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Abstract: The enhancement of speech has become one of the focuses of automatic speech
recognition (ASR) development. In recent studies, the missing feature approach (MFA) has been
proved to be a suitable method. However the hard mask decision in the MFA is mostly a rough binary
classifier on the basis of a certain threshold value that could cause a failed decision of reliability and
result in a signal screening risk. As improvements of the hard mask the effectiveness of soft masks,
including soft mask works with a Bayesian classifier, attempt to compensate the loss of real speech in
the hard mask decision by discovering the probability density function (p:d: f:) of the unreliable
feature component. Unfortunately, this is a very difficult task because of the overlap of at least two
complex random processes. The sigmoid function suggested by some soft masks is not a reasonable
p:d: f: In this paper, we provide an analysis of the confident degree of a feature component in a subband
based on four criteria and then propose four types of confident weight (CWs). Based on CWs, we
introduce four classes of approaches of feature with confident weight (AFCWs), which estimate the
confidence degree of each feature vector simply and efficiently, describe the effect of noise in a
rigorous manner, and eliminate the risk of selecting thresholds and the difficulty of finding a joint
p:d: f: of reliable and unreliable components. Experimental results have shown that the proposed
approaches improve the performances of ASR systems even in an adverse environment.

Keywords: Missing feature, Robust speech recognition, Confidence weighting, Cepstrum, Hidden
Markov model
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1. INTRODUCTION

Speech recognition systems perform poorly when

acoustic speech is corrupted by noise. the robustness and

adaptability of recognition systems are two huge barriers to

the rapid development of automatic speech recognition

(ASR) [1], therefore speech enhancement, acoustic model

adaptation, and robust feature extraction have become new

research focuses [2]. As to recent works, please read [3–7].

The missing feature approach (MFA) has also become a

new hot topic. An earlier work on the MFA was by Cooke

et al. in 1994 [8] and a recent survey can be found in [9].

The MFA has been proposed as an alternative solution

for noisy ASR, especially under a band-limited noisy

environment. On the basis of the assumption that noise

corruption is different for different frequency subbands,

the MFA implies that only reliable feature components

corresponding to certain frequency subbands should be

selected for the recognition stage and that the unreliable

features must be ignored. Because the features are roughly

classified as either reliable or unreliable depending on a

certain threshold value, there is some real speech informa-

tion in the ignored ‘unreliable components’ and, inversely,

the effect of noise may remain in the saved ‘reliable

components’. Therefore the hard mask MFA involves

a risky decision since it neither uses sufficient noise

information nor effectively saves the real speech. As an

improvement, marginalization was suggested in [10].

Furthermore, soft mask MFAs, for example, see [11,12],

require the joint or conditional probability density func-

tions (p:d: f:s) of reliable and unreliable feature compo-

nents in the spectral domain and then calculate their

integral mean to compensate for the loss of the neglected

real speech information. Meanwhile, bounded marginali-

zation must assume several special probability distributions

such as a uniform distribution for the reliable features and a

Gaussian distribution for an integrand in some cases [11].

Seltzer et al. [13] proposed a Bayesian classification
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technique to avoid the predicament of the initial unknown

masks. Li and Wang [14] gave a formal treatment on

binary time-frequency masks and their conditions for

becoming ideal and optimal. Works on ASR for multiple

paths and multiple speakers, e.g. [15,16], are worth paying

attention.

However, simple noise estimation techniques do not

provide a probability measure of an element’s reliability. In

fact, finding such joint or conditional p:d: f:s required by

soft mask methods is extremely difficult because of the

overlap of at least two complex random processes. Simply

assuming a uniform or Gaussian distribution is inappro-

priate. The sigmoid function proposed in some soft mask

works is not an actual probability distribution function,

thus appears to be a false substitute. Barker et al. also wrote

that ‘In practice the noise estimation error is only likely to

be Gaussian if we have a good model of the noise. The

missing data approach however attempts to avoid employ-

ing noise dependent models. In the current work we

employ a simple stationary noise estimate for all noise

types. For nonstationary noises the error in the estimate is

likely to have a non-Gaussian distribution. Accepting this,

we have not attempted to compute ideal fuzzy masks, but

have instead generated a mask of values between 0 and 1

by compressing x with a simple sigmoid function’ [11].

To describe the effect of noise appearing in all

subbands and in all feature vectors under a simple and

uniform framework, we propose four types of confident

weights (CWs) to evaluate the credibility of a feature

component in each subband. These CWs are based on

energy, signal-to-noise ratio (SNR), statistics on SNR, and

statistics on a new ratio between signal and noise (RSN).

They simply and efficiently depend on log-spectral ener-

gies and can also be formulated. Each type of CW can be

regarded as a discrete probability distribution. Moreover,

on the basis of the CWs, we set up four approaches of

features with confident weights (AFCWs) without any

threshold and/or joint p:d: f: of the reliable and unreliable

components. These AFCWs extend and enhance our

previous work [17].

Each AFCW estimates the confidence degree of each

feature vector component, sums all the weighted output

probabilities of the feature vector components in the log-

spectral domain, and uses the summation as the likelihood

score in the final recognition stages. This approach

manages all the components under a uniform framework

with different reliabilities and describes the effect of noise

in a more simple and accessible manner.

Our experiments have shown that a speech recognition

system with an AFCW exhibits high performance and a

significant improvement in ASR accuracy under common

noisy environments, including several stationary and/or

nonstationary noise disturbances. In particular, even under

low-SNR environments, the recognition accuracy of a

system based on an AFCW is better than those of the

general hard mask MFA, spectral subtraction (SS) [18], and

cepstral mean normalization (CMN) [19].

The rest of this paper is structured as follows. In Sect. 2

we first give the four types of CWs based on energy, SNR,

statistics on SNR, and statistics on the new RSN. We then

set up four classes of AFCW with the framework of the

hidden Markov model (HMM) [20]. In Sect. 3, we describe

several comparative experiments and compare the exper-

imental results not only between different CWs but also

between AFCWs and other usual approaches for noisy

ASR. Finally, in Sect. 4 we present our conclusions and

discuss future studies.

2. APPROACHES OF FEATURES WITH
CONFIDENT WEIGHT

2.1. Thresholds of Current Reliability Standards in

Frequency Spectrum

Suppose that Sið!Þ denotes a short-time frequency

spectrum of frequency ! belonging to subband i, �i ¼
ð!L

i ; !
H
i �, i ¼ 1; . . . ;N, where superscripts L and H denote

the lowest and highest frequencies of the signal in subband

i, respectively, and N is the number of subbands.

Generally, to decide whether or not a feature component

should be regarded as unreliable one, three current stand-

ards are employed. They are the energy standard, SNR

standard, and statistical standard, which depend on the

following three conditions, respectively:

jSið!Þ þ Nið!Þj2 � jN̂Nið!Þj2 < �1 ð1Þ

SNRið!Þ ¼ 10 log10ðjŜSið!Þj2=jN̂Nið!Þj2Þ < �2 ð2Þ

PðSNRi > 0Þ < �3; ð3Þ

where jSið!Þ þ Nið!Þj denotes the spectral magnitude of

the pure speech with additional noise, ŜSið!Þ and N̂Nið!Þ
denote estimations of the speech signal and noise in

subband i, respectively, and �j, j ¼ 1; 2; 3, denote revelant

threshold values. In general, we consider �1 ¼ 0. The value

of ŜSið!Þ may be obtained, for example, by SS method [18].

It is risky to choose the type of standard and the

threshold. Sometimes it is difficult to avoid damaging real

speech and to avoid retaining noise information. The CWs

proposed in this paper will be first utilized instead of the

thresholds in MFAs.

2.2. Confident Weight for Four Reliability Criteria

The reliability standards presented in this paper are

different from the current threshold standards. We shall

define a series of CWs fr̂rig to describe the effect of noise

in an accessible manner and to deal with the reliable

and unreliable components under a uniform framework.

The CW r̂ri is a standardization of frig as follows.
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r̂ri ¼ ri

, XN
j¼1

rj

" #
; i ¼ 1; 2; . . . ;N: ð4Þ

Eq. (4) has a uniform framework, and the nonnegative

series frig is set depending on four standards: energy, SNR,

and two statistical criteria. Therefore, we set four types of

CWs. They are Energy CW, SNR CW, Stat1 CW based on

SNR, and Stat2 CW based on RSN, which are defined by

Eqs. (5), (6), (12), and (17), respectively. On the basis of

the CW and HMM framework, we set up four promising

classes of AFCWs. Consequently, the CW ri can be

regarded as a discrete probability distribution. These

classes can reflect the reliability of the ith spectral feature

vector corresponding to the four standards.
Energy CW. Suppose that the standardized energy

Ei ¼ jXij2=½
PN
j¼1

jXjj2�, where jXij2 ¼ jSi þ Nij2, belongs to

the ith subband �i ¼ ð!L
i ; !

H
i �. We define

ri ¼ 1=½1� qe lnðEiÞ�; ð5Þ
where qe is a constant to be determined. Note that ri is a

nondecreasing function of Ei and we define r̂iri as Energy

CW.

SNR CW. Let

ri ¼ �i=½qn þ �i�; and �i ¼ expfb � SNRig; ð6Þ

where b is a positive constant. In this paper, taking

b ¼ ln 10=10, we obtain

ri ¼
1

qnjNij2=jSij2 þ 1
; ð7Þ

where qn is a positive constant to be determined. It is easy

to see that a larger value of ri indicates greater reliability of

the feature component of subband i. Thus, the SNR CW

series ri provides the CWs of all the subbands.

We estimate SNRi by the on-line noise estimation

method [21], which implies the relation

jN̂iNij2 ¼def arg max
jXið!Þj

ðpdf ðjXið!Þj2ÞÞ ð8Þ

for estimating the noise magnitude, where pdf ðjXið!Þj2Þ is
the p:d: f: of the ith subband spectrum. Note that in this

equation the signal Xi belongs to the noise before the onset

of speech according to [21]. Consequently, jŜSij can be

obtained by SS [18] after the onset of speech, and Xi is real

noisy speech. Furthermore,

SNRi ¼ 10 log10ðj �SSij2=jN̂Nij2Þ; j �SSij2 ¼
1

ni

X
!2�i

jŜiSið!Þj2; ð9Þ

where j �SSij2 denotes the average spectrum energy of

subband i, and ni denotes the number of samples in the

ith subband.

To estimate the CWs of the delta spectral feature vector

components, we define the SNR of delta speech as follows:

SNRi ¼
def j �SSc;ij2 þ j �SSp;ij2

jN̂Nc;ij2 þ j �NNp;ij2
; ð10Þ

where index c denotes the current speech frame and index p

denotes the previous speech frame.

The confidence of the delta-delta spectral feature

components is defined in a similar manner.

We define the standardized series r̂ri given by Eq. (4) as

the SNR CW,

r̂ri ¼ ðri � rlÞ=ðrh � rlÞ; rl 6 ri 6 rh; ð11Þ

where rl and rh are selected as boundaries for ri.

Stat1 CW, confident weight based on the statistical

property of SNR. Suppose that the SNR obeys a normal

distribution. We define

ri ¼
Z yðiÞ=2

�1
fSNRi

ðxÞdx ð12Þ

r̂ri ¼ ri

, XN
j¼1

rj

" #
; i ¼ 1; 2; . . . ;N; ð13Þ

where yðiÞ denotes the amplitude of a noisy speech in

subband i and fSNRi
ðxÞ denotes the probability density

function p:d: f: of SNRi. We consider the position series r̂ri
to be the CW in the statistical standard based on SNR

denoted as Stat1 CW.

Stat2 CW, Confident weight based on the statistical

property of RSN. Suppose that the centralized amplitudes

of noise Ni and speech Si,

jNið!Þj � j �NiNij and jSið!Þj � j �SSij; ð14Þ

satisfy normal distributions with different parameters and

that both random variables are independent in the ith

frequency interval. The standardized variables of jNij and
jSij are N�

i and S�i , respectively. Let jN�
i j be the absolute

value of

RSNi ¼ S�i =jN
�
i j: ð15Þ

Then, from the central limit theorem, the two stand-

ardized variables are approximately normal variables if the

number of samples is sufficiently large. Thus, the p:d: f: of

Ti ¼ RSNi is [22]

fTiðxÞ ¼
1

�ð1þ x2Þ
: ð16Þ

In practice, we only consider the case x > 0 see item (3) of

‘Stat2 CW’ in Sect. 3.2.

We define Stat2 CW fr̂rig as follows:

ri ¼
1

1þ t2i
; r̂ri ¼ ri

, XN
j¼1

rj

" #
; i ¼ 1; 2; . . . ;N;

ð17Þ
where ti is an observable value of Ti.
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2.3. Approach of Features with Confident Weight

For theHMM [20] framework � with a Gaussianmixture

model (GMM), the likelihood of the input feature, being

the N-dimensional vector X ¼ fX1; . . . ;XNgT under � is

PðXj�Þ ¼
XM
i¼1

ki exp �
1

2
ðX � ~��iÞT��1

i ðX � ~��iÞ
� �

; ð18Þ

where ~��i ¼ ð ~��i1; . . . ; ~��iNÞT, �i ¼ diagð�2
i1; . . . ; �

2
iNÞ, and

ki is a constant that depends on not only the mixing

coefficients 	i of the ith Gaussian density in the GMM but

also the �i, k is exactly given by ki ¼ 	i=ðð2�ÞN=2j�ij1=2Þ.
In the AFCW, the selection of the CW depends on the

sum of the output probabilities of the weighted feature

vector in the logarithmic domain. Let rj denote the

confidence of Xj; then, the likelihood of the input feature

vector X under � in the AFCW is

XM
i¼1

ci exp �
1

2
�N

j r̂jrj logð2��2
ijÞ þ r̂jrj

ðX � �ijÞ2

�2
ij

 !( )
; ð19Þ

where ci depends on the mixing coefficients. In the case of

rj ¼ 1, the probability of component j is the same as that

for the standard HMM; in other words, component j is

reliable in the standard MFA. When rj ¼ 0, the likelihood

of component j is 1; hence, its logarithmic value is zero,

and component j is ignored, which indicates that compo-

nent j is unreliable in the standard MFA. Henceforth, the

AFCW can be also considered as an extended and more

precise MFA in some sense.

In Eq. (19), rj logð2��2
ijÞ represents the impact of noise

on the variance �2
ij, and rjðXj � �ijÞ2=�2

ij represents the

impact of noise on the difference Xj � �ij; from the

viewpoint of model self-adaptation, both the means and

variances in the model are adjusted under noisy environ-

ments. Our experimental results showed that the recog-

nition accuracy can degrade significantly if recognition is

only weighted on the mean value and the Mahalanobis

distance of the second part of Eq. (19), and the adjustment

of the first part is ignored; this implies that rj logð2��2
ijÞ is

necessary in Eq. (19).

From Eq. (19), the AFCW is a self-adaptive method

that combines the confidence of the speech feature vector

components and the speech recognition model. Moreover,

it does not introduce greater computational complexity

compared with the standard HMM.

3. EXPERIMENTAL RESULTS FOR
DETERMINATION OF CW AND

RECOGNITION

3.1. Databases and Recognition Platform

Database 1. All the experiments are performed using

a Mandarin Chinese speech database that contains 100

isolated words and utterances from 13 speakers (seven

males and six females). Each word has 21 utterances for

model training and 18 utterances for testing. The front-end

uses an 8 kHz sampling frequency and a 10ms frame

period. On the HTK 3.0 platform [23], each word is

modelled on eight Gaussian mixtures for a 10-state HMM.

The added silence model is based on four Gaussian

mixtures for a 3-state-HMM. Each model is trained on

clean speech data.

Database 2. Three types of noise data from the

database NOISEX-92 [24] are used in the experiments;

the used noises consist of white noise, high-frequency (HF)

channel noise, and babble noise. The noisy speech data

cover an overall SNR range from �5 to 20 dB; these data

are derived by artificially adding noise to the clean speech

data used for testing.

Features. The main experiments in the next two

subsections were performed in a Mel-frequency spectrum

vector consisting of 48 components (24 static and 24 delta

components) that was similar to FBAK:D of HTK.

However, in Sect. 3.4, the input features for baseline

experiments are the standard Mel-frequency cepstral

coefficients (MFCCs), which include 39 components (13

static, 13 delta, and 13 delta-delta components), since the

MFCC is considered to provide more accurate features than

the features in the spectral field. The feature MFCC is

similar to MFCC E D A of HTK.

3.2. Determination of Confident Weight

Energy CW. The main problem is to determine qe in

Eq. (4). Initially, it is natural to assume that ri ¼ 1=2 if

the present subband spectral energy is equivalent to

the average of all the subband energies. Thus, 1=ð1þ
qe lnNÞ ¼ 1=2, and if N ¼ 24 is considered, we have

qe ¼ 1=ðlnNÞ ¼ 1=ðln 24Þ ¼ 0:315: ð20Þ

Our experiments have shown that qe is indeed 0.315.

SNR CW. qn in Eq. (6) is ditermined as follows. ri
should be less than 0.5 if SNRi ¼ 0, which is because ri ¼
1=½qn þ 1� and qn > 1; and we hope that ri is not too small.

Here, we set ri ¼ 0:2 as the desired minimum, which

makes qn ¼ 4. Hence, 1 < qn � 4.

Over the interval ð1; 4�, we obtained the optimum value

qn ¼ 2, from our experiments, see Table 1. The advanced

recognition experiments in Sect. 3.3 will show the reason-

ableness of this value.

Stat1 CW

ri ¼
Z yðiÞ=2

�1
fSNRi

ðxÞdx; ð21Þ

fSNRi
ðxÞ ¼

1ffiffiffiffiffiffi
2�

p
ð�̂�iÞ

exp �
ðx� �̂�iÞ2

2�̂�2
i

� �
; ð22Þ

where �̂�i and �̂�2
i denote the estimated mean value

and variance for the ith frequency segment, respectively,
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and yðiÞ denotes the amplitude of the noisy speech in

subband i.

Stat2 CW

From the symmetry and characteristics of the t-

distribution, we determine Stat2 CW

(1) Separate the positive real number field into K

subintervals,

ðxk�1; xk�; k ¼ 1; 2; . . . ;K;

(2) Calculate the observed value ti of Ti in the ith

frequency segment.

(3) Select ri such that

ri ¼
1

1þ x2k
; if xk�1 < jtij 6 xk, i ¼ 1; 2; . . . ;N:

(4) Determine Stat2 CW fr̂rig, where r̂ri ¼ ri=½
PN
j¼1

rj�,
i ¼ 1; 2; . . . ;N.

On the basis of our experience, we considered K ¼ 25

subintervals with ð0; 12Þ separated into 24 equal subinterv-

als and the interval ð12;1Þ. We set ri ¼ 0 if 12 ¼
x24 < jtij. By forming tables of ri-values and r̂ri-values,

Stat2 CW fr̂rig based on RSN can be rapidly and easily

determined according to an observed value ftig. Further-
more, our experiments showed that this improved the

ability for speech enhancement, see Sect. 3.3.

According to the statistical theory, the mean of random

samples drawn out from a normal distribution Nð�; �2Þ
has a normal distribution Nð�; �2=nÞ, where n denotes

the sample size. Hence, in practical applications, we can

directly estimate all parameters of the noise Ni and speech

Si and then standardize them. Consequently, the advanta-

geousness of Stat2 CW fr̂rig is highly significant.

3.3. Comparison between the Four Types of Confident

Weights

Comparison between Energy CW and SNR CW.

Energy CW is only dependent on the local energy of the

speech signal, which simplifies its computation but does

not reflect the reliability degree of the feature vector. The

SNR CW considers the magnitude of the effect of the noise

on speech signals. To select a better CW between Energy

CW and SNR CW, some recognition comparison experi-

ments have been performed under white noise and babble

noise environments. These results are shown in detail in

Figs. 1(a) and 1(b).

It can be observed that SNR CW is generally better

than Energy CW, particularly when the overall SNR is

high. However, when the SNR is low, this situation is

reversed.

Comparison between Stat1 CW and Stat2 CW. The

fitness of normality of the sample data of the centralized

amplitudes of white noise Ni or speech Si in Eq. (13) is

acceptable, and the hypothesis of normality of SNRi ¼
10 log10ðj �SSij2=jN̂Nij2Þ cannot be accepted at a significance

level of 	 ¼ 0:10 on the basis of a statistical test of

skewness-kurtosis [22]. Under the condition of a normal

population X and a sufficiently large sampling number n,

the basic statistical conclusion is approximately

Table 1 Rates of different qn-values under white noise
(%).

qn-values
SNR (dB)

�5 0 5 10 15 20

1.0 6.0 16.3 47.7 62.3 89.3 99.7
1.5 9.3 26.7 56.3 69.0 90.3 99.7
2.0 13.7 34.7 63.0 75.0 92.3 99.7
2.5 14.3 34.7 60.3 73.7 89.0 98.3
3.0 14.3 33.0 57.7 72.7 87.7 95.3
3.5 13.0 27.0 50.3 65.3 85.3 91.7
4.0 12.7 26.3 50.0 63.0 85.7 90.3
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Fig. 1 Comparison between the recognition accuracy of
SNR CW and Energy CW.
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B3B
3=2
2 � N 0;

6ðn� 2Þ
ðnþ 1Þðnþ 3Þ

� �

B4B
2
2 � N 3�

6

nþ 1
;

24nðn� 2Þðn� 3Þ
ðnþ 1Þ2ðnþ 3Þðnþ 5Þ

� �
: ð23Þ

The two left terms are called the skewness statistics and

kurtosis statistics respectively, where Bk ¼ 1
n

Pn
i¼1

ðXi � �XXÞk.
Under the condition mentioned above, our experiments
demonstrated that the absolute values of the standardized
variables of both statistics were always greater than 3.5,

which showed that the normality of neither of them could

be accepted at a significance level of 0.05. In fact, most of

the values were over 6.

Comparison between Stat2 CW and SNR CW. From

Fig. 2, it can be observed that Stat2 CW is generally

slightly better than SNR CW. This can be attributed to the

closes fit to a normal distribution. The advantage of Stat2

CW in babble noise environments is less significant than

that in white noise environments. If the SNR is greater,

the recognition results with Stat2 CW indicate that the

assumption on the distributions of the centralized ampli-

tudes given by Eq. (14) may be too simple.

3.4. Comparison of Approaches

We completed our experiments by comparing our

proposed AFCW with several other robust speech process-

ing techniques such as SS [18], CMN [19], and the MFA.

The recognition results under three types of noise

environments are shown in Figs. 3–5, which show that the
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(b) Babble noise environment

SNR CW

Stat2 CW

Fig. 2 Comparison between the recognition accuracy of
SNR CW and Stat2 CW.

Fig. 3 Comparison of approaches for white noise.

Fig. 4 Comparison of approaches under HF channel noise.

Fig. 5 Comparison of approaches under babble noise.
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recognition systems based on introducing CWs have better

performances. Noisy speech data cover an overall SNR

range from �5 to 20 dB under the three types of noise

environments, as shown in Figs. 3–5.

From the results shown in Figs. 3–5, we can conclude

that by introducing CWs, the speech recognition system

exhibits a better performance, the word accuracy rates for

the three types of noise (including stationary and nonsta-

tionary noises) environments improve significantly, and the

accuracy curves obtained by the AFCW show better results

than those for other systems discussed in this paper. In

particular, under low-SNR environments, the accuracy is

improved to an acceptable level; moreover, the recognition

performance for clean speech is maintained. In summary,

the MFA is a useful robust speech recognition technique,

and in general the AFCW is more effective than a hard

mask in the MFA, SS, and CMN.

4. CONCLUSIONS AND FUTURE STUDIES

4.1. Conclusions

(1) By analyzing the confidence degree of feature

components of noisy speech, we propose and discuss

four types of CWs in this paper. As a result, the effect

of noise and self-adaptation ability for noisy environ-

ments can now be simply and effectively described

and handled under a uniform framework.

(2) In general, SNR CW and Stat2 CW are better than

Energy CW and Stat1 CW. The assumption of

the normality of the SNR is often not reasonable

according to our experiments, while Stat2 CW,

which is based on the central limit theorem is worth

noticing.

(3) For every type of CW, the AFCW proposed here

significantly enhances speech signals under an inverse

environment including stationary and nonstationary

noise. The AFCW does not require a threshold

value or a joint distribution density of feature

components. Moreover, it does not require a sigmoid

function, which seems to be a false substitute,

thus, the AFCW seems to be superior to a common

MFA.

4.2. Future Studies

(1) A future study should be to improve SNR CW and

Stat2 CW to increase the robustness of ASR, and

Stat1 CW should be improved by using a mixed

Gaussian distribution instead of a simple normal

distribution. New more reasonable CWs and corre-

sponding AFCWs should be explored.

(2) A method should be devised to strengthen our

estimation by introducing more information from

the speech model and noise model. We believe that

the concept of CWs has great potential and that

AFCWs based on CWs and the HMM framework are

promising. In fact, other types of CW can be con-

structed if they appear to make sense.

(3) Our database of experimental results should be

expanded to increase the value of comparative

experiments.
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