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Abstract: We have been distributing a new collection of databases and evaluation tools called
CENSREC-4, which is a framework for evaluating distant-talking speech in reverberant environments.
The data contained in CENSREC-4 are connected digit utterances as in CENSREC-1. Two subsets are
included in the data: ‘‘basic data sets’’ and ‘‘extra data sets.’’ The basic data sets are used for evaluating
the room impulse response-convolved speech data to simulate the various reverberations. The extra
data sets consist of simulated data and corresponding real recorded data. Evaluation tools are presently
only provided for the basic data sets and will be delivered to the extra data sets in the future. The task
of CENSREC-4 with a basic data set appears simple; however, the results of experiments prove that
CENSREC-4 provides a challenging reverberation speech-recognition task, in the sense that a
traditional technique to improve recognition and a widely used criterion to represent the difficulty of
recognition deliver poor performance. Within this context, this common framework can be an
important step toward the future evolution of reverberant speech-recognition methodologies.

Keywords: Reverberant speech database, Reverberant speech recognition, Various recording
environments, Room impulse response, Evaluation framework

PACS number: 43.72.Ne [doi:10.1250/ast.32.201]

1. INTRODUCTION

The performance of speech recognition has been

drastically improved by statistical methods and huge

speech databases in recent years. Improvements in per-

formance under realistic environments, such as noisy

conditions, have become the focus of research, and various

projects on evaluating speech recognition in noisy environ-

ments have been organized.
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The SPeech recognition In Noisy Environment

(SPINE) project in the USA established specific tasks

including the recognition of a spontaneously spoken

English dialog between an operator and a soldier in noisy

environments (SPINE1, 2 [1]). The European Telecommu-

nications Standards Institute (ETSI) also developed frame-

works for evaluating speech recognition in noisy environ-

ments, which were collectively called Aurora. ETSI had

distributed Aurora 2 [2], a connected digit-recognition task

with various additive noises, Aurora 3, an in-car connected

digit-recognition task, Aurora 4 [3], a continuous noisy

speech-recognition task, and Aurora 5 [4], a noisy, simu-

lated hands-free and cellular network transmission speech-

recognition task.

We, the Working group [5] of the Information

Processing Society in Japan (IPSJ), have worked on

methodologies and frameworks for evaluating Japanese

noisy speech recognition since October 2001. We first

conformed to the ETSI Aurora 2 task settings because of

their simplicity and generality, and released the Corpus

and Environment for Noisy Speech RECognition 1

(CENSREC-1, which was formerly called AURORA-2J)

[6], which included a database and evaluation tools. After

that, we released CENSREC-2 [7] (in-car recognition of

connected digits), CENSREC-3 [8] (in-car isolated word

recognition), and CENSREC-1-C [9] (voice-activity detec-

tion under noisy conditions), with original evolutions. Thus

far, we have developed frameworks for evaluating the

performance of additive noisy speech recognition. How-

ever, in noisy speech recognition, speech-recognition

performance is degraded not only by additive noise but

also by multiplicative noise under distant-talking speech

conditions. Speech-recognition methods against complex

distortion, including additive noise, convolutional distor-

tion, and also individual differences (e.g., [10,11]), have

previously been actively pursued. However, many re-

searchers have recently returned to the deep analysis of

distorted data to investigate the mechanism responsible for

individual distortions, and tried to address these. Thus, we

released a new evaluation framework, which includes a

database and evaluation tools, called CENSREC-4, which

is a framework focusing on the evaluation of distant-

talking speech in reverberant environments [12]. This

evaluation framework has two main features. First, it

includes both real reverberant speech and simulated

reverberant speech (with convoluting impulse responses)

in the same environment. Second, it includes various

reverberant environments. We hope that it will be widely

used to enable the development and comparison of new

algorithms for the recognition of speech in reverberant

environments, and will eventually lead to techniques that

effectively deliver good performance under these condi-

tions. Moreover, the database may also be used to

investigate techniques of estimating the performance of

speech recognition in different reverberant environments.

In this paper, we first introduce a framework including

a database and evaluation tools of CENSREC-4, which is

an evaluation framework for distant-talking speech under

hands-free conditions. We then evaluate improvements

in recognition performance with Cepstral Mean Normali-

zation (CMN) [13] for CENSREC-4 data sets, and esti-

mate the reverberant speech recognition performance of

CENSREC-4 data sets with reverberant criteria, RSR-Dn

[14].

2. DATA SETS OF CENSREC-4

We released a new evaluation framework, including a

database and evaluation tools, called CENSREC-4, which

is a framework for evaluating distant-talking speech under

various reverberant environments. The data it contains are

connected digit utterances, the same as in CENSREC-1.

Two subsets are included in the data: ‘‘basic data sets’’ and

‘‘extra data sets.’’ The basic and extra data sets consist of

connected digit utterances in reverberant environments.

The utterances in the extra data sets are affected by ambient

noise in addition to reverberations. This evaluation frame-

work has two main features.

. It includes both real reverberant speech and simulated

reverberant speech (with convoluting impulse re-

sponses) in the same environment.

. It includes various reverberant environments.

2.1. Basic Data Sets

The basic data sets were used for the environment to

prepare the room impulse response-convolved speech data.

2.1.1. Room impulse response data

Many room impulse responses were measured in real

environments so that these could be used to simulate

speech recorded in various environments by convolving

them with clean speech signals and room impulse respons-

es. The impulse responses were measured by the time

stretched pulse (TSP) method [15]. The TSP length was

131,072 points and there were 16 synchronous additions.

The impulse responses were normalized at 0.5 with an

absolute value for the maximum amplitude. CENSREC-4

had impulse responses recorded in eight kinds of environ-

ments: an office, an elevator hall (the waiting area in front

of an elevator), a car, a living room, a lounge, a Japanese-

style room (a room with a tatami floor), a meeting room,

and a Japanese-style bathroom (a prefabricated bath).

Figure 1 gives the impulse responses recorded in these

eight kinds of environments. We measured the impulse

responses for the environments using the equipment and

setup listed in Table 1. Figure 2 presents the microphone

settings in all environments except those in the car and the

Japanese-style bathroom.
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We positioned the microphone near the centers of the

spaces in all environments, except in the car and in the

Japanese-style bathroom. For the car environment, we used

a medium-sized sedan and positioned the mouth simulator

on the drivers seat and the microphone on the sun visor for

the environment inside the car. The mouth simulator and

microphone were about 0.4m apart. We positioned the

microphone on a coffee table in the lounge environment.

For the bathroom environment, we positioned the mouth

simulator over the bathtub, which was filled with cold

water, and placed the microphone on a sidewall in the

Japanese-style bath environment. The mouth simulator and

the microphone were about 0.3m apart. Table 2 lists the

recording conditions, including the size of the spaces, the

distance between the microphone and the mouth simulator,

the reverberation time (T60), the temperature, the humidity,

and the average ambient-noise level in each recording

environment. In Table 2, the reverberation time (T60) is

given with a resolution of 0.05 s, and the ambient-noise

level is given with a resolution of 0.5 dB.

2.1.2. Simulated data (Testset A=B)

We simulated reverberant speech by convolving the

impulse responses to clean speech. We used the clean

speech from CENSREC-1 (the sampling frequency was

16 kHz for CENSREC-4, but 8 kHz for CENSREC-1). The

recording conditions are listed in Table 3. The other details

on the recording conditions, utterances, and speaking styles

were the same as those for CENSREC-1. The vocabulary in

the simulated data included in CENSREC-4 consisted of

eleven Japanese numbers the same as in CENSREC-1:

‘‘ichi (1),’’ ‘‘ni (2),’’ ‘‘san (3),’’ ‘‘yon (4),’’ ‘‘go (5),’’ ‘‘roku

(6),’’ ‘‘nana (7),’’ ‘‘hachi (8),’’ ‘‘kyu (9),’’ ‘‘zero (0),’’ and

‘‘maru (0).’’ The recording was conducted in a soundproof

booth.

The training and testing data were prepared in the same

way as those for CENSREC-1. The testing data were

divided into two sets: Testset A (in an office, in an elevator

hall, in a car, and in a living room) and Testset B (in a

lounge, in a Japanese-style room, in a meeting room, and in

a Japanese-style bathroom). There were a total of 4,004

utterances by 104 speakers (52 females and 52 males).

These utterances for Testsets A and B were divided into

four groups corresponding to the reverberant conditions.
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Fig. 1 Impulse responses in eight environments with CENSREC-4.

Table 1 Recording equipment and conditions.

Microphone SONY, ECM-88B
Microphone amplifier PAVEC, Thinknet MA-2016C

A/D board
TOKYO ELECTRON DEVICE,

TD-BD-8CSUSB-2.0
Mouth simulator B&K, Type 4128
Speaker amplifier YAMAHA, P4050

Sampling frequency
48 kHz (downsampled to 16 kHz

before convolving)
Quantization 16 bits

Fig. 2 Recording setup for impulse responses in all
environments except those in car and in Japanese-style
bathroom.

Table 2 Room size, distance between microphone and mouth simulator (MS), reverberation time, ambient-noise level,
humidity, and temperature in recording.

Room Test set Room size
Dis. between
Mic. and MS

Reverberation
time [T60]

Tempe-
rature

Humi-
dity

Amb. noise
level [dBA]

Office A=C=D 9:0� 6:0m 0.5m 0.25 s 30�C 40% 36.5 dB
Elevator hall A 11:5� 6:5m 2.0m 0.75 s 30�C 50% 39.0 dB
In-car A=C=D Middle-sized sedan 0.4m 0.05 s 29�C 44% 32.0 dB
Living room A 7:0� 3:0m 0.5m 0.65 s 30�C 54% 34.0 dB
Lounge B=C=D 11:5� 27:0m 0.5m 0.50 s 27�C 50% 52.5 dB
Japanese style room B 3:5� 2:5m 2.0m 0.40 s 30�C 54% 30.0 dB
Meeting room B=C=D 7:0� 8:5m 0.5m 0.65 s 27�C 52% 48.5 dB
Japanese style bath B 1:5� 1:0m 0.3m 0.60 s 31�C 62% 29.5 dB
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Thus, each reverberant condition included 1,001 utter-

ances. The noise in Testset A for CENSREC-1 was used for

both the test set and the training set (called known noises),

but that in Testset B was only used for the training set

(unknown noises). Similar to this, the CENSREC-4 basic

data sets also had two types of test sets: Testset A with

known reverberant environments and B with unknown

reverberant environments. Two sets of training data were

prepared, i.e., clean training and multicondition training.

There were a total of 8,440 utterances by 110 speakers (55

females and 55 males). For the multicondition training

data, four kinds of reverberation (in an office, in an elevator

hall, in a car, and in a living room) were convolved with

clean speech. Thus, each reverberant condition included

2,110 utterances.

2.2. Extra Data Sets

Extra data sets consist of simulated and recorded data.

They are affected by both additive and multiplicative noise.

These data are different from those in the main evaluation

environments for reverberant-speech recognition. Thus, we

only provide testing/training data as extra data sets and do

not provide an evaluation framework with these in the

present assessments.

2.2.1. Simulated data with multiplicative and additive

noise (Testset C)

We simulated reverberant and noisy speech by con-

volving the room impulse responses and adding noise

recorded in real environments to the clean speech. These

extra data sets were called Testset C and consisted of four

environments: two from Testset A (in an office and in a car)

and two from Testset B (in a lounge and in a meeting

room). In all four environments, we recorded the back-

ground noise for about 120 s. The first half of the recorded

noise data was used to prepare the testing data, and the

second half was used to prepare the training data.

There was a total of 4,004 utterances by 104 speakers

(52 females and 52 males) for the testing data, which is

identical to those in Testsets A and B. To prepare Testset C,

these utterances were divided into four groups, and four

kinds of reverberations (in an office, in a car, in a lounge,

and in a meeting room) were convolved. Then background

noise was added to the reverberant speech at 1 dB,

20 dB, 10 dB, and 5 dB of the signal-to-noise ratio (SNR).

However, when the reverberant and noisy conditions were

the same, the utterance content was also the same,

regardless of SNR. Thus 1,001 utterances were included

for each reverberant condition.

For the training data, there were a total of 6,752

utterances by 88 speakers (44 females and 44 males). To

prepare extra training data, these utterances were con-

volved as four kinds of reverberations (in an office, in

an elevator hall, in a car, and in a living room), and

background noise was added to the reverberant speech at

1 dB, 20 dB, 10 dB, and 5 dB of SNR. Thus, the extra

training data included 422 utterances for each reverberant

condition and SNR. In addition, clean data were prepared

as optional data comprising a total of 1,688 utterances by

22 speakers (11 females and 11 males). The data are

different from the training data mentioned above and are

intended for use in adaptive training.

2.2.2. Real recorded data in real environments (Testset

D)

We recorded real data with two microphones (close and

remote) under the conditions listed in Table 1. We used

human speakers instead of a mouth simulator. This data set,

called Testset D, was recorded in the same environments as

Testset C by ten human speakers (five females and five

males). In each environment, the room size and recording

position were the same as for Testsets A and B. Figure 3

outlines the recording setup. The recorded speech by each

speaker consisted of two major parts: testing data (49 or 50

utterances) and training data for adaptation (11 utterances).

Testset D had 2,536 utterances (2,536 files).

3. BASELINE SCRIPTS AND EVALUATION
OF CENSREC-4

3.1. Reference Baseline Scripts

We produced CENSREC-4 baseline scripts on the basis

of CENSREC-1 baseline scripts to carry out HMM training

and recognition experiments by using HTK [16] in the same

way as had been done in CENSREC-1. They were only

provided for the basic data sets, as previously described. As

a result of various experiments (with various HMM top-

ologies and various feature vectors) and discussions, we

specified six conditions for producing baseline scripts.

. The acoustic model set consisted of 18 phoneme

models (/a/, /i/, /u/, /u:/, /e/, /o/, /N/, /ch/, /g/,

Fig. 3 Recording setup for real speech data in all environments.

Table 3 Recording conditions of clean speech for
simulated data.

Headset Microphone SENNHEISER HMD25

Sampling frequency 16 kHz
Quantization 16 bits

Format Little-endian
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/h/, /k/, /ky/, /m/, /n/, /r/, /s/, /y/, /z/), silence

(‘sil’), and a short pause (‘sp’).

. Each phoneme model and ‘sil’ had five states (three

emitting states), and ‘sp’ had three states (one

emitting state). The output distribution of ‘sp’ was

the same as that of the center state of ‘sil.’

. Each state of the phoneme models had 20 Gaussian

mixture pdfs, and ‘sil’ or ‘sp’ had 36 Gaussian

mixtures.

. The feature parameter of the baseline system had

39-dimensional feature vectors that consisted of 12

MFCCs, 12 �MFCCs, 12 ��MFCCs, log power,

� power, and �� power, which were calculated

using the HCopy of HTK. The analysis conditions

were pre-emphasis (1� 0:97z�1), a hamming win-

dow, a 25-ms frame length, and a 10-ms frame

shift.

. Grammar-based connected digit recognition by the

HVite of HTK was used for the recognition experi-

ments. Figure 4 shows the recognition grammar,

where ‘j’ denotes alternatives, ‘h i’ denotes one or

more repetitions, and ‘[ ]’ encloses options. This

grammar generates arbitrary repetitions of digits

optionally followed by short pauses, and terminal

silences are also allowed.

. Almost all the scripts were written as shell scripts and

the remainder as Perl scripts. In these scripts, the

HMM acoustic models were trained with HTK tools

and used for the recognition experiments.

3.2. Performance of Reference Baseline

Table 4 lists the CENSREC-4 baseline performance for

the basic data sets. The upper half has the clean training

results and the lower half has the multicondition training

results. The right side shows the accuracy of single-digit-

level performance, and the left side shows the string-level

correct rate, obtained by the connected digit recognition.

The ‘‘w/o’’ in Tables 4 and 5 (explained below) indicates

the recognition results for the clean speech data (without

Fig. 4 Recognition grammar.

Table 4 CENSREC-4 baseline performance for basic data sets.

Table 5 Summary tables of recognition performance for basic data sets in CENSREC-4 spread sheet.
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convolving impulse responses), and ‘‘w’’ means the

recognition results for the reverberant speech data (with

convolving impulse responses).

In Table 4, we can see a tendency that the longer

the reverberation time, the worse the recognition perform-

ance, since no dereverberating process was used in the

CENSREC-4 baseline. However, reverberation time cannot

completely explain the degradation in recognition perform-

ance. For example, the performance in the living room and

meeting room are very different even if the reverberation

time is the same. This implies that there are more complex

factors involved, which should be considered to address the

reverberations. These results were provided on a Microsoft

Excel spreadsheet to summarize the tables for evaluating

the results. The summarized tables of the recognition

performance of basic data sets in CENSREC-4 are listed in

Table 5, and were achieved by automatically calculating

the relative performance with the baseline by inputting the

results into the spreadsheets. Published summary tables can

easily be compared with other recognition performance

results.

3.3. Evaluation Experiment with Cepstral Mean Nor-

malization

Cepstral Mean Normalization (CMN) [13] is a tradi-

tional dereverberating process that uses technology and it is

a simple and effective way of normalizing the feature space

and thereby reducing channel distortion. It has therefore

been adopted in many current systems. To understand the

difficulties involved with basic data sets, we evaluated

improvements in recognition performance with CMN for

basic data sets. Table 6 lists the recognition performance

with CMN for basic data sets, and Table 7 lists summa-

rized tables of the recognition performance with CMN for

basic data sets.

The results in Table 7 indicate relative performance

was improved by about 15 to 25% in clean training but was

degraded by about 7% in multicondition training. CMN

made it difficult to achieve a sufficient improvement in

recognition performance because CMN was not effective

under longer reverberant conditions. Thus, conventional

framewise dereverberation methods for speech recognition

could not provide adequate performance. This database

contained very challenging data and we hope to develop a

new dereverberating technology with this.

3.4. Variability of Performance for Reverberant

Speech Recognition with CENSREC-4

In the previous section, we explained that it is difficult

to improve the recognition performance of CENSREC-4

Table 6 Recognition performance with CMN for basic data sets.

Table 7 Summary table of recognition performance with CMN for basic data sets.

Acoust. Sci. & Tech. 32, 5 (2011)
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data sets with conventional methods such as CMN. In this

section, we focus on criteria to estimate the difficulty of

reverberant speech recognition, and also explain why it

is difficult to estimate the recognition performance of

CENSREC-4 data sets. We have already investigated early

and late reflections on distant-talking speech recognition

with the aim of defining suitable reverberation criteria [17].

We then designed reverberation criteria RSR-Dn (Rever-

berant Speech Recognition criteria with Dn) [14] to

estimate the reverberant speech recognition performance.

Thus, we try to estimate the difficulty of reverberant speech

recognition of CENSREC-4 and evaluate how many

variable reverberant impulse responses CENSREC-4 con-

tains on the basis of RSR-Dn.

3.4.1. Performance estimation based on reverberation

criterion RSR-Dn

We designed the reverberation criterion RSR-Dn using

the D value based on the ISO3382 acoustic parameter [18]

in order to estimate the difficulty of reverberant speech

recognition. The D value expresses the clarity of acoustics

and is derived from

Dn ¼
Z n

0

h2ðtÞdt
� Z 1

0

h2ðtÞdt; ð1Þ

where hðtÞ is the impulse response and n is the border time

between early-and-late-arriving energies. The D value

improves under the condition of higher direct and early

reflections and degrades under the condition of higher late

reverberations. In previous research, RSR-D20L (RSR-D20

with Linear regression function) and RSR-D20Q (RSR-D20

with Quadratic regression function) provided much better

estimation performance [14]. Thus, we estimate the

recognition performance of CENSREC-4 with RSR-D20L

in this study.

3.4.2. Estimating performance of reverberant speech

recognition

� Experimental conditions

We used RSR-D20L to estimate the reverberant

speech recognition performance in five environments of

CENSREC-4. We first measured 312 impulse responses to

design RSR-Dn in the three training environments (Env. A

with 72 RIRs (Room Impulse Responses), Env. B with 120

RIRs, and Env. C with 120 RIRs). On the basis of measured

impulse responses, we next derived D20 and the perform-

ance of speech recognition. Next, we calculated the linear

regression curve as the reverberation criterion on the basis

of numerous impulse responses and the reverberant speech

convolving them. Figure 5 plots the results. We finally

attempted to estimate the reverberant speech recognition

performance for five test environments in CENSREC-4

(office, elevator hall, living room, Japanese tatami room,

and meeting room) on the basis of the designed RSR-D20L

in the same or closest reverberation time.

� Experimental results

Table 8 lists the results, where ‘‘Est. rec. w RSR-D20

(Env.)’’ means the performance estimated with RSR-D20 in

Env. A, B, and C. In this experiment, RSR-D20 in Env. A,

B, and C were selected as the reverberation time environ-

ments closest to the test environment. Table 9 lists the

errors in the recognition performance estimated with

RSR-D20. As a result, an average estimation error of

less than 10% was achieved in five environments of

CENSREC-4 data sets. Estimation error of about 20%,

however, was achieved in a longer reverberant environ-

ment, Elevator hall. Therefore, we confirmed that

CENSREC-4 has very challenging and variable reverberant

features which make it difficult to estimate the performance

of recognition performance in a particularly heavily

reverberant environment.
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Fig. 5 RSR-D20L (Regression analysis with D20 and
reverberant speech recognition performance).

Table 8 Actual and estimated recognition performance
in five test environments with CENSREC-4.

Test env. T60 D20
Actual
rec.

Est. rec. w
RSR-D20 (Env.)

Office 0.25 s 0.98 93.4% 92.5%(A)
Elevator hall 0.75 s 0.72 30.7% 53.9%(C)
Living room 0.65 s 0.75 65.3% 69.0%(B)
Japanese room 0.40 s 0.65 54.3% 59.2%(A)
Meeting room 0.65 s 0.96 74.1% 84.7%(B)

Table 9 Errors in estimated recognition performance in
five test environments with CENSREC-4.

Test env. T60 Error w RSR-D20

Office 0.25 s 0.9%
Elevator hall 0.75 s 23.2%
Living room 0.65 s 3.7%
Japanese room 0.40 s 4.9%
Meeting room 0.65 s 10.6%

Average 0.54 s 8.66%
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4. CONCLUSION

We developed a new CENSREC-4, which is an

evaluation framework for distant-talking speech under

reverberation environments. It is an effective database

suitable for evaluating new methods of dereverberation and

evaluating performance because the traditional dereverb-

eration process and performance estimation criteria are

ineffective in sufficiently improving and estimating recog-

nition performance. The framework was released in March

2008, and not only performance evaluations but also many

other studies are being conducted using it throughout

Japan. We intend to evaluate extra data sets in the near

future. We fervently hope that CENSREC-4 is a first step in

supporting the research on effective algorithms for recog-

nition in reverberation.

5. DISTRIBUTION FOR CENSREC-4

The CENSREC-4 is distributed by NII-Speech Resour-

ces Consortium (NII-SRC), Japan. The latest information is

stored at the following URL.

http://research.nii.ac.jp/src/eng/index.html
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