We refer to the MGE criterion with

the new GEF incorporating dynamic feature(s) as MGE-

dynamics for brevity.

3.1. Fixed Weighting Approach to MGE-dynamics

In this weighting approach, the delta weight a is kept

unchanged over all training data. By substituting Eqs. (21)

and (22) into Eq. (20), the derivatives of the new GEF with

respect to the mean and variance parameters can be

obtained as

@e0ðcn; �Þ
@�

¼ 2ST
q�
�1
q WR

�1
q P&; ð25Þ

@e0ðcn; �Þ
@U

¼ 2ST
q diag�1ðWR�1

q P&ð�q �W �ccqÞTÞ; ð26Þ

where

P ¼ I þ aAT
1A1: ð27Þ

Here, A1 is given by Eq. (23) when d is equal to one.

Comparing the newly formulated updating rules

(Eqs. (25) and (26)) with the original ones (Eqs. (15) and

(16)), we see that a matrix factor P is added as a

consequence of the introduction of the delta feature error

component into the GEF. It can be seen that P is a constant

matrix for a given number of frames T of a training

sentence and delta weight a. Hence, the MGE-dynamics

criterion with the fixed weighting approach gives rise to no

additional computational complexity compared with the

baseline MGE criterion.

3.2. Adaptive Weighting Approach to MGE-dynamics

The above fixed weighting approach has the effect of

assigning an equal delta weight to every time sample of

an utterance. However, speech consists of stationary and

transitional parts, and transitional parts possess higher

dynamicity than stationary ones. This suggests that the

error component of the delta feature corresponding to

transitional parts should be given more emphasis than that

corresponding to stationary ones. Therefore, in this

subsection, we propose an adaptive weighting approach

where the delta weight is adjusted according to the degree

of dynamicity of speech segments. The effects of empha-

sizing transitional or stationary parts of speech have also

been reported in speech recognition [14].

To characterize the degree of dynamicity of speech

segments, we propose to divide speech signals into portions

corresponding to the state boundaries of phoneme HMMs

found by Viterbi decoding [15]. The reason for this is

twofold. Firstly, the states of phoneme HMMs provide

natural subphonetic boundaries and may contain dynamic

information of speech segments. Secondly, the updating

rules of MGE training (i.e., Eqs. (15) and (16) as well as

Eqs. (25) and (26)) are basically performed on a statewise

basis, which means that the original and generated feature

vectors of frames belonging to an HMM state are used to

re-estimate the model parameters of that state HMM.

We use the formulation proposed in [14] to estimate the

degree of dynamicity of a frame t, that is,

DFt ¼
XM�1

p¼1

j�ð1ÞctðpÞj; ð28Þ

where �ð1ÞctðpÞ is the pth component of the M-dimensional

delta feature vector of frame t. Note that the zeroth

component of this vector, which is related to the log-energy

of the speech signal, is excluded from the sum.

We propose to calculate the degree of dynamicity of an

HMM state s as the average of the degree of dynamicity of

all frames belonging to that state, i.e.,

DSs ¼
1

Ts

XtsþTs�1

t¼ts
DFt; ð29Þ

where Ts is the number of consecutive frames, starting

from frame ts, belonging to state s.

Equation (29) gives a rough estimate of the degree of

dynamicity of an HMM state considered as a speech

segment. Figure 1 shows an example where the degree of

dynamicity of frames and that of HMM states for an

utterance are illustrated on the same plot. Here, a three-

state left-to-right no-skip HMM structure was used. This

example indicates that the formulation in Eqs. (28) and

(29) can capture, to a certain extent, the degree of

dynamicity of speech segments, even for portions where

a sudden change in spectral dynamics occurs (e.g., the

middle part of the stop consonant /k/).

Then, the delta weight for all frames belonging to an

HMM state s is set according to the degree of dynamicity

of that state as

as ¼ amax

DSs

DSmax

; ð30Þ

where amax is the maximum delta weight, which is assigned

to the state possessing the maximum degree of dynamicity

DSmax of all HMM states in the training data.

Finally, the same updating rules as those in the fixed

weighting approach can be reused, although matrix P in

Eq. (27) should be reformulated appropriately since the

delta weight is adjusted state-by-state according to

Eq. (30). Specifically, we assume that the nth training

sentence cn has T frames belonging to N HMM states,

where state i has state duration Ti, i.e., T ¼
PN

i¼1 Ti. The
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MT �MT banded matrix A1 given in Eq. (23) can be

approximated as a block-diagonal matrix having block

sizes that change according to the durations of HMM

states, that is,

A1 ’ A1;1 �A1;2 � � � � �A1;N ; ð31Þ

where � denotes the direct sum operation, and A1;i is an

MTi �MTi matrix having a similar composition to A1.

Similarly, AT
1 can be approximated as

AT
1 ’ A

T
1;1 �A

T
1;2 � � � � �A

T
1;N : ð32Þ

The delta weight a in Eq. (27) is now adjusted state-by-

state in the adaptive weighting approach. Thus, the matrix

aIMT�MT appearing implicitly in Eq. (27) can be rewritten

as

aIMT�MT ¼ a1IMT1�MT1
� a2IMT2�MT2

� � � � � aNIMTN�MTN ;
ð33Þ

where ai is the delta weight for HMM state i, which is

determined by Eq. (30).

From Eqs. (31)–(33), the matrix P in Eq. (27) can be

reformulated as

P ’ I þ ða1A
T
1;1A1;1 � a2A

T
1;2A1;2

� � � � � aNA
T
1;NA1;NÞ: ð34Þ

Equation (34) allows us to compute P for a given

training sentence in a straightforward manner if the delta

weight for each HMM state has already been obtained

following Eq. (30). It can be concluded that the MGE-

dynamics criterion with adaptive weighting has similar

computational complexity to that with fixed weighting and

the baseline MGE criterion, since the highest computa-

tional cost of the training process is still related to the

calculation of R�1
q .

4. EXPERIMENTS

To evaluate the effectiveness of our two proposed

methods, i.e., the MGE-dynamics criterion with fixed

weighting (MGE-dynamics-FW) and the MGE-dynamics

criterion with adaptive weighting (MGE-dynamics-AW),

we carried out evaluation experiments to compare the

performance of HMMs trained by the proposed techniques

with that of HMMs trained by the baseline MGE technique.

4.1. Experimental Conditions

We used 503 phonetically balanced sentences uttered

by the male speaker MHT from the ATR Japanese speech

database (B-set) [16] in the experiments. The first 450

sentences were used for training, and the remaining 53

sentences were used for testing. Speech signals were

sampled at 16 kHz and windowed by a 25 ms Hamming

window with a 5 ms shift. The feature vector consists of

static feature, including the 0th through 24th mel-cepstral

coefficients obtained by a mel-cepstral analysis technique

[17] and the logarithm of F0, delta and delta-delta features.

A three-state left-to-right no-skip HMM structure was used.

Each state output distribution was composed of spectrum

and F0 streams. The spectrum stream was modeled by

single multivariate Gaussian distributions with diagonal

covariance matrices. The F0 stream was modeled by

multispace probability distributions [18]. In the synthesis

part, the mel log spectrum approximation (MLSA) filter

[19] was used to synthesize the speech waveform from the

generated mel-cepstral coefficients and F0 values. Our

experiments were based on the HTS toolkit [20], where the

dynamic feature vectors are calculated as

�ð1Þct ¼ 0:5ðctþ1 � ct�1Þ; ð35Þ

�ð2Þct ¼ ctþ1 � 2ct þ ct�1: ð36Þ
The HMM training procedure was conducted as follows.

Firstly, HMMs were trained based on the conventional ML

criterion [3]. Then, the resulting HMMs were used as the

initial models for MGE-based training techniques. These

ML-trained HMMs were also utilized to obtain the optimal

state sequences for all training sentences with the Viterbi

algorithm. Finally, each MGE training technique was

Fig. 1 Degree of dynamicity of frames (ragged dashed line) and that of HMM states (stepwise solid line) for the Japanese
utterance /sil-i-cl-sh-u-u-k-a-N/ (‘‘one week’’ in English). Vertical dotted lines show HMM state boundaries and vertical
dash-dotted lines associated with frame numbers show HMM phoneme boundaries.
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performed iteratively until the total generation error of

static and delta features for all training data converged. The

online PD updating strategy on a sentence-by-sentence

basis, as described in Sect. 2.2, was adopted for its

insensitivity to the learning rate and ease of implementa-

tion [21]. The learning rate "n in Eq. (14) was empirically

set as

"n ¼
1

100þ n
: ð37Þ

For each training sentence, HMM parameters related to the

optimal state sequence were re-estimated state-by-state

using the updating rules. In the experiments, only spectral

model parameters were updated as the effect of dynamic

spectral features is of interest in this paper.

We first objectively and subjectively evaluated the

three MGE training techniques with the original parameter

generation algorithm without postprocessing [6], which

was used in the MGE training framework. Then we

conducted an additional subjective evaluation with the

parameter generation algorithm considering GV [12] to

show their effectiveness under this highly effective syn-

thesis scheme. No-silence GV modeling in which the GV

weight was set to 1.0 was used. In all evaluation experi-

ments, the optimal state sequences obtained by the forced

alignment of the original speech features with the ML-

trained HMMs were used for synthesis.

4.2. Experimental Results

4.2.1. Evaluation with the original parameter generation

algorithm without postprocessing

4.2.1.1. Objective evaluation

Since multivariate Gaussian distributions with diagonal

covariance matrices were used for spectral parameter

modeling, HMM parameters were optimized and the

generation error was calculated independently for each

dimension of mel-cepstral coefficients. With the above

setting of the learning rate, it was observed that all MGE

training techniques under investigation converged within

10 iterations. Figure 2 shows plots of the evolution of the

generation error of the 2nd mel-cepstral coefficient on the

test data as an example, where the delta weight for MGE-

dynamics-FW and the maximum delta weight for MGE-

dynamics-AW were both set to 100. Similar evolutions

were also observed for other dimensions, on the training

data, and for other settings related to the delta weight.

Figure 3 shows the relative error reduction (the

performance of ML training was used as the reference)

of static and delta features on the test data for several

representative mel-cepstrum orders after MGE-dynamics-

FW training with various settings of the delta weight.

When the delta weight was set to zero, we obtained the

result of baseline MGE training. It can be seen that baseline

MGE training reduces the generation error of the delta

feature as a side effect, although its GEF does not

incorporate the delta feature. When the delta weight is

increased, the relative error reduction of the static feature

exhibits a steady downward trend while that of the delta

feature increases and saturates as the delta weight

approaches 100. This trade-off between the performances

of error components included in the GEF was also observed

in MGE-dynamics-FW training when the delta-delta

feature was incorporated into its GEF in a similar manner

to that described in Sect. 3. Considering the lower

significance of the delta-delta feature compared with its

static and delta counterparts, it is sufficient to investigate

the effect of introducing the delta feature, without consid-

ering higher-order dynamic features, into MGE training in

this paper.

To compare the performance of MGE-dynamics-AW

with those of MGE-dynamics-FW and baseline MGE, we

performed training experiments in which the delta weight

for MGE-dynamics-FW and the maximum delta weight for

MGE-dynamics-AW were both set to 100. Figure 4 shows

the relative error reduction of the static and delta features

on the test data for these MGE training techniques.

Compared with baseline MGE, MGE-dynamics-AW has

a comparable relative error reduction of the static feature

(a) Generation error of static feature.

(b) Generation error of delta feature.

Fig. 2 Example of the evolution of generation error of
the 2nd mel-cepstral coefficient.
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and a larger relative error reduction of the delta feature.

Compared with MGE-dynamics-FW, MGE-dynamics-AW

has a larger relative error reduction of the static feature but

a smaller relative error reduction of the delta feature. It can

be seen that MGE-dynamics-AW alleviates the trade-off

effect observed in MGE-dynamics-FW. Since both MGE-

dynamics-AW and MGE-dynamics-FW obtain better per-

formance on the delta feature than baseline MGE, we can

conclude that the MGE-dynamics criterion improves the

capability of HMMs in capturing dynamic properties of

speech over the baseline MGE criterion.

Figure 5 illustrates an example of the trajectory of the

2nd mel-cepstral coefficient of natural speech included in

the training data and those generated from HMMs trained

by the baseline and proposed MGE training techniques.

It can be seen that the generated trajectories from our

proposed techniques almost always have more similar

dynamics to the natural trajectory than that from the

baseline MGE (the clearest improvements in the dynamics

can be observed around the 45th and 305th frames in the

figure).

4.2.1.2. Subjective evaluation

We also carried out subjective listening tests to

evaluate the effectiveness of the two proposed techniques.

Two preference tests were conducted. In the first test,

MGE-dynamics-FW was compared with baseline MGE. In

the second test, MGE-dynamics-AW was compared with

baseline MGE. The settings related to the delta weight

for MGE-dynamics-FW and MGE-dynamics-AW were the

same as those in the previous experiment. Twelve Japanese

listeners participated in the tests. They were presented with

pairs of synthesized speech in random order, and asked to

choose which one sounded better or to give an answer of

‘‘No preference’’ if the stimuli sounded the same. For each

listener, 20 test sentences were randomly selected from the

evaluation set consisting of 53 sentences.

Table 1 shows the results of the two preference tests. It

can be seen that the difference in preference between

MGE-dynamics-FW and baseline MGE is insignificant

(28.3% vs 29.6%), whereas MGE-dynamics-AW has a

higher preference score than baseline MGE (32.9% vs

27.1%). Furthermore, the result of a paired one-tailed t-test

[22] indicates that the mean preference score of MGE-

dynamics-AW is statistically significantly greater than that

of baseline MGE at a 5% significance level (p-value =

0.031). For the second listening test, informal feedback

from the test subjects suggested that the utterances

(a) Relative error reduction of static feature.

(b) Relative error reduction of delta feature.

Fig. 3 Performance of MGE-dynamics-FW with differ-
ent delta weights on test data for several mel-cepstrum
orders. Other orders showed similar trends but are not
plotted here for readability.

(a) Relative error reduction of static feature.

(b) Relative error reduction of delta feature.

Fig. 4 Performances of three MGE training techniques
on test data. The delta weight for MGE-dynamics-FW
and the maximum delta weight for MGE-dynamics-
AW were both set to 100.
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synthesized using the models trained by MGE-dynamics-

AW and baseline MGE had almost the same naturalness;

however, the clearness of some parts of utterances

belonging to the MGE-dynamics-AW category was im-

proved. The higher preference score of MGE-dynamics-

AW than baseline MGE could be interpreted as the

consequence of improved objective performance of the

delta feature while maintaining an objective performance

of the static feature comparable with that of baseline MGE.

4.2.2. Evaluation with the parameter generation algo-

rithm considering GV

We additionally conducted two preference tests similar

to those described in the preceding subsection. The only

difference from the previous tests is that GV was

considered in the synthesis process. Table 2 shows the

results of the preference tests with the GV technique.

Although the ‘‘No preference’’ rates increase by around

15% compared with those in the previous tests, both of the

proposed techniques have a higher preference score than

the baseline MGE. The results of paired one-tailed t-tests

indicate that while the preference of MGE-dynamics-AW

over baseline MGE is again significant at a 5% significance

level (p-value = 0.012), the preference of MGE-dynamics-

FW over baseline MGE is much less significant (p-

value = 0.090). The visual inspection of several samples

revealed that while enhancing the dynamic range of the

generated parameter trajectory, the GV technique seems to

keep the trajectory dynamics similar to that in the case

without considering GV.

5. DISCUSSION

Although a preference test between MGE-dynamics-

AW and MGE-dynamics-FW was not conducted, it is

necessary to point out the merit of the former over the

latter. MGE-dynamics-AW provides a data-driven tech-

nique of determining the delta weight for each portion of

speech, provided that the maximum delta weight is set

appropriately. In contrast, one must manually tune the delta

weight to obtain the best performance for MGE-dynamics-

FW. Moreover, considering the fact that HMM parameters

are optimized independently for each dimension owing

to the use of diagonal covariance matrices in spectral

parameter modeling, MGE-dynamics-AW is likely to result

in improved dynamics occurring synchronously among the

dimensions since the delta weight is adjusted segment-by-

segment over the course of an utterance. This synchro-

nously improved dynamic property is less likely to occur

in MGE-dynamics-FW because the delta weight is kept

constant over the entire speech. Whether synchronously

adaptive control among the dimensions is effective for

spectral dynamics representation is still unclear. More

work is needed to confirm this.

Our work also exhibits some limitations. First, the

high-quality vocoder STRAIGHT [23] was not used since

the magnitude of several speech samples synthesized by

Fig. 5 Natural and generated trajectories of the 2nd mel-cepstral coefficient for an utterance included in the training data.

Table 1 Mean preference score (with 95% confidence
interval) in evaluation with the original parameter
generation algorithm.

No preference
(%)

Baseline
(%)

Proposed
(%)

Baseline vs
dynamics-FW

42:1	 16:4 29:6	 9:7 28:3	 10:3

Baseline vs
dynamics-AW

40:0	 12:6 27:1	 6:1 32:9	 7:8

Table 2 Mean preference score (with 95% confidence
interval) in evaluation with the GV technique.

No preference
(%)

Baseline
(%)

Proposed
(%)

Baseline vs
dynamics-FW

58:7	 15:7 17:1	 8:0 24:2	 10:9

Baseline vs
dynamics-AW

55:0	 14:1 17:9	 6:1 27:1	 9:6
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the STRAIGHT filter exceeded the data range specified for

a 16-bit WAV sound file. Compared with mel-cepstral

vocoding, the relative error reduction of the MGE training

techniques had similar trends but slightly lower magnitudes

when STRAIGHT was used. Second, the more popular

five-state HMM structure was not employed in our analysis

because we found the use of the three-state one to be

sufficient to capture the degree of dynamicity of speech

segments. The use of five-state phoneme HMMs resulted

in overdetailed representation of the proposed degree of

dynamicity of HMM-state-sized speech segments, causing

an overfitting effect when MGE-dynamics-AW training

was performed with this model setting. From this view-

point, MGE-dynamics-FW has the flexibility to work well

irrespective of whether a three-state or five-state structure

is used.

6. CONCLUSION

In this paper, we incorporate dynamic properties of

speech parameters into the MGE criterion by defining the

generation error of dynamic features and introducing this

error component into the GEF, resulting in the so-called

MGE-dynamics criterion. We also propose two methods

for setting the weight associated with this newly added

error component, which are fixed weighting (FW) and

adaptive weighting (AW). An objective evaluation shows

that MGE-dynamics-AW obtains comparable performance

for the static feature and better performance for the delta

feature compared with baseline MGE training. Subjective

listening tests indicate that a small but statistically

significant improvement in the quality of synthesized

speech was perceived in the case of MGE-dynamics-AW

training. The newly derived MGE-dynamics criterion

improves the capability of HMMs in capturing dynamic

properties of speech while maintaining a computational

complexity similar to that of the baseline MGE criterion.

Future work should target the investigation of the effect of

the window length used in dynamic feature calculation on

MGE-dynamics training and the effect of MGE-dynamics

training on F0 modeling.
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